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Abstract

In this paper, we report an extension of the
CE/SE method for simulating conservation laws
with stiff source terms. In contrast to the mod-
ern upwind schemes, the approach here does not
use the reconstruction and Riemann solver as the
building blocks. Therefore, the logic is consider-
ably simpler. The treatment is based on a volu-
metric integration of the source terms over space-
time conservation elements such that the source
terms are treated directly as an integral part of
the overall space-time flux balance. Two space-
time geometries are reported: (1) the rhombic
conservation elements, and (2) the rectangular
conservation elements. The method of rhombic
element can be used to treat the non-stiff source
terms. The method of rectangular elements is
suited for stiff source terms. Both methods re-
sult in locally implicit formulations and New-
ton’s method is used to solve the equations. Four
examples are reported in the paper: (1) standing
normal shock in a quasi-one-dimensional flow,
(2) LeVeque and Yee’s test case using a cubic
function of the unknown as the source term; (3) a
shock tube in a constant-temperature bath, and
(4) the ZND detonation waves.
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1 Introduction

Recently, Chang and coworkers [1-10] reported
a new framework for the numerical solution of

_conservation laws, namely, the Method of Space-

Time Conservation Element and Solution Ele-
ment, or the CE/SE method for short. This
method is distinguished by the simplicity of its
conceptual basis — a unified treatment of flux
conservation in space and time. In describing the
method, Chang took the most direct approach,
i.e., starting from the basic integral equations,
the algebraic details and the mathematical anal-
yses were presented in a systematic way. All
informations needed to implement a computer
software were included. That approach made
it clear that the CE/SE method was developed
from fundamentals. It is not an incremental im-
provement of a previously existing method.

The original CE/SE scheme for solving
the one-dimensional scalar convection equation
[1,6,7] is ezplicit, non-dissipative (or neutrally
stable), and involves only two time levels. To as-
sist the reader in getting a flavor of the CE/SE
Euler schemes, we provide the following remarks:
(i) For isentropic flows, the CE/SE method is
neutrally stable for CFL <1, and it can march
forward and backward in time. (ii) A stagger-
ing spatial mesh, which zigzags as time evolves,
is employed, such that flow information at each
interface separating adjacent CEs can be evalu-
ated without using a Riemann solver. (iii) The
inner structure of the flow solution is not cal-
culated through a reconstruction procedure. In-



stead, the gradients of flow variables are treated -

as independent unknowns, and they are not in-
fluenced by the flow properties in neighboring
elements at the same time level. This is in full
compliance with the flow physics of the initial
value problem. (iv) For flows in multiple spatial
dimensions, no directional splitting is employed.
The two and three-dimensional spatial meshes
employed by the CE/SE method are built from
triangles and tetrahedrons. Note that triangles
and tetrahedrons are also the simplest building
blocks for two and three-dimensional unstruc-
tured meshes.

Computer programs based on the CE/SE
method have been developed for calculating
flows in one and two spatial dimensions. Numer-
ous results were obtained [11-19]. In addition,
Scott [20-24] has developed an implicit steady-
state version of the space-time method for simu-
lating steady-state incompressible flows.

In the present paper, we extend the CE/SE
method to solve the conservation laws with
source terms. The extension of the CE/SE
method is illustrated by focusing on its space-
time discretization. In particular, the role of the
source term and its numerical treatment can be
grasped by a simple delineation of the inherent
space-time geometries of the present method.

In this introduction, we shall first illustrate
the idea of the unified treatment of space and
time in the integral equations for the flux bal-
ance. As a contrast to the conventional finite-
volume methods, this unified treatment provides
a lucid picture for the source-term effect. For
the background material of the present work, we
shall also briefly review the current numerical
methods for solving conservation laws with stiff
source terms.

1.1 The Finite-Volume Methods

Conventionally, the space-time flux balance of
conservation laws has been mathematically de-
scribed by formulations either in a Lagrangian
frame or in an Eulerian frame. Formulations

in these two different coordinate frames can be
bridged by Reynold’s transport theorem [25):

il-‘/ udV; =

g Jv. —th+/ uv-ds, (1.1)

v, Ot

where u is the density of a conserved property,
V; denotes the spatial volume of integration at
time t, S(V;) is the surface of V;, and d5=do &
with do and 7, respectively, being the area and
the outward unit normal vector of a surface ele-
ment on S(V;). The points inside V; move with
velocity 7, generating the motion of the volume.
The left hand side of Eq. (1.1) is based on the
Lagrangian frame; the right hand side is based
on the Eulerian frame. Note that space and time
are treated in different manners.

