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Abstract 
In this paper, we report an extension of the Space-
Time CE/SE Method for the three dimensional 
Navier-Stokes equations. In the setting of space-time 
flux calculation by the CE/SE method, various 
methods for calculating the viscous flux terms were 
tried.  One of the most robust methods is based on the 
midpoint rule, which is used in the numerical 
examples shown here. The newly developed three-
dimensional Navier Stokes solver retains all 
favorable features of the original CE/SE method, i.e., 
high fidelity resolution of unsteady flows, easy 
implementation of non-reflective boundary 
conditions, simple computational logic, and efficient 
numerical operation count.  Numerical results of a 
three-dimensional driven cavity flow and a swirling 
jet are reported. For such low-speed flows, no 
preconditioning is applied to the flow equations, and 
the new solver is robust for flows at all speeds.  
 
1. Introduction 
The Space-Time Conservation Element and Solution 
Element Method, or the CE/SE Method for short, 
originally developed by Chang and co-workers [1-
10], is a novel numerical framework for conservation 
laws.  The CE/SE method has many non-traditional 
features, including a unified treatment of space and 
time, separated definitions of conservation element 
(CE) and solution element (SE), the easiness of 
implementing the non-reflective boundary condition, 
and a shock capturing strategy without using a 

Riemann solver.  In addition, the CE/SE method is a 
genuine multidimensional scheme because no 
dimensional splitting is applied to calculate fluxes, 
and thus the method is suitable for treating 
conservation laws with source terms. Moreover, the 
CE/SE method is based on triangles and tetrahedrons 
for solving flows in two and three dimensions, 
respectively, and it is suitable for unstructured 
meshes. To date, numerous solutions have been 
obtained, including traveling and interacting shocks, 
acoustic waves, shedding vortices, detonation waves, 
shock/acoustic waves interaction, shock/vortex 
interaction, shock/boundary layer interaction, and 
cavitating flows.  

 The objective of the present paper is to 
extend the CE/SE method for viscous flows in three 
spatial dimensions. In the CE/SE method, linear 
elements were used to discretize the flow equations 
in Solution Elements (SEs). Viscous terms, however, 
are second-order and special treatments were 
developed to calculate the viscous effects as an 
integral part of the space-time flux balance. In 
numerical calculations, we adopt a newly solid wall 
boundary treatment[9], in which the slip wall 
condition for the Euler equations is an asymptotic 
limit of the no-slip condition for viscous flows with 
viscosity approaching null.   

To demonstrate the capabilities of the newly 
developed two- and three-dimensional Navier Stokes 
code, we have successfully calculated low-Mach-
number compressible flows and incompressible 
flows, including the buoyancy-driven gas flows, 
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driven cavity flows, and flows over a circular 
cylinder[10]. Without applying preconditioning to the 
flow equations, the CE/SE method can be 
straightforwardly used for flows at all speeds[8]. 

The rest of this paper is organized as follows. 
In Section 2, the CE/SE method for three-
dimensional Navier-Stokes equations will be 
presented. The midpoint rule is used to integrate the 
viscous fluxes as part of the space-time flux 
conservation. In Section 3, two viscous flows are 
calculated using the new CE/SE NS code: a three-
dimensional driven cavity flow in a square box, and a 
swirling jet in a square cylinder. We then offer the 
concluding remarks and give cited references 
 
2.  The CE/SE Scheme for the 3D Navier-
Stokes Equations 
 

Consider the following three-dimensional Navier-
Stokes Equations,  
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where m =1, 2, 3, 4, 5 indicating the continuity, 
three momentum, and the energy equations. Um=(ρ, 
ρu, ρv, ρw, Et ). Ei, Fi and Gi are the inviscid fluxes, 
and Ev, Fv and Gv are viscous fluxes. Let x1 = x, x2 = 
y, x3 =z and x4 = t be the coordinates of a four-
dimensional Euclidean space E4. The integral 
counterpart of Eq. (2.1) is 

0
)(

=⋅∫ VS m dsH  ,     m = 1, 2, 3, 4, 5           (2.2) 

where Hm=(Eim-Evm, Fim-Fvm, Gim-Gvm, Um) are the 
space-time current density vectors of mass, x, y, and 
z momentum, and energy, respectively. S(V) is the 
boundary of a space-time region V in E4. The flux 
vector Hm can be decomposed into the inviscid and 
viscous parts: 

vmimm HHH −=                                      (2.3) 
with  

Him = (Eim, Fim, Gim, Um),                 (2.4a) 
Hvm = (Evm, Fvm, Gvm, 0),               (2.4b) 

In the CE/SE method, the flow variables Um and its 
spatial derivatives Umx, Umy and Umz are unknowns 
to be solved simultaneously. Thus four sets of 
conservation conditions are required at each mesh 
point for each conservation law. The four flux 
conservation conditions are enforced over four CEs 
associated with each mesh point. In the present 

method, tetrahedrons are used as the basic building 
blocks of the 3-D spatial mesh. 
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Fig. 2.1 (a) The definitions of the CEs and SE; (b) 

