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Abstract 
In the present paper, we report high fidelity 
simulation of detonation initiated by reflected shock 
waves, propagating in premixed hydrogen/oxygen 
gas mixtures.  Comprehensive model equations are 
solved by the Space-Time Conservation Element and 
Solution Element (CESE) method, including 
correctly derived Jacobian matrix and source term 
matrix, and comprehensive thermodynamics 
relations. Chemical reactions are modeled by two sets 
of reduced kinetics proposed by Oran et al. [14] and 
Youngster and Radhakrishnan [12] with nine 
specie/twenty-four reaction steps, and nine 
species/nineteen reaction steps, respectively.  In the 
setting of the CESE method, stiff source terms in 
species equations due to chemical reactions are 
treated based on a unique space-time volumetric 
integration. Sub-time-step integrations are applied to 
resolve the chemical reaction time scales. The present 
approach is validated by favorable comparison 
between the present results and the equilibrium 
calculations by using the CEA program [10], and 
comparisons between the present approach and 
previous results by Oran et al. and Youngster and 
Radhakrishnan.  
 
1. Introduction 

In a series of papers [2,3,4,5,7,9], we showed that the 
CESE method is highly accurate and very efficient 
for calculating traveling detonations with a one-step 

irreversible chemistry model. Progresses in extension 
to realistic finite-rate models by using the CESE 
method has been reported in [7,8,15].  Previously, 
other CFD methods have been applied to detonations 
with realistic finite rate chemistry models, e.g.,  
[12,13,14]. 

In the present paper, we revisit the application of 
the CESE method to detonation with realistic finite 
rate chemistry. The specific goal of the present paper 
is twofold: (1) numerical approach here is validated 
through comparisons with the previously published 
results and the thermodynamic equilibrium results, 
and (2) the thermodynamics model has been extended 
to include the calculations of equilibrium constants 
for deducing the reverse reaction rates. For 
completeness, all theoretical model equations and 
their numerical treatment are briefly reviewed in the 
present paper. 

The CESE method [1-4] is distinguished by the 
simplicity of its conceptual basis  flux conservation 
in space and time. This method has been extensively 
illustrated in the context of conservation laws in fluid 
dynamics. The CESE method emphasizes space-time 
flux conservation based on a novel space-time 
integral equation, which treats space and time as one 
entity. The present integral equation is different from 
the transport theory used in traditional finite volume 
methods. The unified treatment of space and time in 
the present method cannot be overemphasized. To 
integrate the space-time equation, the concept of the 
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Solution Element (SE) and the Conservation Element 
(CE) are introduced. In an SE, flow variables are 
continuous and are discretized by a predetermined 
function. Over a CE, space-time flux conservations is 
imposed and contact discontinuities of flow variables 
are allowed. 

The flow variable distribution inside an SE is not 
calculated by interpolation or extrapolation, i.e., no 
reconstruction procedure is used. Instead, spatial 
gradients of flow variables are treated as independent 
unknowns. Thus their values are not influenced by 
the neighboring flow variables at the same time level. 
This is in full compliance with the nature of initial-
value problems.  A leapfrog marching strategy in the 
space-time domain is employed, such that flow 
information across interfaces of neighboring SEs 
propagates only in one direction, i.e., toward at the 
future. Thus the calculation of the space-time flux is 
straightforward, and no Riemann solver is needed. 
Previously, we have reported numerous numerical 
results obtained by using the one-, two-, and three-
dimensional CESE computer programs, including 
various traveling shock waves, shock/acoustics 
interactions, cavitations, and particle embedded 
turbulent flows.  

In the present paper, the CESE method is further 
extended for chemically reacting flows with 
comprehensive physical modeling, including the 
multi-step finite-rate kinetics and thermodynamics 
models. Moreover, previous treatments for stiff 
source terms are modified to accommodate vast 
discrepancies of time scales between various reaction 
steps.  

