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Abstract

In this paper, we report the application of the
CE/SE method to unsteady, chemically react-
ing flows. As a contrast to the modern up-
wind schemes, Riemannn solver and reconstruc-
tion procedure are not the building blocks of
the present method. Therefore, the logic of the
method is considerably simpler. Due to chemical
reactions, stiff source terms exist in the species
equations. The source terms are treated by a
volumetric integration over space-time regions.
The treatment results in a locally implicit for-
mulation and Newton’s method is used to solve
the equation. We also assess the numerical reso-
lution of the contact discontinuity between flow
streams with different chemical species. Three
examples are reported in the paper: (1) a planar
shock wave passes a straight fast-slow gaseous
interface, (2) a planar shock wave passes one
and two circular fast-slow gaseous interfaces, and
(3) supersonic combustion ignited by an oblique
shock.

1 Introduction

Recently, Chang and coworkers [1-4] reported a
new framework for the numerical solution of con-
servation laws, namely, the Method of Space-
Time Conservation Element and Solution Ele-
ment, or the CE/SE method for short. This
method is distinguished by the simplicity of its
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conceptual basis, i.e., a unified treatment of flux
conservation in space and time. The method was
developed from fundamentals. It is not an in-
cremental improvement of a previously existing
method.

Essentially, the space-time domain, where the
calculation is of interest, is divided into many
Conservation Elements (CEs). In particular, the
lattic stencil is based on a staggering spatial
mesh, which zigzags as time evolves such that
flow information at each interface separating ad-
jacent CEs can be evaluated without using a Rie-
mann solver. Inside each CE, the distribution
of the flow solution is not calculated through a
reconstruction procedure as that in the modern
upwind schemes. Instead, the gradients of flow
variables are treated as independent unknowns,
and they are not influenced by the flow prop-
erties in neighboring elements at the same time
level. This is in full compliance with the flow
physics of the initial value problem. The resul-
tant scheme is ezplicit in time and involves only
two time levels. For flows in multiple spatial di-
mensions, no directional splitting is employed.
The two and three-dimensional spatial meshes
employed by the CE/SE method are built from
triangles and tetrahedrons.

With the above construction of the CE/SE
method, a family of schemes have been devel-
oped, namely, the a scheme for inviscid, isen-
tropic flows, the a — p for viscous flows, and
the a — € scheme for inviscid flows with shocks.
Chang [2.3] showed that for inviscid and isen-
tropic flows, the a scheme is neutrally stable



(non-dissipative) for CI'LL <1, and it can march
forward and backward in time. For solving the
Navier-Stokes equations, the ¢ — u scheme is
unconditionally stable for various p’s, provided
CI'lL <1. These features are important when
solving viscous flows because the physical vis-
cosity will not be overwhelmed by the numerical
dissipation.

For flows with shocks, entropy increases across
the shock. An artificial damping is added to the
a scheme to satisfy the entropy increase condi-
tion, i.e., the a — € scheme. This is necessary
because the a scheme is neutrally stable, and
does not allow any entropy increase. Within one
marching step, the added artificial damping con-
strains the gradients of flow properties, while the
flow properties themselves are calculated solely
based on the space-time flux conservation. In
particular, the a — ¢ scheme was designed such
that no priori knowledge of the flow distribu-
tion, such as monotonicity and Total Variation
Diminishing (TVD), is required. As a result, this
formulation can be straightforwardly applied to
solve conservation laws with source terms. Note
that the flow solution is no longer monotonic (or
TVD) when there is source term. In [5], we have
reported the extension of the a — ¢ for solving
conservation laws with stiff source terms in one
spatial dimension.

In this paper, the treatment for stiff source
terms is extended to solve equations in two spa-
tial dimensions. Due to the merit of the CE/SE
method, this extension is straightforward and we
shall only illustrate its basic principle. In addi-
tion, we include several benchmark tests of shock
induced mixing without chemical reaction. The
purpose is to assess the the numerical resolution
of the contact discontinuity between flow streams
with different chemical species.

The rest of the paper is organized as follows.
In Section 2, we discuss the space-time inte-
gration based on the conventional finite volume
method as well as the CE/SE method. The
roles of the source term in these two different
approaches are clarified. [n Section 3, we briefly
discuss the space-time discretization of the con-
servation laws with stiff source terms in one and

two spatial dimensions. In Section 4, we present,
the numerical examples. We then provide the
concluding remarks.