Consider a scalar convection equation with a
source term,

(1.2)

where p is the density of the source, and and
f = u® with 7 being the constant convection
velocity. An integral counterpart to Eq. (1.2) in
a Lagrangian frame is -

d
EA“dW—APdW'

By using Reynold’s transport theorem, we also
have

du
A§m+

To solve Eq. (1.4), the conventional finite-
volume methods [26] reformulate the equation
based on a fized spatial domain, i.e.,

a -
- = - -ds dv. (1.
at‘/VudV /S(V)f s+/;,p (1.5)

As such, the conservation laws state that the rate
of change of the total amount of a substance con-
tained in a fized spatial domain V is equal to the
combination of the following two effects: (i) the
flux of that substance across the boundary of V,
i.e., S(V), and (ii) the integration of the source
term over the fixed spatial domain. The conven-
tional finite-volume methods concentrate on the

“t+6'f=p1

(1.3)

frds= / pdVi.  (14)
Vi
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evaluation of the right hand side of Eq. (1.5).
The left hand side of Eq. (1.5) is usually dis-
cretized by a finite-difference method. e.g., the
Runge-Kutta methods. In light of the above two
effects, the fractional-step (or splitting) methods
resort to strong measures of numerically segre-
gating the two effects and treating them in a
sequential fashion.

Alternatively, one could integrate Eq. (1.5)
with respect to time from #; to 3, i.e.,

t2 ta -
/udV :/ dt(—/ f-d§'+/pdV).
14 t1 t1 S(V) 1’4
(16)

As compared to Eq. (1.5), Eq. (1.6) depicts a
clearer picture of the space-time flux balance.

As shown in Fig. 1.1(a), due to the fized spa-

tial domain, the shape of the space-time CEs in
one spatial dimension must be rectangular. In
addition, these elements must stack up exactly
on top of each other in the time-direction, i.e., no
staggering of CEs in time is allowed. For equa-
tions in two spatial dimensions, as depicted in
Fig. 1.1(b), a conservation element is a uniform-
cross-section cylinder in space-time, and again
no staggering in time is allowed. This arrange-

ment results in vertical interfaces extended in.

the direction of time evolution between adjacent
CEs. Across these interfaces, flow information
travels in both directions. Therefore, upwind
bias (or a Riemann. solver) becomes necessary
in calculating the interfacial flux.

1.2 The Integral Equation of the
CE/SE Method-

In the present met'}'lod, as a contrast to Reynold’s
transport theorem Eq. (1.1), space and time are
treated in a unified manner. Consider a set of
M coupled convection equations in one spatial
dimension:

U;+F,=P, UecRM, (1.7)
where U is the unknown vector, F is the spatial
flux vector, and P is the source term vector. As

shown in Fig. 1.2, let z; = z, and z3 = ¢ be
the coordinates of a two-dimensional Euclidean
space Fy, and all mathematical operations, such
as div, curl, and grad, can be carried out as if
E; was an ordinary two-dimensional Euclidean
space. Thus, Eq. (1.7) can be expressed as M
scalar equations:

V’Emzpm m=12...,M k(l‘s)

where h,, = (frmstm), and frm, Um, and p,, are
the mth components of ¥, U, and P, respec-
tively. Equation (1.8) is valid everywhere in E,
for continuous flow solutions.

For solutions with discontinuities, an integral
counterpart to Eq. (1.8) must be employed:

}{ Hm~d§=/pde, m=12,...,.M
S(R) R :
(1.9)

where S(R) is the boundary of a space-time re-
gion R, and d§ represents a surface element of
S(R). Note that Eq. (1.9) is more fundamental
than Eq. (1.8), and can be derived directly from
the space-time flux balance. Equation (1.8), on
the other hand, is valid only for smooth solu-
tions, and can be derived from Eq. (1.9) using

‘Gauss’ divergence theorem.

 Equation (1.9) states that the total space-time

flux of h,, leaving R through its boundary is
equal to the integration of the source term p,,
over the space-time region R. As a contrast to
the formulations used in the conventional finite-
volume methods, i.e., Egs. (1.5) and (1.6), the
present formulation does not impose any con-
straint on the shape of the CEs in the space-time
domain. This is the crucial difference that, at the
conceptual level, separates the CE/SE method
from the conventional finite-volume methods.

We remark that the conventional space-time
integration Eq. (1.6) is a special case of Eq. (1.9).
For flows in one spatial dimension using a fized
spatial domain for CEs, the left hand side of
Eq. (1.9) can be converted into a line integra-
tion, i.e.,

j{ f,, -d5= j{c (fndt — umdz),
S(R) ¢ S(R)



m=1,2,...,M (1.10)

where c.c. indicates that the line integration is
carried out in the counterclockwise direction.
Facilitated by Eq. (1.10), one can show that
Eq. (1.9) is equivalent to Eq. (1.6) in this spe-
cial condition. Moreover, if one assumed that
the temporal evolution of U is smooth, which of

course is not true in the case of a moving shock,

one can derive Eq. (1.5) by differentiating both
sides of Eq. (1.6) with respect to time.