The rest of the paper is organized in the 
following sections. In Section 2, we present the 
model equations and the associated numerical 
treatments. The emphasis is placed on special 
features relevant to chemical reactions only.  In 
section 3, we present our numerical results and the 
comparison with previously reported results.  We 
then offer concluding remarks and provide cited 
references. 

2. Theoretical Model 

2.1 Governing Equations 

We consider the unsteady, inviscid, and chemically 
reacting flow equations in one spatial dimension:  
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The first two equations are the momentum and 
energy equations, and the rest of the equation set are 
Ns species equations, describing the mass 
conservation of each gas species. In Eq. (2.2), ρ is the 
density of the gas mixture and 

∑
=

=
Ns

i
i

1
ρρ      (2.3) 

with ρi  as the density of species i.  u is the velocity of 
the gas mixture, and E is the total energy of the gas 
mixture per unit mass, which is defined as 

2
ueE

2

+=      (2.4) 

where e  is the internal energy of the gas mixture per 
unit mass, and it is calculated based on a mass-
weighted average of the internal energy per unit mass 
of each species ei, i.e.,   

i
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Note that ρρ /iiY = is the mass fraction of species i in 
the gas mixture. The definitions of internal energy e 
and total energy E include the heat of formation of 
chemical species. Thus no source term exists in the 
energy equation. 

The source terms in the species equations are due 
to chemical reactions. Because total mass is 
conserved, the summation of all source terms is null:    

0
Ns

1i
i =∑

=

ω&      (2.6) 

Thus, summation of all species equations recovers the 
original continuity equation: 

0
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Equation (2.1) is Ns+2 equations for Ns+2 unknowns. 
With proper initial and boundary conditions, the 
equation set is well posed.  However, pressure 
appears in the spatial flux E in both momentum and 
energy equations, and is not one of the unknowns.  
Thus an additional equation of state, e.g.,  

),,,,,( Ns21Eupp ρρρρρ L=   (2.8) 
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must be supplemented to close the equation set. For 
non-reacting flows, the calorically perfect gas 
equation e1p ργ )( −= is usually used, where γ = 
Cp/Cv is the specific hear ratio.   For reacting flows, 
due to the changing chemical compositions, the 
above desired relationship is very complex and will 
be illustrated in the following subsections.   

2.2 Thermodynamic Model 

In general, Ns+1 variables are needed to determine an 
equilibrium thermodynamic state of a gas mixture. If 
we always choose ρ1,ρ2,...,ρNs

 as variables, we could 
have the following equations of state, 
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Note that the first equation in (2.9) is the desired 
relation for the well-posedness of the governing 
equations. Unfortunately, we cannot find an explicit 
form for it. The explicit form of the second equation 
in (2.9) is the ideal gas equation for the gas mixture, 
which is given by 
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The explicit form of the third equation in (2.9) can be 
obtained by substituting the definition of e, and the 
ideal gas equation for each species into the definition 
of h , and we obtain  

,
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The integration constant hfi is the heat of formation. 
Note that the ideal gas equation  

   p = ρ RT     (2.11c)  

is assumed valid for the reacting gas mixture. As a 
result, Cpi in (2.11b) for i = 1,…, Ns are functions of 
T only. A database for Cpi is available in [13]. 
Therefore, if the unknown variables (Q  in Eq.(2.2)) 
at a certain space-time location are known, Eq. (2.11) 
can be used to calculate T by using an iterative 
procedure.   

With the known T, p is readily obtained by the 
ideal gas equation, (2.11c). The specific heat of 
individual species Cpi appearing in Eq. (2.11) is 

determined by fourth order polynomials of 
temperature such as 
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The coefficients of these polynomials are supplied by 
Gordon and McBride and are valid up to a 
temperature range 200K to 6000K [13].  

In the literatures, many researchers do not 
provide the kinetic data for the reverse reactions, 
which are needed in a comprehensive finite rate 
chemistry model. In this case, the equilibrium 
constant is used to calculate the reverse reaction rate. 
Thus, one needs to calculate the Gibbs energy.  

