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In this paper we report three-dimensional numerical simulation of compressible flows 
over open cavities. For high-fidelity unsteady solutions, we employ the Space-Time 
Conservation Element and Solution Element (CESE) method, a novel numerical method 
based on a unified treatment of space and time in calculating flux balance. High-speed cavity 
flows are studied to understand the mechanisms of mixing enhancement and flame holding 
by cavities. Numerical results are compared with the experimental data for dominant 
frequencies and time-averaged pressure coefficients inside the cavities. Numerical results 
show that cavity flows are highly three-dimensional and requires fine resolution of the shear 
layer over the open cavity. While the frequency of the pressure fluctuations can be easily 
captured, further mesh refinement and better control of numerical damping will be needed 
to improve the prediction of the pressure coefficient profiles inside the cavity.  

I. Introduction 
UEL injection, ignition, and flame-holding are challenging issues for high-speed combustion. In a scramjet 
engine, the fuel injection method employed must provide rapid fuel/air mixing with minimum total-pressure loss 

in the air stream. A stable flame-holding system under a wide range of operating conditions is critical to sustain the 
supersonic combustion. Recently, cavity-based flame holders, an integrated mixing-enhancement and flame-holding 
approach, have attracted considerable attention in the scramjet community. Under suitable conditions, flow 
recirculation, or the trapped vortices, significantly increases the flow residence time of the fluid entering the cavity. 
A pilot flame could be set up inside the cavity to provide a pool of hot chemical radicals, which in turn would reduce 
the ignition delay of the air/fuel mixture in air stream and thus sustain high-speed combustion.  

 High-speed cavity flows are inherently unsteady, involving both broadband small scale fluctuations typical of 
turbulent flows, as well as distinct resonance with harmonic properties in its frequencies and amplitudes. In the past, 
it has been demonstrated that the aspect ratio of the cavity and free stream flow conditions are the critical parameters 
dominating the complex flow features, including boundary layer separation, compressible free shear layer with 
shedding vortices, linear/nonlinear acoustic waves, and complex shock and expansion waves interacting with 
vortices and acoustic waves. 

 In the setting of wheel wells and bomb bays, previous studies for high-speed cavity flows showed that cavity 
flows could be categorized into the following two groups: (i) open cavity flows, when L/D < 7~10, and (ii) closed 
cavity flows, when L/D > 7~10, where L denotes the length of the cavity, and D the depth.  In flows over cavities of 
large aspect ratios (L/D > 7~10), the separated free shear layer emanating from the upstream corner of the cavity 
reattaches to the bottom wall of the cavity and results in two separated recirculation zones near the two corners 
between the lateral walls and the cavity floor. The resultant low pressure zones at the lower corners and high 
pressures on the cavity floor, where the shear layer reattaches, lead to significant drag and pressure loss of the air 
stream. In this case, mass addition/ejection into/from the cavity by aerodynamic unsteadiness is low to moderate, 
and the flow is referred to as “closed.”         
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 On the other hand, flows over cavities with smaller aspect ratios, L/D < 7~10, result in reattachment of the free 
shear layer to the rear bulkhead of the cavity. The impingement of the free shear layer on the rear lateral wall causes 
violent unsteady motions and results in significant periodical mass addition/ejection near the rear bulkhead of the 
cavity, and the flows are referred to as “open.” The wave patterns of open cavity flows could be further categorized 
into (i) transverse mode for very short cavities, L/D ≅ 1, and (ii) longitudinal mode for longer cavities, e.g., 2~3 < 
L/D < 7~10. In short cavities, L/D < 2, only one main vortex inside the cavity is sustained by the driving shear layer 
spanning the top of the cavity. The up and down motions of the single main recirculation bubble generate acoustic 
waves, which by and large propagate in the direction perpendicular to the free shear layer, provided  the free stream 
is transonic. The propagating waves are referred to as in a transverse mode.  On the other hand, when the cavity is 
longer, 2~3 < L/D < 7~10, multiple moving vortices occur inside the cavity leading to complex interactions among 
trapped vortices, propagating and rebounding pressure waves, and the flapping free shear layer. In general, the 
rebounding pressure waves, while interacting with the free shear layer, drastically amplify the growth rate of the free 
shear layer, which in turn sheds enormous vortices propagating towards and impinging on the aft wall of the cavity.  
Due to propagating vortices in the stream wise direction and the rebounding pressure waves, prevalent acoustic 
waves propagate in the longitudinal direction outside the cavity into the downstream area. If the air stream is 
transonic or subsonic, the acoustics would transversely propagate into the upstream areas.    