The calculation of the viscous flux 
 

Consider the tetrahedron ABCD in 
Fig.2.1(a), in which one of its four neighboring 
tetrahedrons ABCP is also plotted. Points G and H 
are the centroids of ABCD and ABCP, respectively 
(let Ω denote the set of centroid G of each 
tetrahedron). The two tetrahedrons share the face 
ABC.  Suppose that the points G, H, A, B, C and D  
are at time level t=tn, points G′, H′, A′, B′, C′ and D′ 
are the corresponding points at t=tn-∆t/2, and points 
G′′ , H′′ , A′′ , B′′ , C′′  and D′′  are those at t=tn+∆t/2. 
Then the cylinder GABCHG′A′B′C′H′ is defined as 
one CE associated with the space-time mesh point 
G(j, n), with GABCH as its spatial base. In a similar 
fashion, three additional CEs associated with the 
mesh point G(j, n) can be constructed by 
considering in turn the three tetrahedrons that share 
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with ABCD one of its other three surfaces. Assume 
points E, F and I are the centroids of the other three 
neighboring tetrahedrons sharing BCD, ABD and 
CDA, respectively. The points E′, F′ and I′ are the 
corresponding points at time level t=tn-∆t/2, while 
points E′′ , F′′  and I′′  are those at t=tn+∆t/2. Then the 
other three CEs are defined as the cylinder 
GBCDEG′B′C′D′E′, GABDFG′A′B′D′F′ and 
GCDAIG′C′D′A′I′, respectively, i.e., the 
polyhedrons GBCDE, GABDF and GCDAI are the 
spatial projections of the other three CEs associated 
with grid point G(j, n). The geometrical center of 
the summation of the four CEs is denoted by G* 
corresponding to point G. Numerical values of flow 
variables are stored at such point. 

Similar to that in one and two spatial 
dimensions, there is only one solution element (SE) 
associated with each mesh point.  Here the SE 
associated with point G is defined as the union of 
G′A′B′G′′A′′B′′ , G′B′C′G′′B′′C′′ , G′A′C′G′′A′′C′′ , 
G′D′C′G′′D′′C′′ , G′D′B′G′′D′′B′′ , G′A′D′G′′A′′D′′ , 
AHBECFDI and their immediate neighborhoods, 
Refer to Fig. 2.1(a).  

In calculating the space-time flux 
conservation over the four CE′s, we use different 
treatments for inviscid and viscous terms. For the 
inviscid part, we use the same treatment as that for 
the Euler equations, i.e., inside each SE(j, n), the 
flow variables are assumed continuous and can be 
described by using the first-order Taylor series 
expansions. Thus Um(x, y, z, t) , Eim(x, y, z, t) , 
Fim(x, y, z, t) and Gim(x, y, z, t) can be approximated 
by 
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Accordingly, 
),,;,,,(),,;,,,((),;,,,( *** njtzyxFnjtzyxEnjtzyxH imimim =

)),;,,(),,;,,( ** njtyxUnjtyxG mim   (2.6) 
As a result, Eq. (2.2) can be approximated by 
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=⋅−∫ njCES vmiml
dsHH  ,  l=1,2,3,4         (2.7) 

where S(CE(l)(j, n)) is the boundary of CE(l) with l 
=1, 2, 3, and 4. 

To calculate the viscose terms, the midpoint 
rule is used. Note that the forth component of Hvm is 
a null. Refer to Eq. (2.4b). Thus, in calculating the 
viscous fluxes over a CE, we only need to calculate 
integrals over lateral volumes expanding in time in 
the space-time domain. For example, in calculating 
viscous flux over CE of the cylinder 
GABCHG′A′B′C′H′, we only need to calculate the 
integrals of viscous terms over six lateral volumes 
GABG′A′B′, GBCG′B′C′, GACG′A′C′ and 
HABH′A′B′, HBCH′B′C′ and HACH′A′C′. For 
example, the integral of Hvm on the volume 
HABH′A′B′ is calculated by 
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where ),,,( tzyx VVVVV =∆
�

 is the volume vector, 
defined as the unit outward normal vector multiplied 
by its volume. And Q is the centroid of the volume 
HABH′A′B′. Because the volume HABH′A′B′ is  a 
part of the SE of point H′, we can use the parameters 
at point H′ at t = tn - ∆t/2 to approximate Um at point 
Q, i.e.,  

+−+≈ )()()()( ''' HQHmxHmQm xxUUU  
  

''''' )(4/)()()()( HmtHQHmzHQHmy UtzzUyyU ⋅∆+−+−+              
(2.9) 

To calculate Umx, Umy and Umz at point Q, we 
assumed a linear distribution of U in each SE, and 
then the following approximations can be employed:  

')()( HmxQmx UU ≈ ;   

')()( HmyQmy UU ≈            (2.10) 

')()( HmzQmz UU ≈ ;   
Similar treatment is applied to other conservation 
elements. 

