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ABSTRACT

In this paper, we report direct calculations of cavitating
pipe flows by the method of Space-Time Conservation
Element and Solution Element, or the CE/SE method for
short. The tenet of the CE/SE method is treating space
and time as one entity, and the calculation of flow
properties is based on the local and global space-time
flux conservation. As a contrast to the modern upwind
schemes, no Riemann solver is used, thus the logic of
the present scheme for cavitating flows is much simpler.
Two numerical examples are reported in this paper: (1) a
hydraulic shock problem, and (2) a cavitating pipe flow.
For the hydraulic shock problem, we demonstrate the
capability of the CE/SE method for capturing contact
discontinuities in cavitating fluids. For the pipe flows, a
two-phase homogeneous equilibrium cavitation model is
employed. In both cases, numerical results compared
favorably with the experimental data and analytical
solution.

INTRODUCTION

Transient hydraulic pressure wave propagation in a pipe
is of practical importance in automotive systems,
including fuel delivery, power steering, anti-lock brake,
engine cooling, and automatic transmission. Under
certain conditions, such as a sudden open or closure of
a valve, vapor bubbles may form when the static
pressure in the liquid drops to its vapor pressure. The
collapse of these bubbles will generate high pressure
waves propagating through the pipe, which will lower the
performance of the system, produce vibration and noise,
and even cause damage to the pipe and valve surfaces
[6]. Many researchers [4, 9, 10] have attempted to
simulate the transient wave propagation in the pump-
line-nozzle system, which is widely used in diesel
engine. But they didn’t consider the possible formation of
cavitation and its effect on the transient flows. While the
maximum pressure generated at the valve can be
analytically predicted by neglecting the fluid resistance
[3], detailed hydrodynamic simulation can only be
achieved by numerical methods. However, numerical
simulation of cavitating flows poses unique challenges
both in modeling the physics and in developing a robust
numerical methodology. Because of the tremendous

density difference between the vapor and liquid, it is
necessary to construct a numerical scheme with high
resolution for the region of cavitation. The numerical
scheme should also be robust enough to deal with the
enormous instability problems caused by the cavitating
flows. Various numerical methods, such as the method
of characteristics [8] and high resolution upwind
schemes for capturing the interface of two phase flows
[11], have been developed to study cavitating flows.

In this paper, we employed the CE/SE method originally
developed by Chang [1]. The method is substantially
different in both concept and methodology from the
traditional methods. It enforces both local and global flux
conservation in space-time domain and has remarkable
ability to resolve discontinuity interfaces. In automotive
industry, the CE/SE method has been successfully used
by Onorati and Ferrari [5] to simulate one-dimensional
flows in internal combustion engines.

The rest of this paper is organized as follows. In Section
2, we discuss the theoretical model of the flow equations
to be solved. In Section 3, the essence of the CE/SE
method will be illustrated. In Section 4, we present
numerical results of two examples. We then give the
concluding remarks.

2. THEORETICAL MODEL

2.1 FLOW EQUATIONS

For the compressible liquid flow in a pipe, the governing
equations are
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The flow variable vector, flux vector, and the source
vector are
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in which ρ is density, u is velocity,  p is pressure, D is the
diameter of the pipe, and f is the Darcy friction factor. In
Eq. (2.1), the first equation is the continuity equation and
the second one is the mementum equation. The density
and pressure are related by the acoustic velocity a of the
liquid, such as

2a
d

dp
=

ρ
. (2.3)

The source term in the momentum equation models the
viscous friction of fluid flow.

2.2 CAVITATION MODEL

When cavitation occurs, the density in the flow equations
is treated as  a “psuedo density”, which is related to the
gas and liquid density by

lg ρααρρ )1( −+= , (2.4)

where α is the void fraction. The relation between
density, pressure and the speed of sound, Eq. (2.3),
needs to be modeled. In this paper a two-phase
homogenous equilibrium cavitation model [7] was
adopted. The acoustic velocity of the two-phase
homogeneous fluid is given by Wallis [12] as
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Substituding Eq. (2.5) into Eq. (2.3) and integrating
pressure as a function of void fraction from the saturated
liquid state, we have
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where 
glp is a constant given by
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The parameter β (10–3 > β > 10–5) is a model constant.
The simulation results are independent of the values of β
as long as it is in the range.

3. THE CE/SE METHOD

In this section, we give a brief description of the CE/SE
method. Equation (2.1) can be written in the form of
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where m equals 1 and 2, representing the continuity
equation and momentum equation, respectively. The
source term ),( 21 qqsm is a function of q1 and q2. Let x1 (=
x) and x2 (= t) be the coordinates of a two-dimensional
Euclidean space E2. Thus Eq. (3.1) becomes

),( 21 qqsmm =•∇ h (3.2)

in which the current density vector is ( )mmm qf ,=h .  By
using Gauss’ divergence theorem in the space-time
domain E2, it can be shown that Eq. (3.1) is the
differential form of the integral conservation law:
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Figure 1 shows a schematic of Eq. (3.3).
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Fig. 1 A schematic of the space-time integral

Here S(R) is the boundary of an arbitrary space-time
region R in E2, ndsd

rr
σ= with σd  and n

r
, respectively,

being the area and the outward unit normal of a surface
element on S(R), and dR is the volume of a space-time
region inside S(R). Note that sdm

r
•h is the space-time

flux of hm leaving the region R through the surface
element sd

r
, and all mathematical operations can be

carried out since E2 is an ordinary two-dimensional
Euclidean space. We remark that space and time are
treated on an equal footing manner. Therefore, there is
no restriction on the space-time geometry of the
conservation elements over which the space-time flux is
imposed.