 In the setting of supersonic combustion inside a scramjet engine, trapped vortices inside cavities could be useful 
for flame holding. Moreover, cavity resonance, which produces periodic mass addition/expulsion with large flow 
structures, could be useful for mixing enhancement. Simultaneously, cavity drag must be minimum, e.g., much less 
than that of a bluff body, and thus only causes acceptable pressure loss.  Gruber et al. [1, 2] have developed a dual-
mode ramjet/scramjet engine concept, which is envisioned to use hydrocarbon fuels for a flight regime of Mach 
numbers from 3 to 6 ~ 9. In their supersonic combustors [1, 2], open cavities with aspect ratios about 5 < L/D < 8 
have been tested in conjunction with various fuel injection schemes.  Numerical simulation of cavity flows has been 
conducted by Baurle et al. [3].  The results showed that the cavities have great potential to be a viable combined 
flameholder/mixing enhancement device for scramjet engine combustor. Similar ideas have also been independently 
proposed and tested by Yu et al. [4]. In particular, Yu et al. [4] has tested supersonic flows passing multiple cavities.  
Some of recent results have been summarized by Ben-Yaker and Hanson [5].      

 In the past, extensive experimental and theoretical studies on cavity flows have been conducted for applications 
in wheel well and bomb bay, and flow characteristics such as the oscillation frequency and amplitudes at various 
locations in the cavity have been reported [6-11]. However, it is difficult to directly apply this knowledge base to 
cavity flows for the advanced scramjet engines due to much shorter length/time scales in scramjet engine. Additional 
complexity associated with fuel injection also warrants further studies because cavity flows and the associated 
acoustics would be drastically changed by the fuel injection schemes employed. In particular, inherent oscillations of 
cavity flows may be significantly suppressed by an upstream injection [4, 9-11].  

 In the present paper, we focus on time-accurate calculation of high-speed cavity flows.  The objectives of the 
present study are: (i) to validate the numerical results by assessing the calculated frequencies and amplitudes of 
pressure oscillations and compared them with previous reported data, and (ii) to demonstrate the capabilities of the 
CESE method for capturing complex flow features of the supersonic cavity flows. The rest of this extended abstract 
is organized as follows. Section 2 reviews the model equations to be solved by the CESE method. Section 3 provides 
background information of the CESE method. Section 4 shows preliminary numerical solutions.  We then offer 
concluding remarks and provide cited references. 

II. The Model Equations 
Equation (2.1) shows the vector form of the three-dimensional flow equations in Cartesian coordinates, including 

the continuity equation, the Navier-Stokes equations, the energy equation, and one species equation: 

 0Vν ν
t x y z x y z

∂ ∂ ∂∂ ∂ ∂ ∂
+ + + − − − =

∂ ∂ ∂ ∂ ∂ ∂ ∂
F G HU F G H                  (2.1) 

where the flow variable vector 

 ( ), , , , ,
T

fu v e w Yρ ρ ρ ρ ρ ρ=U ,                       (2.2)  

the inviscid flux vectors are 
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and the viscous flux vectors are 
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In the above equations, ρ is the density; u, v, and w are velocity components in the x, the y, and the z directions, 
respectively; p is the static pressure; e = ε + ½ (u2 + v2+w2) is the specific total energy with ε as the specific internal 
energy.  We assume the fluid is ideal and polytropic.  Due to the equation of state of an ideal gas, p = (γ - 1)ρ ε, 
where γ = Cp/Cv is the specific heat ratio and it is a constant. In the viscous vectors, τxx, τxy, τyy, τxz, τzy, and τzz are 
stress components, and qx, qy, and qz are the heat conduction fluxes in the x, the y, and the z directions, respectively. 
Yf is the mass fraction of fuel. The diffusion velocity components, û , v̂  and ŵ are calculated by Fick’s law, e.g., 

 x
Y

DuY f
ff ∂

∂
−=ˆ

                          (2.5) 
where D is the mass diffusivity of fuel in the gas mixture. Diffusion fluxes in the y and z directions are defined in a 
similar way. The molecular viscosity µ is calculated using Sutherland’s law [12] and the Lewis number Le =1 is 
assumed to calculate the mass diffusivity D. In numerical calculations, the above governing equations are 
nondimensionalized by the free stream conditions, i.e., velocity components by u∞, density by ρ∞,  pressure by ρ∞u∞2,  
and the total energy by ρ∞u∞2. The subscript ∞ denotes the free stream condition. The cavity depth d is used as the 
length scale, and the time scale is d/u∞.  