2 Space-Time Integration

2.1 The Finite-Volume Method
Conventionally, the space-time flux balance of
conservation laws is described by formulations
in both Lagrangian and Eulerian frames. These
two formulations can be bridged by Reynold’s
transport theorem:
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where u is the density of a conserved property, V;
denotes the spatial volume of integration at time
t, S(V;) is the surface of V;, and d§ = do 7@ with
do and 1, respectively, being the area and the
outward unit normal vector of a surface element
on S(V;). The points inside V; move with veloc-
ity v, generating the motion of the volume. The
left hand side of Eq. (2.1) is based on the La-
grangian frame, and the right hand side is based
on the Eulerian frame. Note that space and time
are treated in different manners.

ui-ds, (2.1)
S(V)

Consider a scalar convection equation with a
source term p,

H:+6"f:fpa (2-2)

where f = u¥ with & being the convection veloc-
ity. The integral counterpart to Eq. (2.2) is
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To solve Eq. (2.3), the conventional finite-volume
methods reformulate the equation based on a
fized spatial domain, i.e.,
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Alternatively, one could integrate Iiq. (2.4) in
time from ¢ to f;, i.e.,
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2.5)
Equation (2.5) depicts a clearer picture of the
space-time flux balance as compared to Eq. (2.4).

As shown in Fig. 2.1(a), due to the fized spatial
domain, the shape of the space-time CEs in one
spatial dimension must be rectangular. These
elements must stack up exactly on top of each
other in the time-direction, i.e., no staggering
of CEs in time is allowed. In two spatial di-
mensions, as shown in Fig. 2.1(b), a conserva-
tion element is a uniform-cross-section cylinder
in space-time, and again no staggering in time is
allowed.

This arrangement results in vertical inter-
faces extended in the direction of time evolu-
tion between adjacent CEs. Across these inter-
faces, flow information travels in both directions.
Therefore, upwind bias (or a Riemann solver)
becomes necessary in calculating the interfacial
flux.

2.2 Treatments of Stiff Source Terms

In calculating Eq. (2.5), we need to integrate
the spatial fluxes f at the cell boundaries be-
tween two time steps. Usually, this calculation
is approximated by a Riemann solver. The exis-
tence of the source term, however, will influence
the Riemann solution at cell boundaries. There-
fore, Roe and Arora [6] developed a dispersive
Riemann solution following the characteristics,
which are attenuated by the source term. Un-
fortunately, this method cannot be extended to
multiple spatial dimensions. Note that direc-
tional splitting is commonly used in modern up-
wind scheme because there is no known analyti-
cal Riemann solution in multiple spatial dimen-
sions. Source terms, however, have no direction,
and cannot be split accordingly.

Alternatively, finite-differencing the time
marching term in Eq. (2.4) can be adopted. This
approach assumed a smooth temporal evolution

of the flow properties. Applying this method to
flows with propagating discontinuities cannot be
justified. Here, the finite-volume methods con-
centrated on calculating the right hand side of
Eq. (2.4). As such, the rate of change of u con-
tained in V' is equal to the combination of (i)
the flux facross S(V), and (ii) the integration
of the source term over V. As such, fractional-
step (or splitting) methods resort to strong mea-
sures of segregating the two effects and treating
them in a sequential fashion. Colella et al. [7]
and LeVeque and Yee [8] tried various fractional
step methods. Reasonable results were obtained
for non-stiff source terms. For stiff source terms,
transient flow solutions bifurcated or moved in
wrong speeds.

Perhaps, the most interesting approach in re-
cent years is based on shooting for the equi-
librium state of the relaxation system [9]. In
this setting, Jin [10] incorporated the physical
asymptotics of the relaxation system into the
numerical scheme using a Runge-Kutta method
coupled with a stiff ODE solver. Successful re-
sults were obtained for flow equations with stiff
source terms. The method, however, requires
some knowledge of the asymptotics of the relax-
ation system. In addition, the application of the
asymptotics is based on the assumption that the
flow field is smooth.