In [13], additional coefficients, i.e., ai6 and ai7,  
are provided such that the enthalpy and the entropy 
of each species, which are needed to calculate the 
Gibbs energy, can be obtained by the specific heat of 
individual species:  
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Based on the above equations, the Gibbs energy of 
each species can be obtained, 
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Thus, the Gibbs energy of reaction is calculated as 
the difference energy between the products and 
reactant species: 
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The equilibrium constant for each chemical reaction 
can then be determined from, 
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where ∆n is the change in the number of moles 
between the reactants and the products. 
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2.3 Jacobian Matrix of Flux Vector 

The derivation of the Jacobian matrix of flux vector 
is not straightforward because pressure of the gas 
mixture exist in the flux vector, and it is a function of 
density, internal energy, and species composition.  

By directly dealing with the flow equations in 
the conservative form, i.e., (2.1), one could derive all 
elements of the Jacobian matrix by applying the 
chain rule for partial derivatives. Or, as shown in [8], 
it is much easier to derive the Jacobian matrix of the 
flow equations in a non-conservative form. And, 
through the similarity transformation between the 
conservative form and the non-conservative form, 
one could easily obtain the complete Jacobian matrix. 
In both cases, derivatives of pressure with respect to 
density, internal energy, and mass concentration of 
all species are needed. 

 For completeness, the Jacobian matrix A is 
tabulated in the following:  
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also formally showed that the flux vector E is a first-
order homogeneous function of Q, i.e., E= AQ.  We 
also showed that the eigenvalues of A are u, …, u, 
and  u±a, where a is the frozen speed of sound.  

2.4 Chemistry Model 

According to the law of mass action, the 
stoichiometric equation of a set of Nr elementary 
reactions involving Ns species can be written in the 
following form 
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where Ci=ρi / Mi is the mole concentration of species 
in the gas mixture.  and  are respectively the 

stoichiometric coefficients of the reactants and 

products of species i in the 
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where Af and A are the pre-exponential constant;  Eb f 
and are the activation energies; and, R is the 
universal gas constant.  In general, A

Eb

Eb

u

f , Bf, Ef, A , B , 
and are given constants, associated with the finite 
rate model.  

b

Measurements of reverse rate coefficients of 
elementary reaction steps are difficult tasks, which 
could lead to results with significant uncertainties. 
Equilibrium constants, on the other had, are based on 
thermodynamic calculation, and are very accurate in 
most conditions. Therefore, knowing the forward 
reaction rate, the reverse reaction rate can be 
calculated by  

jjjjjj eqfbeqbf KKKKKK = or    (2.20) 
where the Keqj is determined from Eq.(2.17). Once the 
forward and reverse reaction rates are determined, the 
production rates of the species are obtained from the 
Eq. (2.21), which states that the rate of change of 
concentration of species i by the reaction is given by 
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The source terms, ω , for i 1,2,...,Ns , in the species 
equations, Eq. (2.1), are formulated in mass 
concentration, and they are the summation of the net 
rate of change of species i from all chemical reactions 
involved, i.e., 
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where Mi  is the molecular weight of species  

2.5 The Source Term Calculation  

In the setting of the CESE method, viable treatments 
for stiff source terms as part of relaxing conservation 
laws have been developed [12]. Essentially, the 
contribution of the source terms to the overall flux 
conservation is calculated by a volumetric integration 
of the source term in the space-time domain.  

In general, choosing a time marching step ∆t 
based on the CFL constraint (CFL-∆t) of the 
convection terms is desirable for numerical 
efficiency. However, the chemical time scales are 
significantly smaller than that of the flow convection. 
In the past, simple implicit methods have been 
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adopted to calculate the source terms based on the 
use of the CFL-∆t to ensure numerical stability. 
However, this approach, although numerically robust, 
is not suitable for simulations of unsteady flows 
and/or flame ignition. A direct use of the CFL- ∆t to 
integrate the source terms will lead to nonphysical 
results. Based on our experience, the combustion 
cannot be correctly initiated even when the physical 
condition ensures a vigorous ignition.  