To proceed, substitute Eqs. (2.5) and (2.6) 
into Eq. (2.7), and use the above treatment for 
viscous terms. We then get the following four 
discrete equations: 
[ ]n
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where l =1,2,3,4  for flux conservation over the four 
CEs. ±Σlk (l, k = 1, 2, 3, and 4) are the coefficient 
matrices, which is similar as that tabulated in 
reference [4], but here they include the viscous terms. 

By adding the four equations together, we 
obtain the following numerical solution for Um. 
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where Vh is the volume of the polyhedron 
BHCEDFAI. By solving any three of Eqs. (2.11), we 
can obtain the numerical solutions for n

jmxU )( , n
jmyU )(  

and n
jmzU )( , which we denote as n

j
a
mxU )( , n

j
a
myU )(  and 

n
j

a
mzU )( . 

Equation (2.12) for Um, in conjunction with three 
of the four equations in Eqs. (2.11) for Umx, Umy and 
Umz, are the space-time CE/SE scheme for the three-
dimensional Navier-Stokes equations. This is similar 
to the a-scheme for Euler equations [1-4]. Using the 
same method as that in [1-4], we can get the a-ε and 
the a-ε-α-β schemes for the Navier Stokes solver.  
Since the above scheme is based on tetrahedrons, it 
can be directly used in unstructured mesh. 

  

3. Numerical Results 

To demonstrate the capabilities of the present 
scheme, two three-dimensional flow problems are 
calculated. The first problem is the three-
dimensional driven cavity flow, and the second one 
is the swirling jet in a square box.  
 

3.1 Driven Cavity Flows 

The first problem is a three-dimensional driven 
cavity flow. The top lid is moving in the x direction 
with a constant speed. Refer to Fig. 3.1(a). The 
Reynolds number of the flow is Re = 400. 72,000 
tetrahedrons are used here. In Figure 3.1(b)-(f), we 
show the velocity vectors and pressure contours on 
some planes. A steady state solution is obtained after 
about 10,000 iterations. The CPU time is about 5 
hours on a PC Pentium II 450. It can be seen that the 
velocity vector and pressure distributions on the mid 
x-z plane are similar to its two-dimensional 
counterpart. On the central line of the box with x = 
0.5 and y = 0.5, the distribution of velocity 
component u agrees well with Ghia’s data [11].  
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Fig. 3.1, (a) The schematic of the 3-D driven cavity 
flow;  (b) Velocity vectors on two different x-z 
planes; (c) Velocity vectors on the mid x-y and y-z 
planes; (d) and (e) Velocity vectors and pressure 
contours on the mid x-z plane, respectively; (f) 
Velocity u distribution on the x=0.5 and y=0.5 
central line. 

 
3.1 Swirling Jet in a Square Box 
 
The Second problem is a three-dimensional swirling 
jet in a square box [12]. This is the first step for the 
simulation of the real chemical flow in a 
combustion chamber. Figure 3.2(a) is the schematic 
of this problem, and the flow is from left to right 
injected through a circular hole and a circular 
annulus around the hole. The airflow coming out 
from the inner circular hole is a straight jet. The 
flow from the annulus is swirling. The 
computational domain is 10.0×6.0×6.0 discretized 
by 160,000 tetrahedrons. The swirling number 
S=0.8, and the annulus ratio is R/r=2.0.  Figure 3.1 
(b), (c) and (d) show the velocity vectors, the 
pressure contours and the vorticity contours at two 
different y-z planes after 25,000 iterations. We can 
discern several vortices in addition to the main 
swirling jet. In future, solutions with fine mesh to 
resolve the complex flow physics will be presented.  
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Fig. 3.2, (a) The schematic of the 3-D Swirling jet in 
a square cylinder; (b), (c) and (d) Velocity vectors, 
pressure contours and vorticity contours on two 
different y-z planes, respectively. 
 
4. Concluding Remarks 
 
In this paper, we report an extension of the space-
time CE/SE method for solving three-dimensional 
Navier Stokes equations. This new Navier Stokes 
solver retains all favorable features of the original 
CE/SE method, including the unified treatment of 
space and time, accurate computation of space-time 
flux conservation, and high-fidelity resolution of 
unsteady flow field. Tetrahedrons are used as the 
fundamental spatial mesh element, and thus the 
present scheme is compatible with both structured 
and unstructured meshes. In calculating the flux 
balance, the integral of the viscous flux terms is 

based on the mid-point rule. Numerical results show 
that the present scheme is effective, robust and 
accurate. Moreover, the new code can be used for 
low-Mach number compressible flows as well as 
high-speed flows. 
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