III. The CESE Method 
In order to faithfully track all linear and nonlinear waves, the numerical method employed must be able to 

capture all interactions between time marching terms and nonlinear flux terms, which give rise to the generalized 
Riemann problem involving multiple waves propagating at different speeds according to the eigenvalues of the 
coefficient matrixes of the Euler equations. The CESE method is a novel numerical framework for high-fidelity 
solution of hyperbolic conservation laws.  Originally developed by Chang and coworkers [13-18], the tenet of the 
CESE method is a unified treatment of space and time in calculating flux balance. Contrast to modern upwind 
schemes, no Riemann solver and/or a reconstruction procedure is used as the building block of the CESE method. 
As a result, the logic and computational counts of the CESE method are simpler and more efficient.  Based on the 
CESE method, computer programs for solving unsteady flows in one, two, and three spatial dimensions for 
structured, and unstructured meshes, and for meshes composed of mixed elements have been developed.  These 
solvers have been parallelized based on domain decomposition in conjunction of the use of MPI. Previously, various 
flow phenomena have been calculated by using the CESE method. In particular, the CESE solver is capable of 
calculating high-speed compressible flow as well as flows at very low Mach numbers without applying 
preconditioning to the governing equations. Moreover, the CESE method is capable of simultaneously capture 
strong shock waves and the acoustic waves in the same computational domain, while the amplitude of the pressure 
jump across the shock wave would be several orders of magnitude higher than that of the acoustic waves.   
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The CESE method employed in the present paper is based on the use of hexagonal cells in the three-dimensional 
space [17], which was extended from the original CESE method. For conciseness, we will only illustrate the basic 
ideas of the CESE method in the present paper. To proceed, we consider the NS equations, Eq. (2.1), for gas 
dynamics and let x1 = x, x2 = y, x3 =z and x4 = t as the coordinates of a four-dimensional space-time Euclidean space 
E4. By using the divergence theorem, the Euler equations become  

( )
0mS V

d⋅ =∫ h s ,      m=1,2,…,6    (3.1) 

where S(V) is the surface of an space-time region V in E4, ds 
is a surface element vector pointing outward, and hm is the 
space-time current density vector. Equation (3.1) states that 
the total space-time flux hm leaving volume V through S(V) 
must conserve. The CESE method integrates Eq. (3.1) in E4 
and solves for the flow variables U at each new time level.  

To integrate Eq. (3.1), the CESE method employs 
separate definitions of conservation element (CE) and 
solution element (SE). CEs are non-overlapping domains 
such that flux conservation is enforced over each CE, or over 
a union of neighboring CEs. Inside each CE, flow 
discontinuity is allowed. SEs are non-overlapping space-time 
domains such that within a SE flow variable and fluxes are 
assumed continuous and they are approximated by the first-
order Taylor series expansion. We note that flow variables and fluxes could be discontinuous across neighboring 
SEs. In general, SEs do not coincide with CEs.  

 
(a)          (b) 

Fig. 3.2: Schematics of the one-dimension CESE method. (a) The space-time mesh and (b) SE (j, n) and CE (j, n). 

For conciseness, the discussion of the numerical solution of Eq. (3.1) will be restricted to one spatial 
dimension. Figure 3.1 shows space-time flux conservation by Eq. (3.1). To integrate Eq. (3.1) over a space-time 
domain, i.e., S(V) in Fig. 3.1, we discretize the space-time domain as shown in Fig. 3.2, in which time marching of 
the CESE method is based on a space-time staggered mesh such that the flow information propagates only in one 
direction across the interfaces of neighboring CE and towards the future without encountering a Riemann problem. 
Figure 3.2(b) shows the CE and the SE associated with grid node (j, n). The SE is composed of two line segments: 
Q’Q” and AB, and their immediate neighborhood. The CE is the rectangle ABB’A’. For any (x, t) within SE(j, n), 
um(x, t) and f m(x, t) are discretized based on the first-order Taylor expansion, denoted by the superscript *:    