2.3 The Space-Time Integration of
the CE/SE Method

In the CE/SE method, space and time are
treated in a unified manner. Consider a set of
M coupled convection equations in one spatial
dimension:

U, +F,=P, UecRV, (2.6)

where U is the unknown vector, F is the spatial
flux vector, and P is the source term vector. As
shown in Fig. 2.2, let z; = z, and z2 = t be
the coordinates of a two-dimensional Euclidean
space E3, and all mathematical operations, such
as div, curl, and grad, can be carried out as if
F, was an ordinary two-dimensional Euclidean
space. Thus, Eq. (2.6) can be expressed as M



scalar equations:

7 by =pn m=1,2,... M (2.7)

where Hm = (fm:tm), and frn, un, and p,
are the mth components of F, U, and P, re-
spectively. Equation (2.7) is valid everywhere in
E, for continuous flow solutions. For solutions
with discontinuities, an integral counterpart to
Eq. (2.7) must be employed:

jﬂ' h,. -ds":/ PmdR, m=1,2,.... M
S(R) R

(2.8)
where S(R) is the boundary of a space-time re-
gion R, and d3 represents a surface element of
S(R). Equation (2.8) is obtained by using Gauss’
divergence theorem.

Equation (2.8) states that the total space-time
flux of hy, leaving R through its boundary is
equal to the integration of the source term p,,
over the space-time region R. As a contrast
to the finite-volume method, Eqs. (2.4-5), the
present formulation does not impose any con-
straint on the shape of the CEs in the space-time
domain. This is the crucial difference that, at the
conceptual level, separates the CE/SE method
from the finite-volume method.

We remark that the conventional space-time
integration Eq. (2.5) is a special case of Eq. (2.8).
For flows in one spatial dimension using a fized
spatial domain for CEs, the left hand side of
Eq. (2.8) can be converted into a line integra-
tion, i.e.,

}{ Hm-ds":){"(fmdt—umdx),
S(R)

S(R)
m=12,....M (2.9)

where c.c. indicates that the line integration is
carried out in the counterclockwise direction.
Obviously, Eq. (2.8) is equivalent to Eq. (2.5)
under this condition.

3 The Space-Time Discretiza-
tion

3.1 One Spatial Dimension

Based on Eq. (2.8), we are ready to construct the
space-time discretization for conservation laws
with source terms. In Fig. 3.1, we show the
nodal locations where the unknowns are stored.
The space and time intervals between neighbor-
ing nodes are denoted by Az/2 and At/2. The
Solution Element (SE) associated with each node
(J,n) is thombic. Refer to Fig. 3.2. Inside a SE,
the flow properties are assumed continuous, and
is discretized by a first-order Taylor expansion of
z and t with respect to the mesh node (z;,t").
Between SEs, discontinuities are allowed. The
union of all SEs covers the whole space-time do-
main. The CEs, on the other hand, are space-
time regions, over which the space-time flux bal-
ance will be enforced. In general, a CE could
coincide with a SE, or take other shape. The
flow solution inside a CE does not have to be
smooth.

First, we specify a CE that coincides with the
SE(j,n) and impose the space-time flux balance
over the rhombic region,

j( B . d5= f pLdR,
S(CE(jm)) CE(in)

M, (3.1)

m=1,2,...

where 7, is the discretized space-time flux vec-
tor. Refer to Eqs. (2.7-8). Apply Gauss’ diver-
gence theorem, and we get

foog [y + (el =] dR =0,

(3:2)
Let
pi= [ pndR/o,  (33)
CE(s,n)
with
o= dR (3.4)
CE(j,n)

being the space-time volume of CE(j,n). As a
result, Eq. (3.2) can be written as

((fma)} + (um) = (BR)7] © =0, (3.5)
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= 0. (3.6)
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With the aid of Eq. (3.6), (umt);l can be de-
termined in terms of (um)} and (fnz)?, for
m = 1,2,...,M. Therefore, the distributions
of flow properties inside SE(j, n) are determined
by U7, and (Ux);". Note that U7, and (Uz);-1
are the independent variables to be calculated in

the CE/SE method.

Next, as shown in Fig. 3.3, we impose space-
time flux conservation over two square CEs, de-
noted by CE_(j,n) and CE,(j,n), i.e.,

hr, - ds

f{(cs}

=7 (( m)j_ 11}? +(Pn)}),  (3.7)
B, B

S(CE+)

= 2‘ ((pm)?;ffzz +(Pn)}).  (38)

Note that CE_(j,n) is the union of AA'C'B’
and AABC, and CE4(j,n) is the union of
AA’D”C” and AACD.

Equation (3.7) leads to M relations involving

n -1/2
(Ur)ja U?—l,{Q’

and Eq. (3.8) leads to the other

n—1/2
j+1/2

the independent unknowns u?,

n—-1/2
and (Uz)j_u‘lz,

M relations involving U?, (Uz)?, U

n—1/2 1!'12 -1/2 n-1/2
(U, )j+1f2 Since Uﬂ —1/2° (Ur)?_uw Uit1/2>

and (Ur);_ll"’f are known, the 2M components
of U} and (U;)? are determined by Egs. (3.7-
8). Furthermore, (pm)? in Eqs. (3.7-8) is a func-
tion of (un)?. Therefore, Egs. (3.7-8) are im-
plicit equations of U7 and (Ux):}. To solve them,
Newton’s method is used. Usually, two or three
Newton’s steps are needed for a satisfactory con-

vergence.

