
SOLVCON: A Python-Based CFD Software

Framework for Hybrid Parallelization

Yung-Yu Chen,∗ David L. Bilyeu,† Lixiang Yang‡ and Sheng-Tao John Yu§

Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, 43210

SOLVCON is a new, open-sourced software framework for high-fidelity solutions of linear
and non-linear hyperbolic partial differential equations. SOLVCON emphasizes scalability,
portability, and maintainability for supercomputing by using emerging multi-core archi-
tectures. The code development effort follows Extreme Programming practices, including
version control, documentation, issue tracking, user support, and frequent code releases.
In SOLVCON, the Python framework includes all supportive functionalities for the work
flow. For pre-processing operations, the Python framework provides parallelized mesh
data input and automatically sets up domain decomposition. In calculations, the Python
framework provides light-weight memory management through extensive use of pointers.
Computation-intensive operations are implemented by using C and FORTRAN for high
performance. The default numerical algorithm employed is the space-time Conservation El-
ement and Solution Element (CESE) method. The code uses general unstructured meshes
with mixed elements, including tetrahedra, hexahedra, prisms, and pyramids for three-
dimensional calculations. Hybrid parallelism includes shared- and distributed-memory par-
allelization. The temporal loop and the spatial loop in modern finite-volume methods are
implemented in a two-layered structure in SOLVCON. Distributed-memory parallelization
by domain decomposition and MPI is performed in the temporal loop. Shared-memory
parallel computing by using accelerator technologies, e.g., General-Purpose Graphic Pro-
cessor Unit (GPGPU), is performed in the spatial loop. More than 99% of the execution
time of SOLVCON is used for number-crunching in the solver as a part of the space loop.
Written in C or FORTRAN, a typical solver contains only 10% of the code statements in
SOLVCON. To demonstrate the capabilities of newly developed SOLVCON, we performed
CFD calculations by using 23 million elements. The code was run on a 512-core clus-
ter. SOLVCON delivers calculations of flow variables in 11.29 million elements per second.
The parallel efficiency is 70%. In the open-sourced SOLVCON, two solvers are available:
(i) the Euler equations solver for compressible flows, and (ii) the velocity-stress equations
solver for waves in anisotropic elastic solids. SOLVCON can be easily extended for other
applications, including viscous flows, aero-acoustics, nonlinear solid mechanics, and electro-
magnetism. The Python framework allows fast adaption to new heterogeneous, multi-core
hardware as well as further development of the code for peta-scale supercomputing.

I. Introduction

Hyperbolic partial differential equations (PDEs) are extensively used to model wave motions and ad-
vective transport of substances. Numerical methods for time-accurate solutions of hyperbolic PDEs is the
foundation of modern Computational Fluid Dynamics (CFD) methods for compressible flows. Hyperbolic
PDEs also arise in a wide range of non-fluid applications, including acoustics, solid mechanics, electromag-
netism, optics, etc. In the past decades, mathematical theories and numerical methods for solving hyperbolic
PDEs1–3 have become mature. The modern approaches cast the model equations into a set of fully-coupled,
first-order, hyperbolic PDEs, in which the physics are described by the Jacobian matrices of the equations.

∗Ph.D. Candidate, AIAA Student Member, chen.1352@osu.edu.
†Ph.D. Student, AIAA Student Member, bilyeu.4@osu.edu.
‡Ph.D. Candidate, yang.1130@osu.edu.
§Associate Professor, AIAA Member, yu.274@osu.edu.

1 of 10

American Institute of Aeronautics and Astronautics

chen.1352@osu.edu
bilyeu.4@osu.edu
yang.1130@osu.edu
yu.274@osu.edu


As such, strong commonality exists in the theoretical framework for a wide range of hyperbolic systems with
drastically different applications.

For CFD, researchers have developed monolithic legacy codes to aid important scientific and engineering
studies. Well-known aerodynamics codes developed by NASA include FUN3D,4 WIND-US,5 National Com-
bustion Code (NCC),6 etc. These legacy codes share the following common attributes: (i) These CFD codes
are hard-wired for fluid mechanics only and cannot be easily adapted to model different physical processes.
However, the numerical methods employed, in general, are fully capable of solving other hyperbolic processes.
(ii) These codes use unstructured meshes with mixed elements,7 and a large part of the code is to manage the
data of unstructured mesh. The code statements directly related to physical models and numerical methods
are much less than those of the supporting functionalities for manipulating data of unstructured meshes.
However, few legacy codes clearly separate the solver from supporting functionalities. Without a unclear
software structure, the process of adapting these legacy codes to achieve hybrid parallelism will be laborious.
(iii) In the past, legacy codes have been renovated twice for adapting to new hardware. Decades ago, these
codes were parallelized for shared-memory, vector machines, i.e., Cray computers. Later, these codes were
migrated to Beowulf clusters by using MPI for distributed-memory parallel computing. At the present time,
all legacy codes will need to be migrated to heterogeneous platforms based on multi-core technologies.