To overcome the scale differences between the 
convection terms and the source terms, a splitting 
method is developed. That is, the integration the 
conservation equations with stiff source terms to a 
new time step is divided into: (1) the space-time flux 
of the flow variables in the usual CESE manner, and 
(2) the temporal integration of the source term over a 
special tailored conservation element. 

After each time marching step based on the 
CESE method, the solution of the species mass 
fractions are updated by using a multiple sub-time-
step integration with the fixed values of ρ, u, and e. 
The number of the sub-time steps for the source-term 
integration depends on the chemistry systems 
employed. Typically, ∆tc = ∆t/Nc, where 1<Nc<20.  

Figure 2.1 is a schematic for treating the source 
terms. First, the integration of the ODE set for 
chemical reactions are performed from B to E and C 
to F. Second, the flow solution at point (i, j) is 
calculated by the standard CESE method using the 
known solutions at B and C, without regard to the 
existence of the source terms. Finally, the solution of 
the species concentration are updated based on the 
results of the ODE integration. Usually, a simple 
average of the source term between E and F is used.  

The integration of the ODE set is calculated by 
the Trapezoidal rule: 
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Fig. 2.1:  The treatment of the temporal integration of 
the source term. 

Note Ns species equations are considered, and Eq. 
(2.23) are Ns coupled equations. Let u be the 
unknown vector with densities of each species as the 
entries, i.e., 

T
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To treat the nonlinear source terms in (2.23), a 
linearization procedure is adopted to calculate the 
source term at the new time step, i.e., 
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where . Since Nk1kk uuu −= +∆ s species equations 
are considered, the matrix ∂S/∂u in the above 
equation is an Ns × Ns matrix. At each sub-time step, 
the discretized equation is, 
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2.6 The Source-Term Matrix 

To integrate the stiff ODEs for chemical reactions, 
the source-term matrix is needed due to the 
linearization procedure.  In general, the source-term 
matrix is a function of temperature and species 
concentration. To simplify the derivation, we assume 
that the source-term matrix is a function of species 
concentration only. Thus we have,  

( )

s

N

j

N

l
l

m

jibN

l
l

m

jmf
jiji

m

i

Nmi

C
C

K
C

C

K

C
C r s

jlj
s

jlj

,,1,

,
1 1

"

1

'
'" "'

K

&

=














−−=

∂
∂

∑ ∏∏
= ==

νν νν
νν

 

(2.26) 

where Ci is the mole concentration of species i.   
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3. Results and Discussion  

Three sets of calculations are performed to validate 
the present approach to calculation detonation by the 
CESE method: (1) simulations a well-stirred reactor, 
(2) simulation of detonation initiation, and (3) 
simulation of a C-J detonation.   

3.1 Well-Stirred-Reactor Calculations  

To test the thermodynamics and chemical kinetics 
modules, we first followed Oran et al. [] and 
performed simulation the ignition induction time of a 
hydrogen/oxygen mixture at the reflected shock 
temperature in a well-stirred reactor.  Initially, 2 
moles of H2 are mixed with 1 moles of O2 and 7 
moles of Argon in a constant volume adiabatic 
vessel. The initial pressure is 1.3 atm and the initial 
temperature varies from 1000 to 1300K. Since no 
transport phenomenon is considered, the evolution of 
the reacting system depends only on the chemical 
reactions. The induction time is defined as the point 
at which the initial temperature increases by 20 K 
[14]. Figure 3.1 shows the comparison between the 
present results and results by Oran et al. [14]. Note 
that the induction time for Ti= 1034 K, marked by a 
star, was measured by a shock tube experiment.  
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Fig. 3.1 Calculations of chemical induction time as a 

function of temperature. 