, and

Unfortunately, when the source terms are stiff,
the above method fails. Essentially, small differ-
ences between (u )"l :ﬁ and (u )“_I_ll;; will be
amplified and result in huge differences between

(Pm);! :)}!22 and (pm) ?Hl/f; That difference w:{ll
n—1/2

in turn causes big difference between (up,, t);_ 12

”+Il};'(j Refer to Eq. (3.6). As a result,

the numerical calculation for ()7 and (tm,z )]
by Eqs. (3.7-8) is contaminated by the round-off
errors, and the iterative procedure in Newton’s

and ()

method fails to converge.

The remedy is to avoid the amplification ef-
fect by re-distributing the space-time region of
SE such that all source-term effects hinge on the
mesh node (z;,t") at the new time level. As
shown in Fig. 3.4, the new SEs take the shape of
a rectangular area with a line segment sticking
out on the top of the rectangle. In this new con-
struction, we impose the space-time flux balance
over the same CE_ and CE,. However, the cal-
culation is different in the following two aspects:
(i) the calculation of (um‘t);;gf is simply by us-
ing

(wnzifs + Unaiifs =0, (39)
Here, no source term effect is included. In the
nomenclature of computational reactive flows, a
frozen model is used. (ii) the integration of the
source term over the space-time regions is cal-
culated totally based on the flow properties at
(.‘L‘j, fn), ie.,

}{ Re . ds= A“"’A‘(pm); (3.10)
S(CE-)

AzAt( m)

(3.11)

Similar to that in the previous construction, we
have 2M equations for 2M unknowns, and flow
solution at the new time step can be determined.

3.2 Two Spatial Dimensions

The space-time discretization of Eq. (2.8) based
on the CE/SE method in two spatial dimensions
is a direct extension of that in one spatial dimen-
sion. Details of the CE/SE method for conser-
vation laws without source term in two spatial
dimensions are available in [2].

For conservation laws in two spatial dimen-
sions, three unknowns are to be determined at
each mesh point for each conservation equation:



Uy, Uz, wu,, where u is the density of a con-
served property. Therefore, three sets of space-
time conservation conditions are required at each
mesh point. Figure 3.5 shows a two-dimensional
spatial domain formed by congruent triangles
with each triangle marked by either a filled or
an open circle. The filled and the open circles
represent mesh points at two consecutive time

steps.

The three-dimensional SE in space-time do-
main takes a screw-driver shape as shown in
Fig. 3.6. Within the SE, flow properties are
smooth and are discretized by the first-order
Taylor’s series expansion. Across SEs, discon-
tinuity of flow property is allowed. First, we im-
pose the space-time flux balance over SE(z, j, n),
where flow properties and their gradients at
mesh point (z;,y;,%,) are te be determined.

55 h* - ds= / p-dR,
S(CE(i,j,n)) CE(i,7,n)
m=1,2,...,. M, (3.12)

where hx = ((FZ)", (f¥)", uy, ) is the discretized
space-time flux vector. Apply Gauss’ divergence
theorem to Eq. (3.12), and we get

/cr-:(f, in)

(2,25 + U585 + (um )2 — 23]

dR = 0. (3.13)
Let
P = /  PndR/V, (3.14)
SE(i,j,n)
with
V= dR (3.15)

CE(jn)
being the space-time volume of SE(z,j,n). As a
result, Eq. (3.13) can be written as

(frmz)i; + (fh ) + (um,e)i; — (PR)7; = 0.
(3.16)
Using Eq. (3.16), (um,:); can be determined in
terms of (um )7}, (i )%, and (fY, )2, for m =
1,2,..., M. Therefore, the distributions of flow
properties inside SE(z, 7, n) are determined.

Recall the the amplification effect caused by
the stiff source term as discussed in the last
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section.  When the source term is stiff, small
differences between the flow properties in the
three neighboring nodes will be amplified and
cause huge differences between source terms p,
in the three neighboring nodes.
Eq. (3.16), this results in huge differences of u3,,
between the three neighboring nodes. Conse-
quently, the discretized space-time flux conser-
vation will be contaminated by the round-off er-
rors.