Recently, the accelerator-based, multi-core technology, especially General-Purpose Graphic Process Unit
(GPGPU) computing, became a mainstream approach for supercomputing. According to the current Top
500 list (http://top500.org/), the fastest supercomputer in the world, Tianhe-1A, is a GPU cluster. Similarly
to vector processors, GPGPU computing is based on shared-memory parallelization. Clustering, on the other
hand, is based on distributed-memory parallelization. The use of a GPGPU cluster implies combination of
shared- and distributed-memory parallelization, i.e., hybrid parallelism.

The emerging multi-core technologies motivate us to pursue a futuristic architecture of supercomputing
CFD. To date, the state-of-the-art approach is running CUDA codes on clusters equipped with NVIDIA
GPUs. However, the multi-core technologies are evolving very rapidly. There are many advanced multi-core
technologies in the pipeline. Undoubtedly, there will be other viable options for hybrid parallelism. Next-
generation CFD codes must be adaptive to new multi-core hardware. To this end, SOLVCON has been
developed based on a clear organization of the software structure, such that the coding effort to achieve
shared-memory parallel computing is confined to the solver kernel, i.e., a very small part of the code. As a
result, SOLVCON is portable for various platforms and very easy to be maintained.

SOLVCON is a software framework developed by using the Python programming language.8 Segregation
between the Python framework and the solver kernel allows us to use SOLVCON to solve various non-fluid
physical processes as long as the model equations can be cast into the first-order hyperbolic PDEs, including
all wave motions and convective transport of substances. In recent years, the modern numerical methods
originally developed for fluid mechanics have been widely adopted to solve non-fluid problems, including
stress waves in solids9–12 and electromagnetic waves.13, 14 However, few CFD codes were developed with a
clear software structure such that it can be easily extended for multi-physics.

SOLVCON is designed for multi-physics. The software framework of SOLVCON is based on the the-
oretical framework of the first-order hyperbolic PDEs and modern finite-volume methods. All supportive
functionalities, a major part of SOLVCON, is segregated from the PDE solvers. The code for those function-
alities is written by using Python, and designed to be reused for the hyperbolic PDE solvers. In particular,
the Python framework manages unstructured mesh, parallel processing, and input and output. The solver
kernels in SOLVCON, on the other hand, are tailored to solve specific physical models of interest. The
solver kernels are made pluggable to the Python framework. In other words, the Python framework provides
an environment with all supporting functionalities, mainly for manipulating the mesh data, to support the
number-crunching tasks performed by the solver.

Another concern for the next-generation CFD codes is the extensive man power required for a super-
computing task. For most of modern parallelized CFD codes, when using more than 50 million cells in
a task, many difficulties were encountered, including lower parallelization efficiency, very slow data input
and output, and almost insurmountable difficulties in post-processing the results when using commercial
post-processing tools. Tremendous man power must be spent in setting up parallel computing, transmitting
and post-processing the solutions of unsteady flows, and graphics or animation rendering. In addition to
the required runtime of computational tasks, laborious work flow and required man power are indeed the
bottleneck of a CFD supercomputing task. The Python framework of SOLVCON is designed to streamline
the work flow by organizing all supportive functionalities, including parallel input and output, automatically

2 of 10

American Institute of Aeronautics and Astronautics

http://top500.org/


setting up domain decomposition. In the future, we will develop in situ animation for processing the results.
The Python software structure is designed to streamline the work flow of a supercomputing task. The use
of SOLVCON greatly increase the productivity for performing large-scale simulations.

To recapitulate, SOLVCON is a new software framework for time-accurate solutions of hyperbolic PDEs
and conservation laws. Scalability for running on supercomputers is emphasized. The software framework
is developed by using Python, a dynamic, object-oriented programming language for high flexibility. The
Python framework provides the necessary supportive functionalities for PDE solvers and parallel computing,
so that the developers can focus on the physical models and numerical methods. Because of a clear software
structure, solver kernels are made pluggable to the Python framework. The computational efficiency is
not impaired. Three specific goals in the design of SOLVCON are: (i) All supportive functionalities are
completely segregated from the numerical algorithms and the model equations, such that solver kernels are
made pluggable to the Python framework. (ii) The Python code provides automatic distributed-memory

parallelization through setting up domain-decomposition and message-passing. The goal here is to enable
highly productive work flows. (iii) To achieve hybrid parallelism systematically for advanced computing
technologies, e.g., GPGPU clusters. Essentially, only the solver kernels of SOLVCON need to be rewritten
for the new hardware employed.

