
Simulation of Cavitating Flows by the Space-Time CE/SE Method

Jian-Rong Qin, S.T. John Yu, Zeng-Chan Zhang, Ming-Chia Lai
Mechanical Engeering Department

Wayne State University

ABSTRACT

The newly developed method of Space-Time
Conservation Element and Solution Element, or the
CE/SE method for short, is employed to study the
complex cavitation phenomenon in this paper. The tenet
of the CE/SE method is treating space and time as one
entity, and the calculation of flow properties is based on
the local and global space-time flux conservation. As a
contrast to the modern upwind schemes, no Riemann
solver is used, thus the logic of the present scheme for
cavitating flows is much simpler. The numerical
examples reported in this paper include (1) one-
dimensional internal cavitating pipe flows; and (2) two-
dimensional exteranl cavitating flows around a
NACA0015 airfoil. While we focused on the numerical
method in this paper, a simple two-phase homogeneous
equilibrium cavitation model was employed in the
simulation. We first demonstrated the capability of the
CE/SE method to capture contact discontinuities in
cavitating fluids, using a hydraulic shock problem. Then
we presented the simulation results for cavitating internal
pipe flows and external airfoil flows. The numerical
results compared favorably with the experimental data
and analytical solution.

INTRODUCTION

Cavitation is a very complex trwo-phase phenomemon.
When local flow pressure drops under the vapor
pressure of the fluid, bubbles may be formed. The
collapse of these bubbles will generate high pressure
waves propagating through the pipe, which will lower the
performance of the system, produce vibration and noise,
and even cause damage to the device surfaces [6].
Numerical simulation of cavitating flows poses unique
challenges both in modeling the physics and in
developing a robust numerical methodology.

The numerical difficulty of simulating cavitation comes
from the fundmental features of the tow-phase flow. One
of the typical features is the rapid change in the acoustic
velocity of the flow. When the void fraction is zero, the
fluid is liquid and almost imcompressible. Therefore the
acoustic velocity is very high. On the other hand, when
the void fraction is 1.0, the fluid is vapor and
compressible. In between, the acoustic velocity changes
remarkbly and can be as low as 20m/s [12]. Hence the
desired solver must be able to handle compressible and
imcompressilble flows simutaniously. Another feature

that cause numerical instability is the tremendous
density difference between gas the liquid. The numerical
scheme should be robust enough to deal with these
enormous instability problems. Various numerical
methods, such as the method of characteristics [8] and
high resolution upwind schemes for capturing the
interface of two phase flows [11], have been developed
to study cavitating flows.

In this paper, we employ a simple homogenious
cavitation model and concentrate on the numerical
scheme. We employed the CE/SE method originally
developed by Chang [1]. The method is substantially
different in both concept and methodology from the
traditional methods. It enforces both local and global flux
conservation in space-time domain and has remarkable
ability to resolve discontinuity interfaces.

The rest of this paper is organized as follows. In Section
2, the essence of the CE/SE method will be illustrated. In
Section 3, we discuss the theoretical model of the one-
dimensional pipe flows and the simulation results. In
Section 4, we present numerical results of two-
dimensinal cavitating flows around NACA0015 airfoil,
using ustructured triangular mesh. We then give the
concluding remarks.

3. THE CE/SE METHOD

In this section, we give a brief description of the CE/SE
method. For one-dimensional case, the governing
equations can be written in the form of
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where m equals 1 and 2, representing the continuity
equation and momentum equation, respectively. The
source term ),( 21 qqsm is a function of q1 and q2. Let x1 (=
x) and x2 (= t) be the coordinates of a two-dimensional
Euclidean space E2. Thus Eq. (2.1) becomes
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in which the current density vector is ( )mmm qf ,=h .  By
using Gauss’ divergence theorem in the space-time
domain E2, it can be shown that Eq. (2.1) is the
differential form of the integral conservation law:
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Figure 1 shows a schematic of Eq. (2.3).
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Fig. 1 A schematic of the space-time integral

Here S(R) is the boundary of an arbitrary space-time
region R in E2, ndsd

rr
σ= with σd  and n

r
, respectively,

being the area and the outward unit normal of a surface
element on S(R), and dR is the volume of a space-time
region inside S(R). Note that sdm

r
•h is the space-time

flux of hm leaving the region R through the surface
element sd

r
, and all mathematical operations can be

carried out since E2 is an ordinary two-dimensional
Euclidean space. We remark that space and time are
treated on an equal footing manner. Therefore, there is
no restriction on the space-time geometry of the
conservation elements over which the space-time flux is
imposed.