According to

=

The remedy is to avoid the amplification effect
by re-distributing the space-time regions such
that all source-term effects hinge on the mesh
node at the new time level. As shown in Fig. 3.7,
the new SEs take the shape of a hexagonal cylin-
der with three surfaces sticking out on the top
of the cylinder. As such, the calculation of u%,,;
in each SE is simply by

u’:n,t + (f?fl,z‘)‘ + (fr%,y). = 0. (317)

Here, no source-term effect is included, i.e., a
frozen model is used.

We then impose three space-time flux balance
conditions over three CEs as shown in Fig. 3.8.
Each CE takes the shape of a parallelepiped.
Here, the integration of the source term over the
space-time regions is calculated totally based on
the flow properties at the new time step. Here,
we take the node (z;,y;, ") at the new time step,
where unknowns are to be solved.

—~ Vv

he - ds= —(pm)t;, (3.18
$ s, B 4= o)y (318)

~ A%

h: - d5= —(pw)t;, (3.19
$.on, 3 (P, (319)
§ Bnds= () (3:20)
S(CE3) 3 ;

Equations (3.18-20) are 3M correlations for 3M
unknowns, and flow properties and their gradi-
ents at (z;,y;,t") can be determined. In addi-
tion, (pn)7; in Eqgs. (3.18-20) is a function of
(um)?_J-. As a result, Eqs. (3.18-20) are implicit
relations of (un)?, (Umz)}, and (umy)7. New-

ton’s method is used to solve the equation set.



4 Numerical Examples

A Planar Shock Wave Passes A
Straight Gaseous Interface

4.1

When a planar shock wave crosses a gaseous in-
terface of different species, shock-wave refrac-
tion, reflection, and transmission take place. The
complex interaction between the shock wave and
the gaseous interface usually causes significant
roll-up of the gaseous interface. This flow phe-
nomenon was identified as a favorable mecha-
nism to enhance mixing in supersonic combus-
tion. The flow phenomenon was illustrated as
shock induced Rayleigh-Taylor instability or the
Richtmyer-Meshkov instability. The theory of
wave impedance was also employed to study the
flow physics. More recently, Picone and Boris
[11] showed that misalignment of the pressure
and density gradients leads to a source of vortic-

1ty:
dw

dt

Vp X NP

twyv=w-Yv+ s (4.1)

In this paper, we apply the CE/SE method
to simulate this complex flow phenomenon.
When solving the flow equations of two different
species, a species equation is added to the Eu-
ler equations. The transportation of the other
species can be determined by the mass conserva-
tion equation. In this case, the perfect gas law
is used, and pressure is given by

p=(-Dlpe- 2@+, 42

where the specific heat ratio of the gas mixture

NPy e
Mi(vi-1) 7 My(y2—1)

¥= ) (4.3)

P
M:{"r’]i'-l) + Mz(ffz—-l]

where M; is the molecular weight for species i.
The flow conditions are taken from the exper-
imental and computational results reported by
Zeng and Takayama [12]. An air/He interface is
considered. The molecular weight of He is lighter
than that of air. For the same temperature, the
speed of sound inside He is faster. Therefore, air

-1

is the slow gas and e is the fast gas. [n our
calculations, the mesh size is 180 x 120.

Figure 4.1 shows density contours of the flow
fields with three different angles of gaseous in-
terfaces: 442, 582, and 77°. The incident shock
moves from left to right with Mach number equal
to 1.4. When the shock hits the gaseous inter-
face, a reflected shock and a transmitted shock
are form. Across the interface, the primary shock
is refracted. The reflected shock propagates to
the left of the interface in a circular fashion, and
the transmitted shock propagates to the right of
the interface. When the incident angle « is less
than a critical value, three shocks intersect one
another at one point on the interface. When o
is larger than the critical value, the transmitted
shock tends to run away from the intersection
point, and a free precursive wave shows up in
front of the incident shock. For a shock with
Mach number 1.4 interacting an air/He interface,
the critical a is approximately 25°.

Another special feature of the flow field is the
crater near the bottom surface. At the muzzle of
the crater, pressure drops and flow is accelerated
as if there is an air jet charging into He. As
a result, a vortex ring is form and tremendous
mixing occurs between air and He. The results
compared well with the experimental and CFD
results reported in [12].