The rest of the paper is organized in the following. Section II illustrates the model equations and
the CESE method used in SOLVCON. Section III describes the software structure of SOLVCON and its
object-oriented approach. Section IV explains how automatic distributed-memory parallelization and hybrid
parallelism are achieved. Section V provides the benchmark results. Section VI provides concluding remarks.

II. Model Equations and Numerical Methods

This section provides a brief review of the first-order, hyperbolic PDEs and the multi-physics CESE
method15 for numerical solutions.

II.A. Hyperbolic PDEs

A set of coupled, first-order, three-dimensional hyperbolic PDEs can be formulated in a vector form:

∂u

∂t
+

3∑
i=1

∂f i(u)

∂xi
= 0, (1)

where t is time, u = (u1, . . . , uN)T is a column vector of N unknowns, x1, x2, and x3 are the three spatial
Cartesian coordinates, and f1, f2, and f3 are the flux functions. Aided by the chain rule and formulated in
a component form, Eq. (1) becomes

umt +

3∑
i=1

N∑
l=1

aim,lul,i = 0, m = 1, . . . , N, (2)

where

umt
def
=

∂um

∂t
, ul,i

def
=

∂ul

∂xi
, aiml

def
=

∂f i
m

∂ul
,

i = 1, 2, 3, and m, l = 1, . . . , N . Eq. (2) can be further rewritten in the following vector-matrix form:

∂u

∂t
+

3∑
i=1

Ai(u)
∂u

∂xi
= 0, (3)

where the component at the m-th row and the l-th column of the matrix Ai is aiml, for i = 1, 2, 3. A1, A2, and
A3, are the three Jacobian matrices associated with the x1, x2, and x3 coordinates, respectively. If A1, A2,
and A3 are functions of u, the PDEs are non-linear. Otherwise, the PDEs are linear.

The formulation of the Jacobian matrices A1, A2, and A3 in the first-order hyperbolic PDEs, Eq. (3),
determines the physical processes. Physical significance of the governing equations are represented by the
three Jacobian matrices. SOLVCON takes advantage of this mathematical structure. The PDE solvers

3 of 10

American Institute of Aeronautics and Astronautics



of multiple physical processes can be implemented with the governing equations provided by the users of
SOLVCON.

To solve Eq. (3), modern finite-volume solvers perform explicit time-marching calculations. For each time
step, solvers enforce flux conservation over each cell in the spatial domain. The overall numerical algorithms
consist of two mandatory loops: (i) the temporal loop for time-marching and (ii) the spatial loops for flux
calculation in the spatial domain. We entitle this as the intrinsic two-loop structure for hyperbolic PDE
solvers. “Cells” are the fundamental unit for the discretized space, i.e., the mesh, for the numerical method
to impose the constraint specified by the PDEs. It can be expected that almost all the execution time of the
solvers is used in the spatial loop.

II.B. The CESE Method

The CESE method solves first-order, non-linear or linear, hyperbolic PDEs by using the unstructured meshes
in two- and three-dimensional space.16, 17 Details of the CESE method such as the numerical algorithm and
the stability criteria can be found in the literature.15, 18–20

The basic idea of the CESE method is to enforce flux conservation in the space-time domain. In particular,
the CESE method treats space and time as one entity. For conciseness, we only briefly review the one-
dimensional version of the CESE method. The one-dimensional model equations take the form of Eq. (1)
but have only one spatial coordinate:

∂um

∂t
+

∂fm

∂x
= 0, m = 1, . . . , N, (4)

where t is time, x is the spatial coordinate, and fm is the flux function. Let ξ1 = x and ξ2 = t be the
coordinates of the Euclidean space E2. By defining a vector hm = (fm, um) in E2, it can be shown that
Eq. (4) is equivalent to:

∮
S(V )

hm · ds = 0, m = 1, . . . , N, (5)

where V is an arbitrary space-time area in E2 and S(V ) is the boundary of V .
The CESE method defines discrete conservation elements (CEs) to cover the space-time domain and

enforces flux conservation over each CE by using Eq. (5). The integration of fluxes passing the boundary of
each CE is facilitated by the definitions of solution elements (SEs), in which um and fm, m = 1, . . . , N are
assumed to have linear distribution. Discontinuity is allowed across SEs. With the given initial condition,
the hyperbolic PDEs are solved through the explicit time-marching scheme. The unknown variables at the
new time step are calculated based on the flux conservation over the CEs.