In the light of the method of treating stiff source terms
proposed by Yu and Chang [13], we discretized the
space-time domain into rectangular elements in stead of
rhombic ones, and associated the source term with the
old time step variables. These treatments enable explicit
time marching of this scheme. This is a good
approximation since the source term of friction force in
the one-dimensional governing equations is not stiff.

3. ONE-DIMENSINAL SIMULATION

3.1 FLOW EQUATIONS

For the compressible liquid flow in a pipe, the governing
equations are
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The flow variable vector, flux vector, and the source
vector are

      







=

uρ
ρ

Q , 







+

=
pu

u
2ρ
ρ

E , 














−
=

D

ufu

2

0
ρS , (3.2)

in which ρ is density, u is velocity,  p is pressure, D is the
diameter of the pipe, and f is the Darcy friction factor. In

Eq. (3.1), the first equation is the continuity equation and
the second one is the mementum equation. The density
and pressure are related by the acoustic velocity a of the
liquid, such as
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d
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ρ
. (2.3)

The source term in the momentum equation models the
viscous friction of fluid flow.

3.3 CAVITATION MODEL

When cavitation occurs, the density in the flow equations
is treated as  a “psuedo density”, which is related to the
gas and liquid density by

lg ρααρρ )1( −+= , (3.4)

where α is the void fraction. The relation between
density, pressure and the speed of sound, Eq. (3.3),
needs to be modeled. In this paper a two-phase
homogenous equilibrium cavitation model [7] was
adopted. The acoustic velocity of the two-phase
homogeneous fluid is given by Wallis [12] as
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Substituding Eq. (3.5) into Eq. (3.3) and integrating
pressure as a function of void fraction from the saturated
liquid state, we have
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where 
glp is a constant given by
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3.3 SIMULATION RESULTS

Transient hydraulic pressure wave propagation in a pipe
is of practical importance in automotive systems,
including fuel delivery, power steering, anti-lock brake,
engine cooling, and automatic transmission. Many
researchers [4, 9, 10] have attempted to simulate the
transient wave propagation in the pump-line-nozzle
system, which is widely used in diesel engine. But they
didn’t consider the possible formation of cavitation and
its effect on the transient flows. While the maximum
pressure generated at the valve can be analytically
predicted by neglecting the fluid resistance [3], detailed
hydrodynamic simulation can only be achieved by
numerical methods.



In this section, two numerical examples are reported.
The first problem is a hydraulic shock problem, which
demontrates the capability of the CE/SE method for
capturing contact discontinuities. The second problem is
the transient waves in a cavitating pipe flow.

3.3.1 Hydraulic Shock Problem
Analytical Solution - Consider an infinitely long tube with
a diaphragm located at a certain place. The diaphragm
separates two initially quiescent liquid states at different
pressures and densities. When the diaphragm is
suddenly broken at time t = 0, an expansion fan will be
formed and propagate to the high-pressure liquid,
simultaneously a shock will be formed and propagate to
the low-pressure region, as shown in Fig. 2. In this
figure, the diaphragm is placed at the lower center and
the pressure of the liquid to the left of this diaphragm is
higher than that to the right.
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Fig. 2 A description of hydraulic shock problem

In our analysis, we didn’t take the source term in Eq.
(3.1) into consideration. The initial conditions were set
such that no bubble will form during the transient
process. With this simplification, Eq. (3.1) can be written
as
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where A is the jacobin matrix given by









−

=
uua 2

10
22

A . (3.9)

This jacobin matrix A can be diagonized by a matrix,
say, M. Multiplying the inverse M-1 to both sides of
equation (3.8), we can get the characteristic form
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Where Λ  is a diagonal matrix given in Eq. (3.11), and