1.3 Treatments of Stiff Source Terms

Convection equations with source terms are com-
monly referred to as relaxaiion systems, and they
are commonplace in various physical problems.
In particular, we are interested in solving the
transport equations for combustion systems us-
ing finite-rate kinetics. The present paper is
a stepping stone towards the development of a
comprehensive computer program for simulating
combustion dynamics. '

As an example, consider the following relax-
ation system, in which only one time scale, i.e.,
€, is associated with the M source terms:

Ui+ F, = %P, U € RM. (1.11)

When € — 0, the time scale of the source term is
much smaller than the characteristic time scale
of the hyperbolic system, and the equation set is
stiff.

We remark that the disparities between the

time scales for the convectional transportation
and the time scale of the source terms, such as
that in Eq. (1.11), is not the sole source of stiff-
ness in a more general equation set. In modeling
a combustion system by a finite-rate chemistry,
the stiffness of the source terms in the species
equations depends on the order of the magni-
tude of the reaction rate constants, which could
easily range from 10% to 10% for the combus-
tion of a typical hydrocarbon fuel. In simulat-
ing the chemical reactions in a well-stirred re-
actor, in which fluid mechanics is not of inter-
est, the disparities among reaction rate constants

account for the classical stiffness problem. In
what follows, we review some of the numerical
treatments to the convection equations with stiff
source terms.

Colella et al. [27] applied Godunov’s method
to solve the equations of detonation waves. In
their approach, the flow equations were cou-
pled with a single species equation, in which a
source term for an irreversible finite-rate reac-
tion step was included. A fractional-step finite-
difference method was used to treat the source
term. They studied the one-dimensional detona-
tion waves with increasing stiffness of the source
term. At some point, reaction zone was under-
resolved due to insufficient resolution of the time
step and mesh size, and the numerical solution
bifurcated to a non-physical reactive wave fol-
lowed by a fluid dynamic shock. The spurious
reaction wave moved at a false rate of one grid
node per time step. Their study exposed the dif-
ficulties of using the modern upwind schemes in
solving the hyperbolic systems with stiff source
terms.

LeVeque and Yee [28] proposed to develop ro-
bust numerical methods that allow larger time
steps without fully resolving the time and space
scales associated with the source terms, and they
suggested the following requirements: (i) The so-
lutions of hyperbolic systems must be numeri-
cally stable. (ii) Shocks and contact disconti-
nuity \must be sharply resolved and a second-
order accuracy is required in smooth regjon. (iii)
the magnitude of the jump and the shock loca-
tion predicted by the scheme should be correct.
Based on these requirements, they experimented
on a scalar equation with a source term using
various splitting methods.

Pember [29, 30] suggested that the sub-
characteristics by Liu [31] and the equilibrium
limit of relaxation systems by Whitham [32]
could be employed as the guiding principle to an-
alyze numerical treatments to convection equa-
tions with stiff source terms. In many cases,
an equilibrium counterpart to the relaxation sys-

J



tem, Eq. (1.11), can be found:

‘ug+f(u), =0, ueRN, (1.12)
where N < M. Note that there is no source
term in this equilibrium system. To ensure the
existence of this equilibrium counterpart, a sub-
characteristic condition, which is an inequality
relationship between the eigenvalues of the relax-
ation system and that of the equilibrium system,
must be satisfied. For such relaxation systems,
the solution asymptotically approaches the equi-
librium solution as € — 0. Based on these the-
orems, Pember experimented on a second-order
upwind scheme with a semi-implicit treatment
to the source terms.

Based on the logic of shooting for the equi-

librium state of a relaxation system, Jin [33] in-

corporated the physical asymptotics of the re-
laxation system into the numerical scheme in a
semi-discrete manner. The semi-discrete equa-
tion was then extended using a Runge-Kutta
method coupled with a stiff ODE solver. Jin’s
method provided the first successful numerical
solution to Euler equations with stiff source
terms. The method, however, was complex and
required some knowledge of the asymptotics of
the relaxation system. In addition, the incorpo-
ration of the asymptotics and the use the Runge-
Kutta method were based on the assumption
that the temporal evolution of the flow proper-
ties is smooth. For unsteady flow solutions with
discontinuities, e.g., a moving shock waves, fur-
ther investigation is needed about the asymp-
totics of the relaxation system.

Roe and Arora [34, 35] developed an explicit,
characteristic-based method for solving convec-
tion equations with source terms. The method
was based on tracing the dispersive characteristic
waves caused by the source terms. The method
was accurate for non-stiff source terms. As the
stiffness becomes severe, their method was sta-
ble and provided reasonable solutions. It is dif-
ficult, however, to extend this method to solve
the relaxation systems in multiple spatial dimen-
sions. Note-that directional splitting is com-
monly used in modern upwind schemes because

there is no known analytical solution to the Rie-
mann problem in multiple spatial dimensions.
Source terms, however, have no direction, and
it will be difficult to construct a characteristic-
based method for the relaxation systems in mul-
tiple spatial dimensions.