Both non-linear and linear equations are accommodated in the CESE method. In general, the functions
fm, m = 1, . . . , N are non-linear. Compared to other finite-volume-based methods, the CESE method does
not use Riemann solvers which are specific to physical models to capture shocks. The shocks in non-linear
equations are captured by the weighting functions in the CESE method.15 As such, the CESE method fully
utilizes the abstraction of physical models provided by the Jacobian matrices in the first-order formulation
of hyperbolic PDEs.

II.C. Mixed-Language Approach

To aid the construction of multi-physics PDE solvers for various applications, a flexible implementation of
SOLVCON is important. The demanded flexibility can be hardly achieved by using a high-performance pro-
gramming language, e.g., C and FORTRAN. The framework of SOLVCON is written by using Python.8

Python has been used in many HPC applications.21–24 However, plain Python is not appropriate to
computation-intensive, number-crunching tasks, because it uses a virtual machine for high-level language
features, e.g., dynamic typing systems and metaclassing. In order to extract the highest-possible perfor-
mance from the hardware, code for number-crunching tasks needs to be written in C or FORTRAN. Over
70% of statements in SOLVCON are written in Python.

The mixed-language approach in SOLVCON resolves the performance issue. The resultant code achieves
high flexibility by Python framework and high performance by C or FORTRAN code. Within the over-
all software architecture defined by Python, the high-performance C or FORTRAN code provide optimal

4 of 10

American Institute of Aeronautics and Astronautics



Python object Data (array) Python method Python function FORTRAN/C

Solver

Solution data

Spatial Loop GPGPU

Miscellaneous

Block Connectivity

Geometry

Ghost information

BC

BC

Case Temporal Loop

Instantiation Domain decomposition

Hooks

Pre/post-proc

In situ analysis

Initial condition

Output

Other . . .

Arrangement: programmable input file

Set case arguments

Set up hooks for case

Arrange cases

Other logics . . .

C
o
n
tr
o
l

Call

Access

C
o
n
tr
o
l

Command

C
o
m
m
a
n
d

Fig. 1. The structure of the framework materialized in SOLVCON. The schematic is from bottom up.

computation-intensive operations. This mixed-language approach is achieved by taking advantage of (i) the
two-loop structure of modern finite volume methods for solving hyperbolic PDEs, and (ii) the easy-to-use
foreign function interface (FFI) and other mixed-language functionalities provided by Python,25, 26 e.g., the
ctypes library.

The following important benefits are obtained by using Python for the overall software framework:
(i) Legacy input files for PDE solvers are no longer needed. As an interpreted language, Python code
is automatically compiled before execution. Python scripts can be used as the entry points of PDE solver
programs, and replace the role of legacy input files. (ii) The dynamic typing system of Python enables high
flexibility. Reflective programming is easy. Some functionalities, e.g., restart, can be implemented more
freely. (iii) The metaclassing facilities in Python increase the degree of modularity of SOLVCON. (iv) The
network communication functionalities in the standard library can be readily used for fast prototyping of
message-passing.

III. Software Model

SOLVCON uses object-oriented programming to model the hyperbolic PDE solvers. SOLVCON has four
mandatory constructs: (i) unstructured mesh, (ii) two-loop structure, (iii) supportive functionalities, and
(iv) invocation of the programs. Figure 1 illustrates the main structure of SOLVCON.

The Block class implements the cell-centered data structure of unstructured meshes with mixed ele-
ments,7 which is the most fundamental construct in SOLVCON. It also implements the related manipula-
tions. The data structure closely regulates the implementation of the spatial loops. Three primary entities
should be defined for the mesh: (i) node, (ii) face, and (iii) cell. A node represents a location in the space. A
face consists of several nodes, and a cell in turn consists of several faces. The overall spatial domain is covered
by a set of non-overlapping cells. The mesh can have cells of different shapes. Conventionally, triangles and
quadrilaterals are used in two-dimensional space, and tetrahedra, prisms, pyramids, and hexahedra are used
in three-dimensional space. These entities are stored in arrays and assigned unique indices for reference. The
Block class also incorporates the data structure for the ghost cells, which is used for boundary-condition
treatment.3

The Case and Solver classes implement the temporal and spatial loops, respectively, to build up the two-
loop structure. Various supportive functionalities are wrapped around the Case objects, i.e., the temporal
loop, including execution control, input and output, in situ data processing, etc. The Solver class is
responsible for materializing the numerical algorithm in the spatial loop to form a solving kernel. As required
by the two-loop structure, the Case and Solver objects work together closely. The Solver object will be
manipulated by the Case object per each time step.

