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I. Introduction

R ECENTLY, computational magnetohydrodynamics (MHD)
has drawn attention as a result of growing interests in plasma-

based aerodynamics, including flow manipulation through plasma,
onboard power generation, and drag reduction in hypersonic vehi-
cles. Because plasma flows are much more complex than the reg-
ular gas dynamics, extension of the existing computational-fluid-
dynamics methods for solving the plasma equations involves unique
requirements and poses a greater challenge. A critical issue in com-
putational MHD is to maintain the divergence-free condition for the
magnetic field, that is, ∇ · B = 0, for all time and at all locations in
the computational domain. Analytically, this constraint is ensured if
it is satisfied in the initial condition. However, it is difficult to main-
tain the constraint in numerical calculations. Violating the ∇ · B = 0
constraint might allow numerical errors to be accumulated, leading
to erroneous solutions and/or numerical instability. Usually, a spe-
cial treatment is used to enforce the constraint. These procedures
can be categorized into three groups: 1) the projection procedure
reported by Brackbill and Barnes,1 2) the eight-wave formulation
reported by Powell,2 and 3) the constrained transport procedures re-
ported by Evans and Hawley,3 Dai and Woodward,4 Ryu et al.,5 and
Balsara and Spice.6 Toth7 has compared and assessed these popular
methods.
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Because of the complexity of the plasma problems, a highly accu-
rate but simple numerical method is desirable. Simplicity is partic-
ularly important for further extending the solvers to model plasma
processes involving multiple components and chemical reactions.
To this end, we propose to use the space-time conservation element
and solution element (CESE) method for computational MHD. We
will demonstrate the capability of the CESE method by solving two
standard MHD problems: 1) a rotated shock-tube problem by Brio
and Wu8 and 2) a vortex problem by Orszag and Tang.9 In the first
case, a two-dimensional calculation is conducted on a rotated co-
ordinate frame for solving an essentially one-dimensional process.
Direct comparison between the two-dimensional result with the cor-
responding one-dimensional solution allows us to assess the nu-
merical accuracy of the CESE method in maintaining the ∇ · B = 0
constraint. For this calculation, we do not impose any special treat-
ment for the constraint. In the second case, we conduct the two-
dimensional calculations with and without imposing the constraint
by a projection method. For both calculations, the results compare
well with the previously published solution. For this particular case,
we show that the projection method does not improve the quality of
the solution.

II. Governing Equations and the CESE Method
The ideal MHD equations in two spatial dimensions can be ex-

pressed as

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= 0 (1)

where

U = (ρ, ρu, ρv, ρw, e, Bx , By, Bz)
T = (u1, u2, u3, . . . , u8)

T (2)

F = [
ρu, ρu2 + p0 − B2

x , ρuv − Bx By, ρuw − Bx Bz, (e + p0)u

−Bx (u Bx + vBy + wBz), 0, u By − vBx , u Bz − wBx

]T

= ( f1, f2, f3, f4, f5, f6, f7, f8)
T (3)

G = [
ρv, ρvu − By Bx , ρv2 + p0 − B2

y , ρvw − By Bz, (e + p0)v

−By(u Bx + vBy + wBz), vBx − u By, 0, vBz − wBy

]T

= (g1, g2, g3, g4, g5, g6, g7, g8)
T (4)

In the preceding equations, ρ and p and e are the density and pres-
sure; u, v, and w are velocity components in x , y, and z direc-
tions, respectively. Bx , By , and Bz are magnetic filed components
in the x , y, and z directions; p0 is the total pressure and defined as
p0 = p + (B2

x + B2
y + B2

z )/2; and e is the specific total energy and
is defined as e = ρε + ρ(u2 + v2 + w2)/2 + (B2

x + B2
y + B2

z )/2. For
calorically ideal gases, the specific internal energy ε is defined as
ε = p/(γ − 1)ρ, in which γ is the specific heat ratio. In addition to
the preceding equations, initial condition of magnetic field B must
satisfy the divergence-free constraint, ∇ · B = 0.

To solve Eq. (1) by the CESE method, let x1 = x , x2 = y, and
x3 = t be the coordinates of a three-dimensional Euclidean space
E3. Equation (1) becomes a divergence-free condition:

∇ · hm = 0 (5)
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where hm = ( fm, gm, um), m = 1, 2, . . . , 8, is space-time vector in
E3. By Gauss’s divergence theorem, we have

∫

V

∇ · hm dV =
∮

S(V )

hm · ds = 0 (6)

where S(V ) is the boundary of an arbitrary space-time region V
in E3 and ds = n dσ , where dσ and n are the area and the outward
unit normal vector of a surface element on S(V ). We use the CESE
method to integrate Eq. (3) in the space-time domain. Details of
the CESE methods have been extensively illustrated in the cited
references.10−15 In what follows, we provide brief comments on
unique features of the method.

The tenet of the CESE method is to treat space and time as one
entity to obtain an explicit time-march scheme based on space-time
flux balance. Separated definitions of conservation element (CE)
and solution element (SE) are used. Inside a SE, the flow variables
are assumed continuous and can be represented by a predetermined
function. Over a CE, flux conservation is enforced, and the values
of flow variables could be discontinuous. Time marching is carried
out in a leapfrog fashion such that across each cell interface of
neighboring SEs flow information propagates in only one direction,
that is, toward the future. The mathematical formulation used in the
CESE method involves only a first-order Taylor-series expansion
and simple reweighting algorithms. The construction of CE and SE
for the MHD equations is identical to that illustrated in Ref. 14.