One could also resort to the option of locally
resolving the time and space scales associated
with the source terms. In this regard, the adap-
tive mesh refinement method [36], the sub-cell
resolution method [37], and the method of adap-
tive refinement coupled with the front tracking
[38, 39] could be used to locally resolve the flow
solution. In many cases, however, the amount of
refinement needed to fully resolve the space and
time scales is beyond the currently available re-
sources. Nevertheless, these adaptive refinement
methods could be used in conjunction with a suc-
cessful treatment to the stiff source terms.

In the present work, we are not interested
in fully resolving the time and space scales of
stiff source terms. Instead, we intend to de-
velop a robust numerical method in which the
stability—constraint is solely based on the CFL
number condition. As a contrast to Jin’s split-
ting method and Roe and Arora’s characteris-
tic method, the present approach is based on lo-
cal and global space-time flux balance. As such,
the source-term effects can be visualized through
the space-time geometries of the conservation el-
ements.

The remainder of the paper is organized as
follows. In Section 2, we present the extended
CE/SE method for treating convection equations
with source terms. In Section 3, we present the
numerical examples calculated by the extended
CE/SE methods. We then offer several conclud-
ing remarks.

2 The CE/SE Methods for

Source Terms

In this section, we discuss the extension of the
CE/SE methed to solve the relaxation systems



with M unknowns in one spatial dimension.
First, the preliminaries of the space-time dis-
cretization in the CE/SE method will be illus-
trated. We then present the method of rhombic
elements for treating the non-stiff source terms,
and the method of rectangular elements for the
stiff source terms.

2.1 Preliminaries

In Fig. 2.1, we show the nodal locations where
the unknowns are stored. The space and time
intervals between neighboring nodes are denoted
by Az/2 and At/2. There is a Solution Ele-
ment (SE) associated with each node (j,n). Let
the SE(j,n) be the interior of the space-time re-
gion bounded by a dashed line as depicted in
Fig. 2.2. For convection equations with non-stiff
source terms, rhombic elements are of interest.
Inside a SE, the flow properties are assumed con-
tinuous, and the distribution of flow properties is
discretized by a first-order Taylor expansion of z
and t with respect to the mesh node (z;,t"); i.e.,
the error is second order in Az and At. Between
SEs, discontinuities are allowed. The union of
all SEs covers the whole space-time domain, such
that discrete flow properties can be calculated at
all space-time locations of interest.

To proceed, let U* and F* be the discretized
counterparts to U and F. Since a linear distri-
bution U* and F* is assumed for any (z,t) in
SE(j,n), we have

U*(z,t;5,n) = U} +(Uz)}(z — z;5)
AU -1),  (21)
F(z,t;5,n) = (F)} +(F2)j(z - 2))

+(Ff)7(t - tn)’

where u? and (U,,.);—‘ represent the numerical ap-
proximation to U and U, at (z;,t") and they are
the primary unknowns in the present scheme. As
will be illustrated in the following section, (U¢)?
in Eq. (2.1) can be calculated by a local space-
time flux balance over SE(j, n).

(2.2)

Similarly, F} represents the numerical approx-
imation to F at (z;,1") evaluated with U = U7.

By using the chain rule, we also have

(Fz); = AJ(Uz)},
(Fa)} = AF(U)},

where A = 0F/0U is the Jacobian matrix, and
it is a function of U. Thus, A} is A evaluated
with U = U?. Once U} and (U,)} are obtained,
all other variables can be expressed in terms of
them.

(2.3)
(2.4)

2.2 The Method of Rhombic Elements

In this method, the space-time rhombic regions

are taken as the solu/tzion elements. With the
-1 -1/2

known values of U"il . and (U-”");:!:l 5+ the task

here is to march tfle solution to the mesh point

(z;,t"). Refer to Fig. 2.3.

As a preliminary, recall that for any (j,n),
(U¢)} must be calculated so that we can use the
Taylor expansions, Egs. (2,1) and (2.2), for the
space-time discretization. To this end, we im-
pose the space-time flux balance over the rthom-
bic region CE(j,n), i.e.,

B .ds= / pdR,
CE(im)
M,

fi‘)’ (CE(@,n))

m=1,2,..., (2.5)

where ﬁ;“n is the space-time flux vector, i.e,

hy, = (fr??u:n)a
with u}, and f, being the mth component of U*
and F*, respectively, as defined in Eqgs. (2.1) and
(2.2). In addition, p}, is the mth components
of P*, which is a function of U, evaluated with
U = U*. Henceforth, the components of the
column vectors U%, (Uz)}, (Us)}, F3, (F2)},
and (F;)} are denoted by (um)}> (Umz)7> (¥me)}s
(fm);", (fmz);'l, and (fmt)_?r form=1,2,...,M,
respectively. Note that CE(j,n) here coincides
with SE(7, n).

m=1,2,....M, (2.6)

To proceed, we apply Gauss’ divergence theo-
rem to Eq. (2.5), and we get

[s i (V-B-pn)dR=0.  (27)