The various supportive functionalities are mostly implemented with a hierarchy of Hook classes. The
Hook classes provide a systematic approach to organize the highly diverse supportive functionalities. A Hook

5 of 10

American Institute of Aeronautics and Astronautics



class implements a specific functionality, e.g., outputting the current time step. Unrelated functionalities
can be implemented in different Hook classes. Any set of Hook objects can be installed on a Case object
to meet the demand from a simulation. During the simulation, the Case object calls the callback methods
pre-defined in the installed Hook objects at appropriate positions. As such, aided by an optionally installable
Hook object, the computer codes to determine to use the functionality or not, can be moved to be very far
from the numerical algorithms, even outside the two-loop structure.

To provide a mechanism to flexibly invoke the software constructed by the foregoing Block, Case, Solver,
and Hook classes, a construct called Arrangement is designed in SOLVCON. The Arrangement needs to
collect parameters to run a simulation, instantiate the Case object with the parameters, and install desired
Hook objects on the Case objects. The behavior of the Arrangement shows no object-oriented features.
Therefore, rather than the object-oriented paradigm, an Arrangement is implemented with the imperative

paradigm as a Python callable. It should be noted that, although object-oriented programming has been
proven as a powerful concept for software modelling, and especially suitable for building software frameworks,
blind application of the object-oriented paradigm is harmful. The Arrangement is not implemented with
object-oriented programming to avoid unnecessary complexity.

The section completes the outline of the software structure of SOLVCON. One important objective of the
current design is to enable the infrastructure for solving packages that consist of modularized solving kernels
and coupled supportive functionalities. Aided by the capability of inheritance provided in Python, concrete
numerical algorithms for various applications can be implemented using subclasses of the Solver class.
Customized supportive functionalities can be materialized by subclassing the Hook classes. The combination
of these subclasses can form multiple solving packages that share a large portion of reusable codes reside
in SOLVCON. The codes in SOLVCON are responsible for complex operations for data manipulation and
parallelization.

IV. Domain Decomposition and Message-Passing

Fig. 2. Decomposed three-dimensional computa-
tion domain. The decomposition is done in SOLV-
CON by directly calling the METIS library.27

Solver

Block

Solver

Block

Solver

Block

Solver

Block

Solver

Block

Comm.

C
om
m
.

Comm.

C
om
m
.C

om
m
.

C
om
m
.

Domain: abstraction of domain decomposition

Block Block Block Block Block

Case

C
o
n
tr
o
l

C
o
n
tr
o
l

Control Control

Control

Fig. 3. Automatic domain decomposition and
message-passing parallelization handled by the frame-
work.

Distributed-memory parallelization is made automatic by SOLVCON. Once a serial code is written with
SOLVCON, domain decomposition and message-passing functionalities are readily usable. The domain de-
composition is based on the data structure of the unstructured meshes with mixed elements. The connectivity
of the unstructured mesh is used to build a graph of cells, and the graph is partitioned by using the METIS
library.27 The mesh can be further decomposed into multiple sub-domains according to the partitioned
graph. The decomposed sub-domains are the basic unit to distribute computational loads to a set of net-
worked workstations for parallel processing. Then, the workstations perform the distributed-memory parallel
computing through message-passing across the network. Figure 2 demonstrates a decomposed mesh.

SOLVCON is responsible for both domain decomposition and message-passing. Although these two
functionalities are purely supportive, they are too fundamental to be implemented as Hook classes. The
domain decomposition is implemented in a standalone module named domain and managed by the Case class.
The message-passing is more complex and needs to have codes in both Case and Solver classes, i.e., the
temporal and spatial loops, respectively. A network communication layer is implemented in SOLVCON to:

6 of 10

American Institute of Aeronautics and Astronautics



(i) transfer objects among the controlling workstation and slave workstations, and (ii) exchange information
on the interface between adjacent sub-domains. SOLVCON provides two switchable communication layer.
One directly uses TCP/IP socket, and the other calls Message-Passing Interface (MPI) library. As such,
SOLVCON can operate in unconventional parallel environment which does not have MPI installed. Figure
3 depicts the distributed-memory parallelization materialized in SOLVCON.