In the light of the method of treating stiff source terms
proposed by Yu and Chang [13], we discretized the
space-time domain into rectangular elements in stead of
rhombic ones, and associated the source term with the
old time step variables. These treatments enable explicit
time marching of this scheme. This is a good
approximation, since the source term in Eq. (2.1) is not
stiff.

4. NUMERICAL EXAMPLES

In this section, two numerical examples are reported.
The first problem is a hydraulic shock problem, which
demontrates the capability of the CE/SE method for



capturing contact discontinuities. The second problem is
the transient waves in a cavitating pipe flow.

4.1 HYDRAULIC SHOCK PROBLEM

4.11 Analytical Solution
Consider an infinitely long tube with a diaphragm located
at a certain place. The diaphragm separates two initially
quiescent liquid states at different pressures and
densities. When the diaphragm is suddenly broken at
time t = 0, an expansion fan will be formed and
propagate to the high-pressure liquid, simultaneously a
shock will be formed and propagate to the low-pressure
region, as shown in Fig. 2. In this figure, the diaphragm
is placed at the lower center and the pressure of the
liquid to the left of this diaphragm is higher than that to
the right.
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shock
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Fig. 2 A description of hydraulic shock problem

In our analysis, we didn’t take the source term in Eq.
(2.1) into consideration. The initial conditions were set
such that no bubble will form during the transient
process. With this simplification, Eq. (2.1) can be written
as
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where A is the jacobin matrix given by
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This jacobin matrix A can be diagonized by a matrix,
say, M. Multiplying the inverse M-1 to both sides of
equation (4.1), we can get the characteristic form
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Where Λ  is a diagonal matrix given in Eq. (4.4), and Q̂
is related to Q by Eq. (4.5).
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By selecting appropriate matrix M and integrating Eq.
(4.5), we have
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where C1 and C2 are two integration constants. Eqs.
(4.3) and (4.6) indicate that ρlnau ± are two constants

along the two characteristics au
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±= , respectively. In

the expansion fan area, area 1 in Fig. 2, we have
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From equation (4.12), we know u1 is a constant along
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area 1, where x0 is the initial position of the diaphragm.
Density 1ρ and other properties can then be obtained
using Eq. (4.7). In the area 2 in Fig. 2, we have
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where C is the speed of the shock. By assuming
constant acoustic velocity a, intergration of Eq. (2.3)
gives

.2 constap += ρ . (4.9)

Combining Eqs. (4.8) and (4.9) leads to
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This is the exact solution in area 2. The flow properties
in area L and R are not changed from their initial value.

4.12 Numerical Results
To demonstrate the ability of the CE/SE to capture
discontinuity interfaces, we first compute the hydraulic
shock problem described above. In this case, our
computation domain is from x = 0m to x = 1.0m. The
diaphragm is initially located at x = 0.5m. The initial
velocity is 0 everywhere in the tube. The left and right
boundaries are set as non-reflect boundaries. At the



bursting of the diaphragm, at time t = 0, a rarefaction
wave moves to the left and a shock moves to the right.

Figure 3 shows the numerical results plotted against the
analytical solutions. In this case, the initial pressure of
the liquid (water) to the left of the diaphragm is 2.0MPa
and the pressure to the right of the diaphragm 0.1Mpa.
As shown in Fig. 3, the numerical results agree with the
analytical results very well. Two discontinuity steps were
successfully captured by the space-time CE/SE scheme.
The left step is an expansion fan and the right step is a
shock. Since the compressibility of water is very small,
the expansion fan looks like a shock.
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Fig. 3 The CE/SE solution of hydraulic shock problem (t=
0.15x10-3 sec.)

As the initial pressure difference between the two sides
of the diaphragm becomes larger, the expansion fan can
be seen more clearly. Shown in Fig. 4 are the numerical
and analytical results under the condition of large
pressure difference. In this case, the left side pressure is
500MPa, and right side pressure is 1.0MPa. The left side
expansion was captured by three points, and the right
side shock was captured by one point. The numerical
results also agree with analytical results very well.
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Fig. 3 The CE/SE solution of hydraulic shock problem (t=
0.15x10-3 sec.)

4.2  CAVITATING PIPE FLOWS

In this case, the calculation is initiailized by a pipe flow at
a steady state.  When t=0, an upstream valve is
suddenly closed . Due to the inertia of the liquid flow,
however, the liquid continues to flow in the pipe. Thus, a
vacuum region (cavitation) occurs in the neighborhood of
the valve. The low pressure of the vacuum region
imposes an adverse pressure gradient to the pipe flow,
and eventually causes the liquid to flow in a reverse
direction back to the valve.  The collapse of the
cavitation region creates a pressure surge. As a result,
fluid flow changes the direction again and flows away
from the valve. The back and forth oscillations of the
pipe flows is the phnomenon that we want to simulate by
using the CE/SE method.