Substitute the definition of h*, i.., Eq. (2.6),
into Eq. (2.7), and we get

()} + (ume)? - P dR = 0. (2.8
Joggsy ()3 + (o)} = 3] (28)
In addition, let

N _ *

P = [ PRARIO  (29)
with

o= dR

CE(jn)

being the space-time volume of CE(j,n). For the
current uniform space-time mesh, this volume is
independent of (j,n). As a result of Eqs. (2.9)
and (2.10), Eq. (2.8) can be written as

[(Fe)} + ()} = (] © =0,

(2.10)

(2.11)

(fma:)?"‘ (umt)_;'z - (P}n);" =0. (2.12)

We shall further assume that pj, is linear in z
and t within SE(4,n). Then because the mesh
point (j,n) is the center of SE(4,n), (p},)} =
(pm)} where (pn)7} is the mth component of P

evaluated with U = U}. As a result, Eq. (2.12)

reduces to

(fone)} + (me)} = ()} = 0.

Note that, with the aid of Eq. (2.3), (fmz)} can
be determined in terms of (un)} and (ums)},
for m = 1,2,...,M. As a result, (umt);] can
also be determined by (un,)7 and (ums)} using
Eq. (2.13). Therefore, the distributions of U*
and F* inside SE(j,n) are determined by the
independent unknowns U}, and (U)} through
the Taylor expansions Egs. (2.1) and (2.2).

(2.13)

From the above discussions, the distributions
of U and F are determined in SE(j £ 1/2,n —
1/2), and we are ready to calculate U} and
(Uz)? at the new time level. Refer to Fig. 2.3.
For the interface between CE(j,n) and CE(j -
1/2,n — 1/2), we assume that the total space-
time flux leaving CE(j — 1/2,n — 1/2) through
B'C" is equal to the total space-time flux enter-
ing CE(j,n) through CB. Note that h* along

CB and B'C’ are evaluated using information
from SE(j,n) and SE(j — 1/2,n — 1/2), respec-
tively. Thus, the above flux balance condition
can be expressed as

B -d5+ / B -d5= (2.14)
B'CT

Here d3'in the first (second) integral in Eq. (2.14)
points in the outward normal direction rela-
tive to CE(j — 1/2,n — 1/2) (CE(7,n)). Sim-
ilarly, the flux balance across the interface be-
tween CE(j,n) and CE(5 + 1/2,n — 1/2) (refer
to Fig. 2.3) can be expressed as

/ ﬁ;-d§+/_ﬁ;.d5=o
oD DC

Again, d§ in the first (second) integral in
Eq. (2.15) points in the outward normal direc-

(2.15)

tion relative to CE(j + 1/2,n — 1/2) (CE(j, n)).

By using Eq. (2.5) in conjunction with
Eq. (1.10), integrals in Eqs. (2.14) and (2 15)
can be expressed as,

- A c’

b* .d5=— *dt+j u* dz

Bor B fm a
n—-1/2

<
+Z(Pm)j-1/2’ (2.16)

- A - (B
/__h;‘n~d§‘= _/ f;,;dt+/ ot da
CcB C A

S
+_(pm)?1 (2’17)
A"
/ Br .ds=- / fmdt+/ " de
C’D"
n—1/2
+Z(pm)j+l/2’ (2.18)
- C A
h;-dg’:-/ f;,;dt+/ u* dz
) A D
+(Pm)j- (2.19)

These four equalities, Egs. (2.16- 19), can be eas-
ily verified by the space-time flux balance over
AA'C'B', AABC, AAD”C”, and AACD, re-
spectively. Note that, the integration over each
triangle along the constant ¢ and constant z
based on the normal vector outward normal
to the space-time region of interest has been
changed into a line integration in the counter-
clockwise direction. Refer to Eq. (1.10). In ad-
dition, since alinear distribution of pj, in z and




t in each SE is assumed and a uniform mesh is
used, the integration of p}, over each triangle in
Egs. (2.16) to (2.19) is equal to the correspond-
ing nodal value of p,, multiplied by a quarter of
the O.

Substitute Egs. (2.16-19) into Egs. (2.14-15),
and the above space-time flux balance over the
oblique interfaces can be illustrated as space-

time flux conservation over two square CEs, de-
noted by CE_(7,n) and CE,(j,n), i.e.,

f B .ds
S(CE_)

= 2 (G + (o)) (220)
f hm-dé‘

S(GE4)

vy ((r)irifs + (2m)}) - (2:20)

Note that CE_(j,n) is the union of AA'C'B’
and AABC, and CEy(j,n) is the union of
AA”D”C” and AACD. Refer to Fig. 2.3. Note
that Eqgs. (2.20-21) here is a straightforward ex-
tension of the original CE/SE scheme as shown
in [6] by adding the source term effects.