Hybrid parallelism joins both distributed-memory and shared-memory parallelization, while the latter is
the fundamental parallel paradigm for modern multi-core computer architecture and advanced many-core
GPGPU computing. Although hybrid parallelism is important for further scale-up in the modern HPC
architecture, the accompanying complexity needs to be mitigated. The software model shown in Section III
prevents obfuscation in the hybrid parallel implementation in SOLVCON. Aided by the distributed-memory
parallelization handled automatically in SOLVCON, shared-memory parallelization can be insulated in the
solving kernels. In practice, the functionalities for distributed-memory parallelization reside in the Case

class and the base Solver class defined in SOLVCON, while the shared-memory parallelization is put in the
customized subclass of Solver class defined in the solving kernels. Undesired interference is eliminated by
the strict isolation.

V. Performance Results

Fig. 4. Pressure contours of simulated jet in cross flow. The free stream conditions are ρ = 0.86 kg/m3, p = 41.8 kPa,
and M = 1.98. The jet conditions are ρ = 6.64 kg/m3, p = 476 kPa, and M = 1.02. The simulation uses 23 millions cells
and computation is completed within one day.

In this section, we provide benchmark results for the parallel performance of SOLVCON. To validate
the modularized structure of the software, we have developed two PDE solvers for: (i) the Euler equations,
and (ii) the velocity-stress equations.28 In this paper, we focuses on the Euler solver. The performance
is analyzed against a three-dimensional model problem of supersonic jet in cross flow, as shown in Fig. 4.
Three different sizes of mesh are used: 3 million, 16 million, and 23 million elements. The benchmark is
run on the two major partitions of the Glenn cluster in Ohio Supercomputer Center. One partition contains
dual-socket, dual-core (4-core) 2.6 GHz Opteron with 8 GB ram. The other partition contains dual-socket,
quad-core (8-core) 2.5 GHz Opteron with 24 GB ram. The interconnect is 10 Gbps or 20 Gbps Infiniband.
The benchmark used up to 64 computer nodes, or 512 cores. The highest speed measured is 11.29 million
elements per second by using 64 8-core nodes with 23 million elements, as shown in Fig. 5. The measured
performance is in the unit of million elements per second (Meps).

7 of 10

American Institute of Aeronautics and Astronautics



Fig. 5. Performance of the simulations using meshes with
3, 16, and 23 million elements, and on 4-core and 8-core
nodes. The highest performance achieved is 11.29 million
elements per second.

Fig. 6. The parallel efficiency. For the largest simulation
using 23 million elements with 512 cores, the parallel exe-
cution maintains a good efficiency of 70%.

We further calculate the parallel efficiency for SOLVCON. We define the parallel efficiency:

η(φ) =
p(φ)

p(φr)

φr

φ
, (6)

where φ is the number of nodes used in the simulation, p(φ) is the performance measured by using φ cores,
and φr is the referential node number. Constrained by memory size, for larger runs using 16 and 23 million
elements, the minimum nodes for the simulations are 2 and 4, respectively. Thus the referential number φr

for 3, 16, and 23 million elements are 1, 2, and 4, respectively. The calculated parallel efficiency is plotted in
Fig. 6. The efficiency of the runs of 16 million elements on 4-core partition is more than 100%, because the
swapping occurred in the reference case slowed it down. The case used only 2 nodes, in which the memory
is not sufficient to calculate without swapping. For the largest simulation which uses 23 million elements
with 512 cores on the 8-core partition, the parallel efficiency is 70%. Since the CESE method uses explicit
time-marching, data transfer must be performed for each time step. The overhead in communication is not
negligible. Thus, 70% of parallel efficiency for 512 core is a good achievement.

We provide more detailed analysis by the weak scaling of SOLVCON. To measure the weak scaling,
the same amount of elements should be used on each computer node. Because SOLVCON uses arbitrarily
generated unstructured mesh, number of elements on each computer node cannot be made even for different
mesh size. Instead, we configure the simulations to have approximately 1 million elements on each computer
node. The weak scaling of SOLVCON is presented in Fig. 7. The y-axis is the performance of each computer
node measured in Meps. The two curves in Fig. 7 are measured for the 4-core and 8-core hardware partitions.
The performance per node of the 8-core partition is twice of that of the 4-core partition. For benchmark
on the 4-core partition, the scaling curve is almost flat, which means perfect weak scaling. For the 8-
core partition, the curve is just slightly inclined. Based on the good result in weak scaling, we show that
SOLVCON is capable to simulate much larger problems.

The strong scaling is shown in Fig. 8. To measure the strong scaling, the mesh size is fixed for each test
run, and only the number of computer nodes is changed. Figure 8 shows the strong scaling of 6 benchmark
sets, for the three meshes on the two hardware partitions. The mesh size is positively related to the speed-up,
because communication overhead takes smaller portion of the overall execution time when larger mesh is
used. SOLVCON also scales well in terms of the strong scaling. For problems of moderate size, such as those
of 16 and 23 million elements, SOLVCON allows quick turnaround time by adding more computer nodes.