Q̂  is related to Q by Eq. (3.12).
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By selecting appropriate matrix M and integrating Eq.
(3.12), we have
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where C1 and C2 are two integration constants. Eqs.
(3.10) and (3.13) indicate that ρlnau ± are two

constants along the two characteristics au
dt

dx
±= ,

respectively. In the expansion fan area, area 1 in Fig. 2,
we have
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From equation (3.14), we know u1 is a constant along
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area 1, where x0 is the initial position of the diaphragm.
Density 1ρ and other properties can then be obtained
using Eq. (3.14). In the area 2 in Fig. 2, we have
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where C is the speed of the shock. By assuming
constant acoustic velocity a, intergration of Eq. (3.3)
gives

.2 constap += ρ . (3.16)

Combining Eqs. (3.15) and (3.16) leads to
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This is the exact solution in area 2. The flow properties
in area L and R are not changed from their initial value.

Numerical Results - To demonstrate the ability of the
CE/SE to capture discontinuity interfaces, we first
compute the hydraulic shock problem described above.
In this case, our computation domain is from x = 0m to x
= 1.0m. The diaphragm is initially located at x = 0.5m.
The initial velocity is 0 everywhere in the tube. The left
and right boundaries are set as non-reflect boundaries.



At the bursting of the diaphragm, at time t = 0, a
rarefaction wave moves to the left and a shock moves to
the right.

Figure 3 shows the numerical results plotted against the
analytical solutions. In this case, the initial pressure of
the liquid (water) to the left of the diaphragm is 2.0MPa
and the pressure to the right of the diaphragm 0.1Mpa.
As shown in Fig. 3, the numerical results agree with the
analytical results very well. Two discontinuity steps were
successfully captured by the space-time CE/SE scheme.
The left step is an expansion fan and the right step is a
shock. Since the compressibility of water is very small,
the expansion fan looks like a shock.
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Fig. 3 The CE/SE solution of hydraulic shock problem (t=
0.15x10-3 sec.)

As the initial pressure difference between the two sides
of the diaphragm becomes larger, the expansion fan can
be seen more clearly. Shown in Fig. 4 are the numerical
and analytical results under the condition of large
pressure difference. In this case, the left side pressure is
500MPa, and right side pressure is 1.0MPa. The left side
expansion was captured by three points, and the right
side shock was captured by one point. The numerical
results also agree with analytical results very well.
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Fig. 3 The CE/SE solution of hydraulic shock problem (t=
0.15x10-3 sec.)

3.3.2  Cavitating Pipe Flows
In this case, the calculation is initiailized by a pipe flow at
a steady state.  When t=0, an upstream valve is
suddenly closed . Due to the inertia of the liquid flow,
however, the liquid continues to flow in the pipe. Thus, a
vacuum region (cavitation) occurs in the neighborhood of
the valve. The low pressure of the vacuum region
imposes an adverse pressure gradient to the pipe flow,
and eventually causes the liquid to flow in a reverse
direction back to the valve.  The collapse of the
cavitation region creates a pressure surge. As a result,
fluid flow changes the direction again and flows away
from the valve. The back and forth oscillations of the
pipe flows is the phnomenon that we want to simulate by
using the CE/SE method.

Figure 5 shows the series of the pressure distribution
along the pipe with an interval of 0.185 seconds. The
horizontal axis represents the pipe and vertical axis
represents the pressure head. A logarithmic (base 10)
scale is used for the vertical axis from 0.1m to 100m.
The arrows in this figure indicate the wave propagation
directions. It’s interesting to see that wave propagation
speed varies considerably during the first 4.5 seconds
after the valve closure. This is because the sonic speed
of two phase flow is very sensitive to the void fraction of



Fig. 5 Series of the pressure distrbution along the pipe (interval time = 0.185sec.)



the flow. The sound speed of mixture of water and its
vapor can be as low as 20m/s.
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Fig. 6 Cavitation caused by an upstream closing valve:
(a) Experimental result, (b) Numerical simulation
results.