3.2 Detonation Initiation 

The detonation in the present paper is generated by a 
reflected shock at the closed end of a long tube as 
shown in Fig. 3.2. Two cases of detonation initiation 
were studied: (1) the strong ignition case by Oran et 
al. [14], and (2) a numerical testing by Yungster [12]. 

L

Inc iden t
S hock

R e flec ted
S hock

x-d ir  
Fig. 3.2: Schematic of shock tube configuration. 

Initially, the tube is filled with a mixture of 2H2 + 
O2 + 7Ar. An incident shock wave is created which 
travels from right to left. When the incident shock 
reflects from the closed end, the detonation wave is 
formed by the shock heating. 

In the first case, the initial pressure 0.066 atm 
(6687.45 Pa) and temperature 298K. The Mach 
number of the incident shock is 2.165. The CFL 
number of the calculation is about 0.44 and ∆x = 
0.000025 m. The total calculation length varies from 
15 cm to 20 cm for the solution to reach a stable 
detonation. The hydrogen-oxygen-argon reaction 
chemistry is modeled by finite-rate kinetics with 9 
species and 24 reaction steps (see Appendix ), which 
was developed in reference [14] for the shock tube 
experimental and simulation. 

To examine the flow evolution, the time histories 
of pressures and velocity at reflective wall are shown 
in Fig. 3.3.  When the incident shock reflects from 
the wall, the wall pressure jumps to a high value. If 
the shock heating triggered chemical reactions, 
energy is released and the wall pressure increases 
further.  If the reaction wave catches up with the 
reflected shock wave, the wall pressure reaches its 
maximum.   

For non-reacting flows, fluid velocities behind a 
reflected shock are null. Due to combustion ignition, 
however, velocities at wall jump to about 3000 cm/s. 
If the reaction wave catches up with the reflected 
shock wave, an expansion wave is generated by the 
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interacting shock and reaction waves. This expansion 
wave continuously moves to the closed wall. As a 
result, the fluid velocity at wall temporally rises to 
certain values. Figure 3.3 shows excellent 
comparison between the present calculations and 
experimental and numerical results by Oran et al.  
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  b) 

Fig. 3.3: Comparison between (a) the experimental 
and numerical results by Oran el al. [22] and 
(b) the present results for maximum pressure 
and fluid velocity at 1 mm from the wall.  

Figure 3.4 shows temporal evolution of 
pressure, density, and temperature of the detonation 
initiation. Different stages of the detonation initiation 
can be clearly discerned, including ignition, 
development, and finally full-fledged detonation. The 

reaction wave created after induction time 
continuously evolves until it becomes a detonation 
wave at about 140 µs.  The detonation wave catch up  

 

 
  a) 

 
  b) 

 
  c) 

Fig. 3.4: Temporal evolution of pressure, density, and 
temperature of detonation ignition. 

with the reflected shock wave at about 180 µs. When 
two waves merge, an expansion wave is generated 
and moves towards the wall. Eventually, the traveling 
detonation approaches the Chapman-Jouguet (C-J) 
detonation wave.  

We remark that the difference in the fluid 
velocities before and after the collision, between the 
reflected shock and the detonation, causes the 
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formation of a contact discontinuity at 187.5 µs. The 
contact discontinuity moves forward at a speed 
slower than the detonation wave.  

Figure 3.5 shows the comparison of the positions 
of the shock front, reaction wave, transmitted 
detonation, and the contact discontinuity formed as 
the shock merged by the reaction wave. After the 
reaction wave merges the reflected shock wave, it 
slowly decelerates relatives to laboratory coordinates 
due to the incoming incident reactant [14]. The 
merged reflected shock, which becomes the contact 
discontinuity, immediately accelerates for a short 
time due to the high velocity of the reaction wave. 
After this period, it will converge to a certain value. 
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  b) 
Fig. 3.5: Calculated position of the reflected shock 

front, reaction wave, transmitted detonation, 
and contact discontinuity as a function of 
time: a) Oran’s result [22], b) Current results 