)()()()()(),;,(* nn
jmtj

n
jmx

n
jmm ttuxxuunjtxu −+−+= ,              (3.2)  

)()()()()(),;,(* nn
jmtj

n
jmx

n
jmm ttfxxffnjtxf −+−+= .              (3.3) 

* * *( , ; , ) ( ( , , , ), ( , , , ))m m mx t j n f x t j n u x t j n=h .                     (3.4) 

Equation (3.1) is then approximated by the discrete form:  

 

r + d r 

r 

d r 

d s 
V 

S ( V ) 

t 

x 
Fig 3.1: A schematic of space-time integral 
of the CESE method. 
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*

( )
0mS CE

d⋅ =∫ h s .                                (3.5)  

Without providing the details, we substitute Eqs. (3.2-4) into Eq. (3.5) and get 
1/ 2 1/ 2 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2( ) ( ) ( ) ( ) ( ) / 2n n n n n

m j m j m j m j m ju u u r r− − − −
− + − + = + + −  ,             (3.6) 

where  
n
jmt

n
jm

n
jmx

n
jm fxtfxtuxr ))(4/())(/())(4/()( 2 ∆∆+∆∆+∆= .             (3.7) 

Equations (3.6-7) are the algorithm for solving um.  

In two spatial dimensions, the computational domain is divided into non-overlapping quadrilaterals. Refer to Fig. 
3.3(a). Vertices and centroids of quadrilaterals are marked by dots and circles, respectively. Q is the centroid of the 
quadrilateral B1B2B3B4. Points A1, A2, A3, and A4, respectively, are the centroids of the four neighboring 
quadrilaterals of the quadrilateral B1B2B3B4. Q* marked by a cross in Fig. 3.3(a), is the centroid of the polygon 
A1B1A2B2 A3B3A4B4. Point Q*, which generally does not coincide with point Q, is referred to as the solution point 
associated with Q. Note that points *

4
*
3

*
2

*
1  and,,, AAAA , which are also marked by crosses, are the solution points 

associated with the centroids A1, A2, A3, and A4, respectively. To proceed, we consider the space-time mesh shown 
Fig. 2.3(b). Here t = n∆t at the nth time level, where n = 0, 1/2, 1, 3/2, …   For a given n, Q, Q’, and Q”, 
respectively, denote the points on the nth, the (n-1/2)th, and (n+1/2)th time levels with point Q being their common 
spatial location. Other space-time mesh points in Fig. 3.3(b) are defined similarly. Without going into details of the 
algorithm, Fig. 3.3(c) represents a three-dimensional spatial mesh of the CESE method for flow in a three-
dimensional space.   
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(a)            (b)          (c) 

Fig. 3.3: The space-time mesh in multi spatial dimensions: (a) 2D grid points in the x-y plane, (b) SE and CE for the 
2D scheme, (c) 3D grid points in the x-y-z space.   

For unsteady flow calculations, numerical treatment to achieve non-reflecting boundary condition is a critical 
issue. In the setting of the CESE method, we are concerned with the integral equation and the conventional ideas of 
treating non-reflective boundary based on differential equations, e.g., the MOC asymptotic and matching analytical 
at far  field, are inapplicable. Here, the non-reflecting boundary condition treatment is based on flux conservation 
near the computational boundary and letting the flux from the interior domain to smoothly exit to the computational 
domain through flux balance over boundary CEs. Because each CE allows flux and the flow information to 
propagate into the future, implementation of this flux-based boundary condition is extremely simple.  

IV. Results and Discussions 
Three cavity flows were considered: (i) a supersonic cavity flow taken from the supersonic combustion facility 

and the testing condition in the US AFRL supersonic combustion facility reported by Gruber et al. [1, 2] and Baurle 
et al. [5], (ii) a supersonic cavity taken from the experiments conducted by Stalling and Wilcox [20] in NASA 
Langley, and (iii) a subsonic cavity taken from the experiments conducted by Tracy and Plentovich [21] also in 
NASA Langley.  Obviously, the most important issue of the LES 3D simulations is the numerical accuracy of the 
simulated results. Table 1 outline of the 3 cases studies in the present paper.  
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Table 1: Three high-speed cavity flows simulated by the CESE method.  