Figure 6 shows the pressre history on the valve surface
with (a) as the experimental data and (b)  the numerical
results by the CE/SE method.  The numerical results
compared favorably with the experimental data in terms
of the pressure pick and the oscillation period. We
remark that in the later stage of the flow development,
experimental data showed more damped condition. This
is due to fact that the use of a simple one-dimensional
viscous model in  our model, Eq.(2.2), is inadequate to
represent the real mechanism of flow friction, which is by
and large caused by the boundary layer effect.

Figure 7 shows the pressure history of a cavitating flow,
where the valve is located at the downstream of the
pipe. Again, the comparison is very favorable.
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Fig. 7 Cavitation caused by a downstream closing valve:
(a) Experimental result, (b) Numerical simulation
result.

4. TWO-DIMENSIONAL SIMULATION

4.1 GOVERNING EQUATIONS

The 2D non-dimensionalized governing equation of the
two-phase flow is:
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The non-dimensionalizing procedure is based on L, V∞,
ρ∞ and µ∞, where L is the chord length. Here ρ* is the
density of the two-phase flow, which varies between the
vapor density and the liquid density. We also employed
the homogenious cavitation model stated in section 3 to
relate the density to the pressure of the cavitating flows.
The Reynolds number Re, pressure coefficient Cp and
cavitation number σ are defined as follows:
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4.2  SIMULATION RESULTS

The Navier-Stokes solver employed in this paper uses
unstructured triangular mesh. Figure 8 shows the
calculation mesh around NACA0015 airfoil at zero attach
angle.

Fig. 8 Unstructured triangular mesh around NACA0015.



Figure 9 shows the void fraction contours under the
condition of 20° attach angle and σ = 1.2. The outside
most contour represents void fraction 0.01, where the
fluid is almost liquid. The resest contours are from 0.1 to
1 with an increasement of 0.1. We assume the cavity
shape is represented by the contour 0.1, as used by
Kubota etc.[14]. This results agree  with the
experimental results of Kubota etc.[14]. The disgreement
at the tail of the cavity is due to the simplicity of the
current cavitation model. The homogenious model
cannot resolve the shedding bubbles in the down stream
of the attached cavity, where the pressure of the flow is
higher than the vapor pressure of fluid.

0.01

0.1

Fig. 9 Void fraction contours around NACA0015. attack
angle = 20°, Re=3X105, σ = 1.2.

Figure 10 shows the velodity distribution under the
condition of 20° attach angle and σ = 1.2. A strong
vortex is formed at the tail of the cavity. The interaction
between the vortix and the cavity lead to the re-entrant
flow at the tail of the cavity, as shown in Fig. 9. The
importance of re-entrant flows was emphasized by
Knapp [15], and experimentally and theoretically studied
by Furness ad Hutton[16].

Fig. 10 Velocity distribution around NACA0015. attack
angle = 20°, Re=3X105, σ = 1.2.

0.01
0.1

Fig. 11 Void fraction contours around NACA0015. attack
angle = 8°, Re=3X105, σ = 1.2.

Fig. 12 Velocity distribution around NACA0015. attack
angle = 8°, Re=3X105, σ = 1.2.

Figure 11 and 12 show the void fraction contours and
velocity distribution around NACA0015 under the same
conditions except the attack angle is 8 degrees. The
cavity shape is much smaller in this case, as shown in
Fig. 11. This agrees with Kubota’s experimental results.
There is also a vortex formed near the upper side of the
airfoil, which is much more near the airfoil surface and
moved to the head position. But the vortex is stilll at the
tail of the cavity. This indicates the strong interaction
between the vortex and cavity.

5. CONCLUDING REMARKS

In this paper, we reported the extension of the CE/SE
method to calculate cavitating flows. The CE/SE method
is simple, accurate, and very efficient in calculating the
complicated flow phenomenon of cavitation. Two
examples are reported: (1) one-dimensional internal pipe
flows and (2) two-dimensional external flows around
NACA0015 airfoil, the CE/SE was capable to capture all
salient features of the flow field, and the numerical
results compared favorably with the experimental data
and analytical solution.
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