 

3.3 C-J Detonation Calculation 

Finally, the post detonation flow condiitions 
predicted by our code are compared with the 
equilibrium results obtained by using the CEA 
program. The results are presented in Table 1. The 
quantities of the post detonation are well matched 
with that of its equilibrium in a small error percent. 
The detonation velocity, which is 2.5 % less than the 
C-J velocity, also is in good agreement with ideal 
case. Especially, we emphasis that the mass fraction 
for four main species is perfectly matched with CEA 
results less than 1% of error. 

The second case considered in this study is one 
of the Yungster’s conditions [12]. The same mixture 
as previous case at initial pressure = 50 torr, 
temperature = 298 K, and Mach number = 3.0 is 
considered.  

Table 1:  Result Comparison 
 Current CEA Error % 
T/T1 4.719 4.736 0.36 
ρ/ρ1 1.610 1.732 7.04 
p/p1 7.122 7.692 7.41 
Dvel 1575.5 1619 2.69 
H2 0.002137 0.00213 0.33 
O2 0.011817 0.01175 0.57 
OH 0.01220 0.01228 0.65 
H2O 0.08399 0.08412 0.16 
H 0.00051 0.00050 2.00 
O 0.00349 0.00335 4.18 
HO2 0.00001 0.00001 0.00 
H2O2 0.00000 0.00000 0.00 
N2 0.88585 0.88586 0.001 

 
 Table 2 shows the results between the current 
study and CEA program. The detonation velocity, 
and mass fraction of burned mixture are well matched 
with CEA in less than 5% for all species. However, 
the post detonation properties, which are the 
temperature, pressure, and density ratio, show more 
error percent than other properties. These differences 
may be caused by either low resolution of mesh size 
or iterative calculation of the temperature by Newton 
method. Since the pressure is obtained by the 
temperature and density in simulation, the error of the 
pressure is proportion to the multiple of them. 
Therefore, the high error percent of the pressure is 
always obtained. 

Figure 3.6 shows the discrepancy of two different 
chemistries in maximum pressure as a function of 
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time. Both chemistries are listed on the appendix. The 
reason for the discrepancy is unclear. It may be due 
to use different reaction coefficients, especially the 
third body coefficients. More study is required to 
solve this problem. In addition, the considerable error 
on the maximum pressure relative to the C-J value is 
observed. It may be due to not enough time for the 
stable detonation or not enough mesh size. However, 
the overall behavior of the strong detonation, which 
propagates faster than the C-J velocity and decays 
slowly toward the C-J condition [15], is in good with 
Yungster’s [12]. 

Table 2:  Result Comparison: Case 2  
 Present  CEA Error % 

T/T1 4.000 3.843 4.100 
ρ/ρ1 1.895 1.704 11.20 
P/p1 7.001 6.155 13.70 
Dvel 1600 1620 0.200 
H2 0.00228 0.00223 2.200 
O2 0.01199 0.01205 0.498 
OH 0.01401 0.01325 5.811 
H2O 0.08150 0.08236 1.044 
H 0.00053 0.00054 1.886 
O 0.00382 0.00370 3.225 
HO2 0.00001 0.00001 0.000 
H2O2 0.00000 0.00000 0.000 
Ar 0.88584 0.88586 0.002 
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Fig. 3.6 Comparison of chemical kinetics for 
              maximum pressure in the system. 

The mass fractions of four main species are 
illustrated in Figure 3.7 according to traveling 
distance (see table 2) at time=100 µs. The mass 

fractions of the products and reactants are clearly 
distinguished before/after the detonation front. 

 
Fig. 3.7 Snapshot of species mass fraction at 100 µs. 