VI. Conclusions

We have successfully developed SOLVCON, a new software framework for high-fidelity numerical solution
of hyperbolic PDEs and conservation laws. As a multi-physics code, SOLVCON can be used for high-fidelity

8 of 10

American Institute of Aeronautics and Astronautics



Fig. 7. The weak scaling for 3, 16, and 23 computer nodes
on the 4-core and 8-core hardware partitions. Approxi-
mately 1 million elements are maintained on each com-
puter node. The y-axis is the performance per computer
node. SOLVCON scales well on both partitions. For the
4-core partition, the utilized cores are 12, 48, 92. For the
8-core partition, the core counts are 24, 96, 184.

Fig. 8. The strong scaling for meshes of 3 million, 16 mil-
lion, and 23 million elements. The dashed line is the ref-
erence of linear scaling. SOLVCON scales close to linear.
Up to 512 (29) cores are used. Each line in the plot uses
a single mesh, but different number of computer nodes.
Due to the memory constraint, starting point of each line
is different.

solutions of all wave motions as well as convective transport of substances as long as the model equations can
be cast into a set of first-order, hyperbolic PDEs or in the form of coupled convection-diffusion equations.
SOLVCON can use any density-based finite-volume method. The default method employed in SOLVCON
is the space-time CESE method. The software structure of SOLVCON is designed based on the space-and-
time, two-loop structure of the modern finite-volume methods in solving the hyperbolic PDEs. As such, the
solver kernel, which is embedded in the spatial loop, is completely segregated from the overarching software
framework, which manages the work flow in the temporal loop. The framework is written by using Python,
while the solver kernels are written by high-performance languages, e.g., C and FORTRAN. As such, we
achieves pluggable multi-physics without sacrificing computing performance. Another goal of SOLVCON
is to improve productivity of the work flow of supercomputing tasks. As a part of SOLVCON, MPI and
domain decomposition are automated, such that a user of SOLVCON can focus his/her effort on developing
numerical algorithms and physical models. All tasks about setting up parallel computing on supercomputers
are taken care of by SOLVCON.

Aided by the organized software structure, hybrid parallelism can be systematically achieved with limited
coding efforts for a wide range of multi-core hardware. In the open-sourced SOLVCON, we simultaneously use
pthread and MPI for hybrid parallel computing. When using SOLVCON to solve the three-dimensional Euler
equations, SOLVCON delivers CESE calculations of flow variables of 11.29 million cells per second by using
512 CPU cores. In SOLVCON, we use an elaborate Python environment to streamline mesh input, domain
decomposition, solution analysis, and data output. The Python framework provides a robust foundation for
in situ visualization in the future works. Developed from ground up, SOLVCON is indeed a futuristic software
structure for advanced accelerator-based supercomputing by using multi-core, heterogeneous platforms.

Acknowledgement

The authors are indebted to the Ohio Supercomputer Center for technical support and supercomputing
resource.

References

1Godlewski, E. and Raviart, P., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, New
York, 1996.

2Kulikovskii, A. G., Pogorelov, N. V., and Semenov, A. Y., Mathematical Aspects of Numerical Solution of Hyperbolic

Systems, No. 118 in Chapman & Hall/CRC monographs and surveys in pure and applied mathematics, Chapman & Hall/CRC,
Boca Raton, 2001.

9 of 10

American Institute of Aeronautics and Astronautics



3LeVeque, R. J., Finite-Volume Methods for Hyperbolic Problems, Cambridge texts in applied mathematics, Cambridge
University Press, Cambridge, 2002.

4FUN3D, “FUN3D Manual,” http://fun3d.larc.nasa.gov/.
5Wind-US, “Wind-US Documentation,” http://www.grc.nasa.gov/WWW/winddocs/index.html.
6NCC, “National Combustion Code Used To Study the Hydrogen Injector Design for Gas Turbines,”

http://www.grc.nasa.gov/WWW/RT/2004/RT/RTB-iannetti.html.
7Mavriplis, D. J., “Unstructured Grid Techniques,” Annual Review of Fluid Mechanics, Vol. 29, Jan. 1997.
8van Rossum, G., “Python Programming Language,” http://python.org/, 1991.
9de la Puente, J., Käser, M., Dumbser, M., and Igel, H., “An arbitrary high-order discontinuous Galerkin method for elastic