Case  Free-
Stream 
Mach 
number  

Cavity Geometry  

 

Mesh size Accuracy validation Reference 

1 2 L/D = 7.76, W/D = 3.9 4 M  None Gruber et al. [1,2] 

Baurle et al. [5] 

2 2.86 L/D =12 , W/D =5  

 

4.6 M  Averaged Cp 
profiles 

Stalling and Wilcox 
[20]  

3 0.95 L/D = , W/D =  Dominant 
frequencies 

Tracy and Plentovich 
[21] 

 
Fig. 4.1: The overall flow geometry and the computational domain.  

Case 1: Mach 2 Cavity Flow  

 The flow condition and cavity geometry are taken from the supersonic combustion facility and the testing 
condition in the US AFRL supersonic combustion facility reported by Gruber et al. [1, 2] and Baurle et al. [5]. A 
supersonic flow at Mach 2 and Reynolds number of 4x105  passes a swallow cavity with L/D = 7.76,  where L and d 
are the length and depth of the cavity, respectively. The computational domain outside of the cavity is 52.110 ≤≤ x , 
and  82.30 ≤≤ y , where x and y are non-dimensionalized by D.  Mesh points were clustered at the forward and aft 
bulkheads, at the plane spanning over the cavity mouth, and along the lateral sidewalls of the cavity. 

About 4 million hexagonal elements are used for the computational domain.  Figure 4.2 shows the mesh.  The 
non-reflecting boundary condition is applied to the free stream surfaces, the de surfaces and the outlet surface. 
Initially, velocities inside the cavity are set to zero, and the density and pressure of the whole domain are set to the 
free stream values. The time step was chosen such that CFL ≈ 0.8 based on the free stream condition. Figure 4.2 also 
shows the domain decomposition for parallel computation. Difference colors represent difference sub-domains 
calculated by different CPU nodes.  The domain decomposition is performed based on even distribution of the CPU 
work load and minimum communication among the nodes.   

 Figures 4.3 shows the iso-surfaces of constant pressure and the magnitude of vorticity. In this case, the cavity 
flow is far removed from being a two-dimensional flow.  In particular, two vortex tubes along the side edges of the 
cavity could be clearly seen in Fig. 4.3(b). Figures 5 and 6 show snapshots of pressure contours and vorticity 
contours on the central plane of the cavity.  Figure 4.4 shows the snapshots of streamwise component of the vorticity 
vector on a cross section plane of x = 6D from the leading edge of the cavity. Again, tremendous secondary 
recirculation can be clearly seen and the flow is high three-dimensional and unsteady.  



 
American Institute of Aeronautics and Astronautics 

 

7

   

 
Fig. 4.2: Three-dimensional hexagonal mesh of Case (i). Domain decomposition by using METIS. Different colors 
represent different sub-domains calculated by different CPU nodes. 

 

     
Fig. 4.3: Three-dimensional iso-surfaces of Case (i) cavity flow. (a) Constant pressure and (b) one iso-surface of the 
magnitude of the vorticity vector. In (b) we observe two vortex tubes in the streamwise direction along the two side 
edges of the cavity.     

 (a)    

  (b)    
Fig. 4.4: Snapshots of on the central plane of the cavity. (a) Pressure and (b) the y-component of vorticity. 
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Fig. 4.5: Two snapshots of the x-component of the vorticity vector on a cross section plane at x = 6D from leading 

edge of the cavity. 
 

 Case 2: Mach 2.86 Supersonic Cavity Flows   

 This case was taken from the experiments conducted by Stalling and Wilcox [20]. The free stream Mach number 
is  M = 2.86. The geometry of the cavity is normalized by the cavity depth and L/D = 12, W/D = 5, where D = 0.5 in. 
The free stream flow conditions are Po = 1934 lb/ft2 (or 92600 Pa), and To =585 R (or 325 K). The mesh size is 
about 4.6 million. Since the mesh and the associated domain decomposition are similar to that of Case (i) as shown 
in Fig. 4.2, no plots about the mesh is provided here.  

(a)  

(b) (c )  
Fig. 4.6: Snapshots of density gradient contours on the cross-sections at (a) y=0, (b) x=6D, and (c) x=9D. 

 

(a)  

(b) (c )  
Fig. 4.7: Snapshots of vorticity contour on the cross section planes at (a) y=0, (b) x=6D, and (c) x=9D. 