4. Concluding Remarks 

In this paper, we report the results of applying the 
CESE method to chemically reacting flow with 
realistic chemistry and thermodynamics models. The 
present approach is a synergy of a highly accurate 
CFD method, comprehensive model equations, and a 
robust treatment of stiff source terms. Highly 
accurate results are obtained. Favorable comparison 
with previously numerical and experimental results 
has been demonstrated. The present effort is a 
steppingstone for the further development of the 
CESE method for high fidelity solution of reacting 
flows.   
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Appendix: Hydrogen/Air reaction mechanism. 

Considered species: H2, O2, OH, H2O, H, O, HO2, H2O2, Ar 

Reaction rate coefficient in Reference [22],              : K = A*Tm*exp(-E/RuT) 

No.                         Reaction A ((m3/kmol)n-

1/⋅s) 
m E/Ru (K) 

R1 H     +     OH    →   O     +     H2 8.43E+06 1.0 3500 
 O     +     H2      →   H     +     OH 1.81E+07 1.0 4480 
R2 H     +     HO2   →   H2    +     O2 2.53E+10 0.0 350 
 H2    +    O2      →   H      +     HO2 5.48E+10 0.0 29100 
R3 H     +     HO2   →  OH   +     OH 2.53E+11 0.0 950 
 OH  +     OH    →   H     +     HO2 1.20E+10 0.0 20200 
R4 H     +     HO2   →   O     +     H2O 5.00E+10 0.0 500 
 O     +     H2O   →   H     +     HO2 1.05E+09 0.45 28400 
R5 H     +     H2O2  →  HO2  +     H2 1.69E+09 0.0 1900 
 HO2     +     H2   →   H     +     H2O2 7.23E+08 0.0 9400 
R6 H     +     H2O2   →   OH     +     H2O 3.18E+11 0.0 4500 
 OH     +     H2O   →   H     +     H2O2 2.40E+11 0.0 40500 
R7 OH     +     H2   →   H     +     H2O 1.10E+06 1.30 1840 
 H     +     H2O   →   OH     +     H2 1.08E+07 1.20 9610 
R8 OH     +     OH   →   H2     +     O2 6.56E+07 0.26 14700 
 H2     +     O2   →   OH     +     OH 1.69E+10 0.00 24200 
R9 OH     +     OH   →   O     +     H2O 6.02E+04 1.30 0.00 
 O     +     H2O   →   OH     +     OH 1.93E+06 1.16 8770 
R10 OH     +     HO2   →   H2O     +     O2 5.00E+10 0.00 503 
 H2O     +     O2   →   OH     +     HO2 1.43E+11 0.17 36900 
R11 OH     +     H2O2   →   HO2     +     

H2O 
1.02E+10 0.00 910 

 HO2     +     H2O   →   OH     +     
H2O2 

2.83E+10 0.00 16500 

R12 HO2     +     H2   →   OH     +     H2O 7.23E+08 0.00 9410 
 OH     +     H2O   →   HO2     +     H2 8.01E+06 0.43 36200 
R13 HO2     +     HO2   →   H2O2     +     

O2 
1.81E+10 0.00 500 

 H2O2     +     O2   →   HO2     +     
HO2 

9.45E+11 -0.38 22000 

R14 O     +     OH   →   H     +     O2 1.64E+09 0.28 -81.0 
 H     +     O2   →   O     +     OH 2.23E+11 0.00 8450 
R15 O     +     HO2   →   OH     +     O2 5.01E+10 0.00 503 
 OH     +     O2   →   O     +     HO2 1.32E+10 0.18 28200 
R16 O     +     H2O2   →   H2O     +     O2 8.43E+08 0.00 2120 
 H2O     +     O2   →   O     +     H2O2 3.43E+07 0.52 44800 
R17 O     +     H2O2   →   OH     +     HO2 8.43E+08 0.00 2130 
 OH     +     HO2   →   O     +     H2O2 1.25E+06 0.64 8230 
R18 H     +     H     +     M   →   H2     +     