Equation (2.20) leads to M relations involving
~1/2

;—1//2 J

i-1/2° and Eq. (2.20) leads to the other

M relations involving U?, (U,)?, un2

J+1/2
(U,,,);‘;l1 / 22 With the flow properties at the mesh

points (_7 -1/2,n-1/2) and (5 +1/2,n - 1/2)
known, the 2M components of U} and (U,)}
can be determined by the above 2M relations.

the independent unknowns U7, (U;)}, U
and (Uz)'.‘"ll 2

and

Note that (pm)} in Egs. (2.19) and (2.20)
is a function of (up)?. Therefore, Eqs. (2.20)
and (2.21) are implicit equations in terms of U?
and (U,,.)" To solve these equations, Newton s
method is used. Usually, two or three Newton’s
steps are needed for a satisfactory convergence.

The method of rhombic elements is useful
for treating the conservation laws with non-stiff
source terms. However, when the source terms
become stiff the method would fail. With stiff
source terms, the dominant effect in the the over-

‘ness factor.

all flux balance, i.e., Egs. (2.20) and (2.21), is
due to the source-term effects. In particular, the
stiff source terms would directly impact the cal-

culation of (i) temporal derivatives (umt)nil1 //22
(refer to Eq. (2.13)), and (ii) the space-time
area integration of the source terms (refer to

Eqgs. (2.16-19)). As such, any small difference

between the values of (um)"—ll ;: and (up, ;:11 //:

(and/or small differences between (um,)}‘:ll //22

and (umz):;.ll//: ) will be amplified by the stiff-
As a result, huge differences oc-

cur between (umt)n 11 //2 and (umt)"_:ll //22 , and be-
n—1/2 n-1/2

tween (pm);_; 72 and (Pm);. 7, when solving
Egs. (2.20) and (2.21). Here, we conjecture that
the numerical calculation for (un)} and (umz)?
governed by Egs. (2.20) and (2.21) at the new
time step could be contaminated by the round-
off errors. As will be shown in the section of
numerical examples, the iterative procedure in
Newton’s method would fail in solving these stlff
relaxation systems.

2.3 The Method of Rectangular Ele-
ments

In light of the above difficulty with the method
of rhombic elements, we conjecture that the rem-
edy for treating the stiff source terms is to avoid
the above discussed amplification effects. To
this end, we propose to re-distribute the space-
time regions such that all source-term 1 effects are

hinged on the mesh node (z;,1") 3t the new time

level.

As shown in Fig. 2.4, the relative locations of
three SEs for the space-time method is identi-
cal to that in the method of rhombic elements.
The CEs and SEs, however, have taken the shape
of a rectangular area, with a magnitude equal
to AzAt/2, and a line segment sticking out on
the top of the rectangle. Hencelorth, we refer to

‘this new extension of the CE/SE method as the

method of rectangular elements.

In this new construction, we impose the same
flux balance conditions as that in the method



of thombic elements, i.e., Eqs. (2.20) and (2.21).
Refer to Fig. 2.4. Here, however, the calculation
~ is different from the method of rhombic elements
in the following two aspects: (i) with the known

values of (um);‘;ll//: and (um,,.)":;:l1 //22 , the calcula-

tion of (umt);‘;ll //22 is simply by using

(umt)n;:/: + (fmz);;ll//; =0. (2.22)
As a contrast to that in the method of rhom-
bic elements, Eq. (2.13), no source term effect is
included here. Note that this temporal deriva-

tives are used only along the line segment stick-
ing out on the top of the rectangular glgglents
By adopting the nomenclature of computational

reactive flows, a frozen model, i.e., convection
g o gt

equations without chemical reactions, is used
MW’JH{&H@@T“@) In the
calcuMMce over CE4,
i.e., Eqs. (2.20) and (2.21), the integration of the

source term over the space-time regions is cal-
culated totally based on the flow properties at

(.'l:j, "), i.e.,

}( B .ds=
S(CE-)

f b - ds=
S(CEy4)

‘This condition is clearly indicated by the shape
of the new conservation elements. Based
on these two modifications, one can change
Eqgs. (2.16)-(2.19) accordingly, and the final al-
gebraic equations for the method of rectangu-
lar elements can be obtained. Similar to that in
the method of rhombic elements, we have 2M
equations for 2M unknowns and flow solution
at the new time step can be determined. Sim-
ilar to that in Egs. (2.20) and (2.21), (Pm)} in
Eqgs. (2.23) and (2.24) is a function of (um)?,
and Egs. (2.23) and (2.24) are implicit relat rela,tlons
in_terms of (um)} and (upz)?. Thus, Newton’s
method is used to solve the equation set.

AxAt

(Pm)7,(2.23)
A:L'At

As such, we numerically avoid the above-
mentioned amplification effects because the
flow properties and their gradients associated
with the mesh nodes at (z;_q/2,t" /%) and

(Pr)j- (2:24)

(z;41 /2,t"‘1/ %) are not involved in the source-
term calculations. However, the method of rect-
angular elements is just a numerical remedy for
treating stiff source terms. For a faithful sim-
ulation to the physical phenomenon, one should
resolve the time and space scales associated with
the source terms. In this sense, the method of
the rhombic elements is more fundamental, and
the method of rectangular elements is ad hoc.