III. Results and Discussion
A. Rotated Shock-Tube Problem

To test the capabilities of the numerical algorithm for maintain-
ing the ∇ · B = 0 constraint for flows in multidimensions, a common
practice, as reported by Toth7 and Jiang and Wu,16 is to perform two-
dimensional calculation of a rotated one-dimensional problem. Re-
ferring to Fig. 1, the computation is conducted in domain OABC in
x–y coordinates. The one-dimensional problem is defined along the
ξ axis. Through coordinate transformation, the flow variables in the
x–y coordinates can be obtained from those in the ξ–η coordinates
and vice versa. Because the one-dimensional solution would auto-
matically satisfy ∇ · B = 0, the net effect of violating the ∇ · B = 0
constraint in the two-dimensional results can be straightforwardly
judged by direct comparison between the two-dimensional result
with the corresponding one-dimensional one. Here, the Brio and
Wu’s shock-tube problem8 is employed for the purpose.

The present calculation is similar to that reported by Jiang
and Wu.16 The computational domain is (x, y) ∈ �0,

√
2/2� ×

�0,
√

2/2�. The rotated angle ϕ between the x-y system and the
ξ -η system is 45 deg. The initial jump condition is prescribed along
the ξ axis:

(ρ, u, v, w, p, Bη, Bz)

=
{

(1.000, 0, 0, 0, 1.0, + 1, 0) for ξ < 0.5

(0.125, 0, 0, 0, 0.1, −1, 0) for ξ > 0.5

Fig. 1 Relation between x–y coordinates and ξ–η coordinates.

Fig. 2 Density profile of rotated Brio and Wu’s problem: ——, data
provided in Ref. 8.

Fig. 3 Bξ profile of rotated Brio and Wu’s problem with different
resolution.

with γ = 2 and Bξ = 0.75. Figure 2 shows the profile of density at
t = 0.1, in which the solid line is a one-dimensional result by Brio
and Wu8 and dots are our two-dimensional result by using the CESE
method. The mesh density is 800 × 800.

Figure 3 shows the two-dimensional solution of Bξ along the ξ
axis at time t = 0.1. Analytically, Bξ = 0.75 along the ξ axis, that is,
the initial condition, during the flow evolution. Oscillations occur
around discontinuities. Away from flow discontinuities, Bξ main-
tains constant. Figure 3 also shows results with two other meshes:
200 × 200 and 400 × 400. Coarser meshes have limited influence
on the ∇ · B = 0 condition. Note that similar oscillations of Bξ also
appeared in Jiang and Wu’s two-dimensional results.16 They used
a high-order weighted essentially nonoscillatory (WENO) scheme
in conjunction with a projection procedure for ∇ · B = 0. The mag-
nitude of the oscillations in Bξ in our two-dimensional results is
comparable to that reported by Jiang and Wu.16 The use of the pro-
jection procedure in Jiang and Wu’s calculation is critical to their re-
sult. Without the special treatment, significant spurious oscillations
occur. In our case, no spurious oscillation occurs, and no special
treatment is used.

B. MHD Vortex
The initial condition of Orszag and Tang’s problem9 is

ρ(x, y, 0) = γ 2, p(x, y, 0) = γ

u(x, y, 0) = −sin y, v(x, y, 0) = sin x, w(x, y, 0) = 0

Bx (x, y, 0) = −sin y, By(x, y, 0) = sin 2x, Bz(x, y, 0) = 0
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Fig. 4 Pressure profile along y = 0.625π at t = 3 of Orszag and Tang’s
problem.

Fig. 5 Comparison between the CESE method with and without a
projection procedure for keeping ∇ · B = 0.

The computational domain is [0, 2π ] × [0, 2π ], which is discretized
by 193 × 193 grid nodes. Periodic boundary conditions are em-
ployed on the two lateral boundaries and the top and bottom bound-
aries. We ran the calculation from t = 0 to 10. Figure 4 shows
the comparison between our calculated pressure profile along line
y = 0.625π at t = 3, with that reported by Tang and Xu17 (also
private communication, 2004), in which a high-order gas-kinetic
method coupled with a projection procedure was used to solve the
same problem. Our result is almost identical to that reported by Tang
and Xu17 (also, private communication, 2004).

To assess the effect of the projection procedure in maintaining
∇ · B = 0 on the CESE’s results, we repeat the same calculation by
employing the projection procedure in our solver. At every time step,
we solve a Poisson equation ∇2φ + ∇ · B = 0, with B obtained by
the CESE method. We then correct magnetic field as Bc = ∇φ + B,
for which ∇ · Bc = 0. The divergence-free Bc is used for the solution
at the next time step. Figure 5 shows the comparison between the
pressure profiles along line y = 0.625π at t = 3 with and without
using the projection method. No obvious difference is observed.

IV. Conclusions
In this Note, we report the extension of the conservation ele-

ment and solution element (CESE) method for solving the magne-

tohydrodynamics (MHD) equations in two spatial dimensions. Two
benchmark problems are calculated: 1) a rotated one-dimensional
shock-tube problem proposed by Brio and Wu8 and 2) a MHD vortex
problem proposed by Orszag and Tang.9 In both cases, numerical
results by the CESE method without using any special treatment for
∇ · B = 0 compare favorably with previously reported results. To
further assess the numerical solution, we couple the projection pro-
cedure for ∇ · B = 0 with the CESE solver and recalculate Tang and
Orszag’s problem. The result shows no improvement. Moreover, ap-
plications of the CESE method to these two MHD problems without
any special treatment for ∇ · B = 0 show no numerical instability in
calculations.
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