4.2 Planar Shock Wave Passes Circu-
lar Gaseous Interface

The last numerical example is extended to a pla-
nar shock interacting with circular Air/He in-
terfaces. The basic features of this flow field
are similar to that in the last numerical ex-
ample. As reported by Yang et al. [13], this
two-dimensional unsteady flow is an analogy to
the three-dimensional steady flow produced by
an oblique shock impinging on a light gas jet.
The light gas jet is immersed in a coflowing, su-
personic air stream. This flow mechanism can
greatly enhance the mixing of the light and heavy
gases. Essentially, the generated vorticity can
stretch the gaseous interface such that the den-



sity and species gradients across the interface are
intensified. As a result, the diffusive effect he-

comes important.

I'igure 4.2 shows the density contours of the
evolving flow fields. The Mach number of the
incident shock is 1.2. The mesh size is 480 x
120. Initially (¢ < 0.25), the angle between
the incident shock and the gaseous interface is
very small, and the incident shock, the reflected
shock, and the transmitted shock intersect one
another on the interface. Since the interface
is circular, the incident angle increases as time
evolves. When ¢t > 0.4, the flow becomes su-
percritical, i.e., the transmitted shock runs away
to the right and a precursive wave is created.
Note that full computational domain is plotted
in Fig. 4.3. During 2.01 < ¢t < 2.55, the normal
shock propagates smoothly out of the computa-
tional domain.

Figure 4.3 shows the temporal evolution of two
He bubbles interacting with a planar shock. Ini-
tially, two identical bubbles are placed one radius
apart. During 1.78 < £ < 3.28, the transmitted
shocks and the precursive waves interact with
one another and creats a weaker precursive wave
(t = 1.78), which, later on, is caught up by the
primary incident shock (2.78 < ¢ < 3.28). At
the later stage of the vortex roll-up, due to the
low-pressure region behind the bubble, the left
He bubble is sucked into the muzzle of the other
highly stretched bubble.

4.3 Shock Ignited Combustion

In this case, we consider the combustion of a su-
personic premixed H,-air flow in a ramped duct.
Similar calculations were reported in several pre-
vious works [15,16,17]. In the present calcula-
tions, we adopt a global finite-rate chemistry
model for H;-air reaction, originally developed
by Taki and Fujiwara [14].

Two inlet temperatures are considered: 900 K
and 1200 K, which are below the ignition thresh-
old. The pressure of the free stream is about 1
atm, and the Mach number is 4. The mixture
ratio of the Hy/air is stochiometric. The angle

of the ramp is 10, Figure 4.4 shows the flow
solution of the 900 K case. The higher temper-
ature and pressure behind the ramp shock ig-
Behind the shock, the
heat release due to the chemical reaction results
in a continual pressure increase, which in turn
causes the ramp shock to bend upward. Note
that in all previous calculations, the shape of the
upward-bending ramp shock was a smooth curve.

nite the premixed gas.

In our calculations, however, we observe a dis-
tinct change of the shock angle. In addition, we
observe fine ripples travel back and forth along
the detonation front. Similar instability was re-
ported in [15,16]. However, previous calculations
were too diffusive to resolve the waves.

Figure 4.5 shows the comparison of pressure
and temperature between the present calcula-
tions and the previous results. The distribu-
tions of T and P are obtained from y = 0.13
cm above the bottom wall. Three earlier tests
with different numerical schemes were consid-
ered, including an LU [15], a PNS [16], and a
TVD [17] schemes. Although different chemical
models were used in these calculations, the com-
parison was reasonable.

5 Concluding Remarks

In this paper, we apply the CE/SE method to
solve chemical reacting flows. By an unified
treatment of space and time, source terms are
included as a volumetric integral over space-time
conservation elements. Moreover, for stiff source
terms, the amplification effect must be elimi-
nated. And a re-distribution of the space-time
region was adopted such that the source-term ef-
fects hinge solely on the mesh nodes at new time
level. As a result, the method is robust and sta-
ble for solving the conservation laws with under-
resolved stiff source terms. This new method is
used to solve shock ignited combustion , and the
results compare favorably with previously pub-
lished data. In addition, in order to assess the
numerical resolution of the contact discontinuity
of different species, numerical tests of a planar
shock wave passes gaseous interfaces were con-



ducted. The results compared well with previous
experimental and computational results.
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Fig. 4.1 A planar shock interacts with
a straight gaseous interface .
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Fig. 4.4 Shock ignited supersonic combustion with free stream Mach number = 4,
temperature = 900 K over a 10 degree ramp.
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Fig. 4.5 The comparison of temperature and pressure between the present calculations
and the previous results, including an LU [15], a PNS [16], and a TVD [17] schemes.
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