In addition, the lattice stencil associated with
the method of the rhombic elements is symmet-
ric in both z and ¢. Therefore, the method bears
the same property of space-time inversion for
isentropic flows as that in the original CE/SE
method. For the method of rectangular ele-
ments, however, the mesh structure is asymmet-
ric with respect to time, and the method can
only march forward in time. In general, artifi-
cial damping has been added into the discrete
system such that the numerical process here is
irreversible. Nevertheless, since the union of all
rectangular elements covers t}%glg_gpace-txme

e

domam without overlapping, the he source term ef-.

fect in an integral sense sa,tlsﬁes the local and
global space—tlme ﬁux balance.

As an aside, the above approach using the
rectangular elements can also be implemented
by using a modern upwind scheme. Essentially,
Eq. (1.6) can be employed and the calculation

~of the source term should be based on the inte-

gration of the source term over the rectangular
space-time volume. If an explicit time marching
scheme is used, all source term effect should be
attributed to the mesh node at the new time step
to avoid the amplification effect due to the stiff
source term. In addition, since all the source
term effects are treated based on the solution
at the new time step, in calculating the interfa-
cial fluxes, the Riemann solver should be based
on the frozen model in the explicit time march-
ing. To solve the final equations, a local implicit
scheme can be constructed and Newton’s method
can be exploited.



3 Numerical Examples

3.1 Flow over a Nozzle

As the first and also the simplest test of the
source term treatments in the present paper, we
calculate a steady one-dimensional flow through
a variable area duct, a standard test for shock
capturing schemes proposed by Shubin et al.
[40]. The governing equations are

N+ Zvm=0

at = Oz (3.1)

where

pA )
pud |,
pEA ]

puA
(pu*+ P)A |,
(pE + P)uA

a
I

F=

)
I

24
P 1,

0 )

(3.2)

where p is the density, u is the velocity, £ is
the total energy, P is pressure, and A is the
cross-section area of the nozzle. The source term
is composed of the pressure multiplied by the
gradient of the area change. The prescribed
area is A(z) = 1.398 + 0.347tanh(0.8 x z —4.)
with 0 < z < 10. The specified inflow condi-
tions are A;, = 1.05, psn = 0.502, e;, = 1.897,
u;,, = 1.299, and the outflow conditions are
Aoyt = 1.745, pour = 0.776. The exact solution
for the present problem is a normal shock stands
at A = 1.347 (z = 4.816). The numerical solu-
tion of the density distribution is presented in
Fig. 3.1. The result is obtained by the method
of rhombic elements. Although not shown, the
result obtained by using the method of rectangu-
lar elements is identical to that presented here.
Three sets of mesh, with the numbers of grid
nodes of 41 ,81, and 161, are used. As we re-
fine the mesh, the numerical solution converges
to the exact solution.

3.2 Model Scalar Equation by LeV-
eque and Yee

A model scalar equation was proposed by LeV-
eque and Yee [28] to study the source term treat-
ment:

ou  Ou

5 + 3, = —#u(u —1)(u—0.5).

- (3.3)

The source term is stiff for large p. In [28], de-
tailed discussion of the model equation is pro-
vided. In short, due to the source term, there are
two equilibrium solutions at « = 1 and u = 0.
And » = 0.5 is an unstable point. Whenever
the solution deviates from the two equilibria, the
source term will be activated and push the solu-
tion toward 1 if » > 0.5 and toward 0 if z < 0.5.
In particular, the solution with piecewise con-
stant initial data 7

_J1ifz<az,
u(x,O)—{Q ifz >z,

is simply u(z,t) = u(z —¢,0).

(3.4)

Figure 3.2(a) shows the numerical solution of
the model equation at ¢ = 0.6 using the method
of thombic elements. The setup is identical to
that in LeVeque an Yee’s work. In all calcula-
tions, forty grid nodes are used. For p < 200, we
obtained accurate solutions. For various g, the
solution is virtually identical and here we just
plot the case of u = 200. For g > 200, Newton’s
method doesn’t converge and we cannot obtain
any solution.

When we apply the method of rectangular ele-
ments, however, we always get accurate solution.
For 0.1 < g < 106, the scheme produces identi-
cal solutions. In Fig. 3.2(b), the case of s = 106
is plotted. The solution in Fig. 3.2(b) is identical
to that in Fig. 3.2(a).

It was pointed out by Huynh and Prashant [41]
that in our solution there is always a node where
u = 0.5. However, according to the analytical
solution, 4 = 0.5 is unstable. This is because a
linear distribution of the source termis used in
our discretized equation. Refer to Eq. (2.13). As

10



a result, the source term, which is a cubic func-
tion of the unknown, was not well represented.
~ Thus, Newton’s method always overshoot, and
the numerical solution converged to the middle
value u = 0.5. In future, we shall investigate the
space-time discretization for source term with
complex functional form. Presumably, a care-
ful calculation of p, in Eq. (2.12) by taking into
account of the actual function of the source term
could improve this situation.