M 
6.53E+11 -1.00 0.00 

 H2     +     M   →   H     +     H     +     
M 

2.23E+11 0.00 48300 

R19 H     +     OH     +     M   →   H2O     
+     M 

2.25E+16 -2.00 0.00 

 H2O     +     M   →   H     +     OH     3.49E+12 0.00 52900 

 11



+     M 
R20 H     +     O2     +     M   →   HO2     +   

M 
1.50E+09 0.00 -500 

 HO2     +     M   →   H     +     O2     +   
M 

2.11E+12 0.00 23000 

R21 OH     +     OH     +     M   →   H2O2    
+     M 

9.07E+08 0.00 -2550 

 H2O2     +     M   →   OH     +     OH    
+     M 

1.20E+14 0.00 22900 

R22 O     +     H     +     M   →   OH     +     
M 

3.00E+13 -1.00 0.00 

 OH     +     M   →   O     +     H     +     
M 

1.40E+11 0.21 51000 

R23 O     +     OH     +     M   →   HO2     
+     M 

1.02E+11 0.00 0.00 

 HO2     +     M   →   O     +     OH     
+     M 

6.62E+16 -0.43 32200 

R24 O     +     O     +     M   →   O2     +     
M 

1.89E+07 0.00 -900 

 O2     +     M   →   O     +     O     +     
M 

1.81E+15 -1.00 59400 

          *n is reaction order 
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Reaction rate coefficient in Reference [26],                                           : K = A*Tm*exp(-E/RuT) 

No. Reaction A ((m3/kmol)n-

1/⋅s) 
m E/Ru (K) 

R1 H2     +     O2   ⇔   HO2     +    H 1.00E+11 0.00 28197.3
8 

R2 H       +     O2   ⇔   OH      +     O 2.60E+11 0.00 8459.21 
R3 H2     +     O     ⇔   OH     +      H 1.80E+07 1.00 4481.37 
R4 H2     +    OH   ⇔   H     +     H2O 2.20E+10 0.00 2593.15 
R5 OH    +    OH   ⇔   O     +     H2O 6.30E+09 0.00 548.84 
R6* H     +    OH    +     M  ⇔   H2O  +     M 2.20E+16 -2.00 0.00 
R7* H     +     H      +     M  ⇔   H2     +     M 6.40E+11 -1.00 0.00 
R8* H     +     O     +     M   ⇔   OH    +     M 6.00E+10 -0.60 0.00 
R9* H     +     O2    +     M  ⇔   HO2   +     M 2.10E+09 0.00 -503.52 
R10 O     +     O     +     M   ⇔   O2     +     M 6.00E+07 0.00 -906.34 
R11 HO2    +   H     ⇔   OH     +     OH 1.40E+11 0.0 543.81 
R12 HO2    +   H     ⇔   H2O    +     O 1.00E+10 0.0 543.81 
R13 HO2    +  O      ⇔   O2     +      OH     1.50E+10 0.00 478.35 
R14 HO2    +  OH   ⇔   H2O     +     O2 8.00E+09 0.00 0.00 
R15 HO2    +  HO2  ⇔   H2O2   +     O2 2.00E+09 0.00 0.00 
R16 H    +     H2O2  ⇔   H2       +    HO2 1.40E+09 0.0 1812.69 
R17 O     +     H2O2   ⇔   OH     +     HO2 1.40E+10 0.00 3222.56 
R18 OH   +    H2O2   ⇔   HO2     +     H2O 6.10E+09 0.00 720.04 
R19
* 

H2O2     +     M   ⇔   OH     +     OH     +      
M 

1.20E+14 0.00 22910.3
7 

*Third body efficients: 
  Reaction 6: H2O =6.0,  Reaction 7: H2O=6.0 
  Reaction 8: H2O =5.0,  Reaction 9: H2O=16.0, H2=2.0 
  Reaction 19: H2O=15.0 
  The backward reaction rate was calculated by Gibbs free energy using Equation (2.17) and (2.20). 
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