 Figure 4.6 shows contours of density gradient magnitudes in the planar view (a) and in the frontal view (b and c).  
In this case, although the L/D is 12, the shear layer does bend down to touch the bottom of the cavity mainly due to 
the high Mach number of the free stream. Figure 4.7 shows contours of vorticity magnitudes in the planar view (a) 
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and in the frontal view (b and c). Although not shown, the flow field is more stable as compared to that of case (i). 
based on the snapshots in 4.6-7, the flow field is also much more two-dimensional as compared to that of Case (i). 
  

 
(a)             (b)           (c) 

Fig. 4.8: Time-averaged pressure coefficient Cp distribution. (a) along the centerline on the cavity floor, (b) on the 
rear wall, and (c) on the plate behind the cavity. 
 
Figure 4.8 shows time-averaged pressure coefficient Cp profile. The pressure coefficient is defined as  

 p
p p

C
q

∞

∞

−
= ,                            (4.1)  

where p∞  is the free stream static pressure, q∞  is the free stream dynamic pressure. 
 
 Case 3: A Subsonic Cavity Flow  

 This case was taken from the experiments conducted by Tracy and Plentovich [21]. The free stream Mach 
number is M = 0.95. The geometry of the cavity is normalized by the cavity depth and L/D = 8, W/D = 4, where D = 
2.4 in. The free stream flow conditions are Po = 12 psi (or 82737 Pa), and To =107 F (or 315 K). The mesh size is 
about 5.4 million. Since the mesh and the associated domain decomposition are similar to that of Case (i) as shown 
in Fig. 4.2, no plots about the mesh is provided here.  

(a)  

(b)   (c)  
 

Fig. 4.9: Snapshots of density gradient contours on cross section planes at (a) y = 0, (b) x = 4D, and (c) x = 6D.  
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(a)  

(b)  (c)  
 

Fig. 4.10: Snapshots of vorticity contours on cross section planes at (a) y = 0, (b) x = 4D, and (c) x = 6D. 
 
 Figures 4.9-10 show the snapshots of density gradient and vorticity contours of the three-dimensional flow field 
on various cross sectional planes. In general, the flow is much more violent due to strong interaction between the 
free-shear layer and the rearward facing step at the downstream of the cavity. The cavity is “open” owing to 
tremendous mass exchange between the free stream and the inside of the cavity.  

 
Fig. 4.11: Dominant frequencies of Case (iii). (a) CFD result, and (b) Experimental data [21]. 

 
 Figure 4.11 shows the calculated dominant frequencies as compared to the experimental results. Shown in the 
figure, the dominant frequencies are about 140, 400, 660, and 900 Hz. These four frequencies agree well with the 
first four modes reported by Tracy and Plentovich [21]. For convenience, the SPL-Frequency plot in [21] is also 
included. In the plot, SPL is defined as  
 

 9

'
20log

2.9 10
rmsp

SPL
psi−

 
=  

× 
,                       (4.2)  

where p’rms = 2( ')p is  root-mean-square pressure, and p’ is the measured unsteady pressure in psi. 

V. Conclusion 
Preliminary CFD results of three high-speed cavity flows are presented in the present paper. The results were 

presented qualitative by various snapshots at different cross sectional planes. These figures demonstrate very 
complex flow features, including traveling acoustic waves, vortex generation at the leading edge, shedding vortices 
in the free shear layer, and pressure waves impinging on and rebounding from the aft wall. The interactions between 
the rebounding pressure waves and shed vortices form a feed back loop which leads to self-sustained oscillations. In 



 
American Institute of Aeronautics and Astronautics 

 

11

all cases, these periodic shear layer deflections in the transverse direction could be clearly discerned. Inward 
deflection results in mass addition into the cavity; outward deflection expels mass from the cavity. This periodic 
mass addition/expulsion mechanism enhances fuel/air mixing. Moreover, flapping shock/expansion waves 
emanating from the upstream bulkhead of the cavity can also enhance fuel/air mixing. Limited code validation has 
been conducted. In case (ii), the calculated time averaged pressure coefficient profiles have been compared with the 
experimental data. At the rear bulkhead, numerical result over predicted the magnitude of Cp. CFD results also show 
smaller recirculation zones around the two corners of the cavity. In the lee of the cavity, CFD results compared well 
with the experimental measured Cp. In Case (iii), CFD results captured the first four dominant frequencies measured 
by the experimental works.   
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