Figure 5 shows the series of the pressure distribution
along the pipe with an interval of 0.185 seconds. The
horizontal axis represents the pipe and vertical axis
represents the pressure head. A logarithmic (base 10)
scale is used for the vertical axis from 0.1m to 100m.
The arrows in this figure indicate the wave propagation
directions. It’s interesting to see that wave propagation
speed varies considerably during the first 4.5 seconds
after the valve closure. This is because the sonic speed
of two phase flow is very sensitive to the void fraction of



Fig. 5 Series of the pressure distrbution along the pipe (interval time = 0.185sec.)



the flow. The sound speed of mixture of water and its
vapor can be as low as 20m/s.
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Fig. 6 Cavitation caused by an upstream closing valve:
(a) Experimental result, (b) Numerical simulation
results.

Figure 6 shows the pressre history on the valve surface
with (a) as the experimental data and (b)  the numerical
results by the CE/SE method.  The numerical results
compared favorably with the experimental data in terms
of the pressure pick and the oscillation period. We
remark that in the later stage of the flow development,
experimental data showed more damped condition. This
is due to fact that the use of a simple one-dimensional
viscous model in  our model, Eq.(2.2), is inadequate to
represent the real mechanism of flow friction, which is by
and large caused by the boundary layer effect.

Figure 7 shows the pressure history of a cavitating flow,
where the valve is located at the downstream of the
pipe. Again, the comparison is very favorable.
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Fig. 7 Cavitation caused by a downstream closing valve:
(a) Experimental result, (b) Numerical simulation
result.

5. CONCLUDING REMARKS

In this paper, we reported the extension of the CE/SE
method to calculate cavitating flows. The CE/SE method
is simple, accurate, and very efficient in calculating the
complicated flow phenomenon of cavitation. Two
examples are reported: (1) a hydraulic shock problem
and (2) a cavitating pipe flows. In both cases, the CE/SE
was capable to capture all salient features of the flow
field, and the numerical results compared favorably with
the experimental data and analytical solution.

ACKNOWLEDGEMENT

Partial support from ARO grant under DAAH04-96-1-045
and the Automotive Research Center at University of
Michigan is acknowledged.

REFERENCES

1.  Chang S. C., 1995, “The Method of Space-Time
Conservation Element and Solution Element – A New
Approach for Solving the Navier-Stokes and Euler
Equations,” Journal of computational Physics, Vol. 119,
pp. 295-324.

2.  Chen Y. and Heister S. D., 1995, “Two-Phase Modeling of
Cavitated Flows,” Computers and Fluids, Vol. 24, No. 7,
pp. 799-809.

3.  Li W. H. and Walsh J. P., 1964, “Pressure Generated by
Cavitation in a Pipe,” Journal of the Engineering
Mechanics Division, Proceedings of the American Society
of Civil Engineers, pp. 113-133.

4.  Marcic M. and Kovacic Z., 1985, “Computer Simulation of
the Diesel Fuel Injection System,” SAE Paper 851583.

5.  Onorati A. and Ferrari G., 1998, “Modeling of 1-D
Unsteady Flows in I.C. Engine Pipe Systems: Numerical
Methods and Transport of Chemical Species,” SAE Paper
980782.

6.  Ozol J., Kim J. H. and Healzer J., 1994, “Cavitation
Experience with Control Valves in Nuclear Power Plants,”
FED-Vol. 190, Cavitation and GAS-Liquid Flow in fluid
Machinery and Devices, ASME.

7.  Schmidt D. P., 1997, “Cavitation in Diesel Fuel Injector
Nozzles,” Ph. D. Thesis.

8.  Shu J. -J., Edge K. A., Burrows C. R., and Xiao S., 1993,
“Transmission Line Modelling with Vaporous Cavitation,”
Presented at the ASME Winter Annual Meeting, 93-
WA/FPST-2.

9.  Sobel D. R. and Lehrach R. P. C., 1987, “A Hydro-
Mechanical Simulation of Diesel Fuel Injection Systems,”
SAE Paper 870432.

10.  Strunk R. D., 1991, “The Dynamics of Pump-Line-Nozzle
Fuel Injection Systems,” SAE Paper 91181.

11.  Tang H. S. and Huang D., 1996, “A Second-Order
Accurate Capturing Scheme for 1D Inviscid Flows of Gas
and Water with Vacuum Zones,” Journal of Computational
Physics, 128, pp. 301-318.

12.  Wallis G. B., 1969, One-dimensional Two-phase Flow,
McGraw-Hill Book Company.

13.  Yu S. T. and Chang S. C., 1997, “Treatments of Stiff
Source Terms in Conservation Laws by the Method of
Space-Time Conservation Element and Solution Element,”
AIAA 97-0435.