waves on unstructured meshes; IV. Anisotropy,” Geophysical Journal International , Vol. 169, No. 3, 2007, pp. 1210–1228.
10Dumbser, M., Käser, M., and de la Puente, J., “Arbitrary high-order finite volume schemes for seismic wave propagation

on unstructured meshes in 2D and 3D,” Geophysical Journal International , Vol. 171, No. 2, 2007, pp. 665–694.
11Yu, S. J., Yang, L., Lowe, R. L., and Bechtel, S. E., “Numerical simulation of linear and nonlinear waves in hypoelastic

solids by the CESE method,” Wave Motion, Vol. 47, No. 3, April 2010, pp. 168–182.
12Yang, L., Chen, Y., and Yu, S. J., “Velocity-Stress Equations for Waves in Solids of Hexagonal Symmetry Solved by the

Space-Time CESE Method,” ASME Journal of Vibration and Acoustics, Vol. in press, 2010.
13Shi, Y. and Liang, C., “The finite-volume time-domain algorithm using least square method in solving Maxwell’s equa-

tions,” Journal of Computational Physics, Vol. 226, No. 2, Oct. 2007, pp. 1444–1457.
14Hermeline, F., Layouni, S., and Omnes, P., “A finite volume method for the approximation of Maxwell’s equations in

two space dimensions on arbitrary meshes,” Journal of Computational Physics, Vol. 227, No. 22, Nov. 2008, pp. 9365–9388.
15Chang, S., “The Method of Space-Time Conservation Element and Solution Element – A New Approach for Solving the

Navier-Stokes and Euler Equations,” Journal of Computational Physics, Vol. 119, No. 2, July 1995, pp. 295–324.
16Wang, X. and Chang, S., “A 2D Non-Splitting Unstructured Triangular Mesh Euler Solver Based on the Space-Time

Conservation Element and Solution Element Method,” Computational Fluid Dynamics Journal , Vol. 8, No. 2, 1999, pp. 309–
325.

17Zhang, Z., Yu, S. T. J., and Chang, S., “A Space-Time Conservation Element and Solution Element Method for Solv-
ing the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes,” Journal of

Computational Physics, Vol. 175, No. 1, Jan. 2002, pp. 168–199.
18Chang, S. and To, W., “A new numerical framework for solving conservation laws: The method of space-time conservation

element and solution element,” Tech. Rep. E-6403; NAS 1.15:104495; NASA-TM-104495, Aug. 1991.
19Chang, S., “On an origin of numerical diffusion: Violation of invariance under space-time inversion,” E-7066; NAS

1.15:105776; NASA-TM-105776, July 1992.
20Chang, S., “On Space-Time Inversion Invariance and its Relation to Non-Dissipatedness of a CESE Core Scheme,”

Sacramento, CA, United States, July 2006, p. 35.
21Sanner, M. F., “Python: A Programming Language for Software Integration and Development,” Journal of Molecular

Graphics and Modelling , Vol. 17, No. 1, Feb. 1999, pp. 57–61.
22Cai, X., Langtangen, H. P., and Moe, H., “On the performance of the Python programming language for serial and

parallel scientific computations,” Sci. Program., Vol. 13, No. 1, 2005, pp. 31–56.
23Langtangen, H., “A Case Study in High-Performance Mixed-Language Programming,” Applied Parallel Computing. State

of the Art in Scientific Computing , 2008, pp. 36–49.
24Langtangen, H. P. and Cai, X., “On the Efficiency of Python for High-Performance Computing: A Case Study Involving

Stencil Updates for Partial Differential Equations,” Modeling, Simulation and Optimization of Complex Processes, 2008, pp.
337–357.

25van Rossum, G. and Drake, F. L. J., “The Python Standard Library,” http://docs.python.org/library/index.html, 2010.
26van Rossum, G. and Drake, F. L. J., “Extending and Embedding the Python Interpreter,”

http://docs.python.org/extending/index.html, 2010.
27Karypis, G. and Kumar, V., “A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,” SIAM

Journal on Scientific Computing , Vol. 20, No. 1, Jan. 1998, pp. 359–392.
28Chen, Y., Yang, L., and Yu, S. J., “Simulations of Waves in Elastic Solids of Cubic Symmetry by the Conservation

Element and Solution Element Method,” Wave Motion, Vol. 48, No. 1, Jan. 2011, pp. 39–61.

10 of 10

American Institute of Aeronautics and Astronautics


	Introduction
	Model Equations and Numerical Methods
	Hyperbolic PDEs
	The CESE Method
	Mixed-Language Approach

	Software Model
	Domain Decomposition and Message-Passing
	Performance Results
	Conclusions