3.3 Shock Wave in a Constant-
Temperature Bath

Pember [29] suggested a test case for the treat-
ment of stiff source terms.
dimensional Euler equations with a special heat
transfer term in the energy equation:

du . oOF

e + 72 +H=0
where the flow properties U and the flux F
are defined as usual, and the source term H =
(0,0, Kp(T — T,)). The function of the source
term is to force a constant temperature 7, upon
the whole flow field. The equilibrium counter-
part of the relaxation system is

(3.5)

dp | Gpu

5t as =0 (3.6)
Opu | put+p*

Y + oz =0, 3.7

where the pressure p*(p) = (v — 1)pe,, with e,
as the internal energy of the gas at T = T,. Jin
[33] also used this case as one of the numerical
examples reported in his paper.

We conducted the calculation for z in [0,1] dis-
cretized by 201 grid nodes. The conductivity
K in the flow system was set be to 10%, 10'2,
and 10'6. Essentially we get the same result
for different K. Figure 3.3 shows flow proper-
ties at ¢ = 0.3. The flow field is composed of a
right-moving shock and a left- moxi__g.ra.refaction
wave. The relaxation time € = 1 /K is under-
resolved for all three cases. The numerical so-
lution is almost identical as compared to that

Consider the one-

provided by Jin. Note that in the plot for tem-
perature distribution, our solution is closer to
the imposed constant temperature T,

3.4 The ZND Wave

The classical theory of Zeldovich, von Neumann,
and Doring (ZND) of the one-dimensional deto-
nation waves can be formulated t using ‘the Euler
equa.\tia;;coupled with a species equation:

OpZ  OpuZ _ —-E+
T + % ——KpZexp(—T—-), (3.8)

where Z is the reactant mass fraction. The
source term of the species equation is composed
of a single-step irreversible reaction formulated
according to Arrhenius’ law. For this reacting
flows, the definition of the total energy E in the
energy equation is modified to include the chem-
ical energy F = e + ¢,Z + u?/2, where ¢, is the
chemical energy of t] the reaEt-z;;t Pmsly, this
set of equations has been t thoroughly studied by
Bourlioux et al. [38, 39] through stability anal-
ysis and CFD 51mulat10ns

e TN L Y et

The initial condition of the present calculation
is a long tube filled with reactant with a piston
on one end moving at a constant speed into the
quiescent reactant. We use the piston face as the
origin of the the coordinate system. According
to this coordinate frame, reactant is charged into

the reactant.

PRV SR

The parameters of the flow field in the present
calculation are set as ¢, = 50, Et =40,y = 1.2,
and the over drive coefﬁcient equal to 1. 6 Ac—
stability, gt\@swnt}_)llj_gtableﬁmatﬁlzm Wa.ve,
should be obtained with these parameters. Fig-
ure 3.4 shows the distributions of pressure, den-
sity, and reactant mass fraction of a stable det-
onation wave. The detonation wave propagates
from left to right and the flow field is composed
of: (i) the quiescent state of the reactant before
the shock, (i} a von Neumann spike. with finite

11



rate reaction, and (iii) the equilibrium state be-
tween the piston and the spike. The difference
between the analytical solution and our solution
is less than 5%. If we raised the activation en-
ergy of the chemical reaction E* to 50, the deto-
nation wave became unstable and a longitudinal
wave bouncing between the piston and the shock
could be observed.

4 Concluding Remarks

In the present paper, we report the extension of
the CE/SE method for solving convection equa-
tions with source terms. By treating space and
time in a unified manner, the source terms are
included as volumetric integral over space-time
conservation elements such that it becomes an
integral part of the overall space-time flux bal-
ance. In particular, the treatments of the source
term can be visualized by the employed space-
time geometries. Two conservation elements are
considered: (i) rhombic elements, and (ii) the
rectangular elements. Both treatments result in
locally implicit equations in terms of flow prop-
erties at the new time level. Thus, Newton’s
method is used to solve the equations. The
method of thombic elements is a straightforward
extension of the original CE/SE scheme and is
suitable for the non-stiff source terms. This
method would fail when it is used to solve stiff
relaxation systems. We conjecture that the fail-
ure is due to an amplification effects by the stiff
source terms over the differences of the flow prop-
erties at adjacent nodes in the same time level.
The method of rectangular elements eliminates

these a,mphﬁcatlon effects by a re-distribution of ‘

the space-time’ me region such m source-term
effects a.nil_ugged on the mesh nodes at new tlme

. level. As a result the method is robust and sta-

ble for treating under-resolved stiff source terms.
The above finding was supported by the numer-
‘ica.l examples reported in the paper.
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