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Abstract

In this paper, we introduce a new numerical approach
to solve two spatial dimensional ideal magneto-
hydrodynamic (MHD) equations. By treating space and
time as one entity, the ideal MHD equations are
formulated in a space-time integral form, and are
solved by the Space-Time Conservation Element and
Solution Element (CESE) method. Contrast to the
modern upwind methods, no reconstruction procedure
or Riemann solver is needed in the present approach.
The computational logic and operational count of the
present approach are much simpler and more efficient.
Moreover, no special treatment has been employed to
maintain the divergence-free condition for the magnetic
field. Nevertheless, the V-B =0 constraint has been
faithfully maintained in smooth region. In regions near

shocks, the magnitude of |V~B| is bounded. Two

benchmark problems have been calculated. Present
results of propagating MHD shock and expansion
waves in two spatial dimensions for long-term
evolution showed remarkable numerical resolution.
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1. Introduction

Recently, the computational magneto-hydrodynamics
(MHD) has drawn significant attention due to a
growing interest in plasma-based aerodynamics,
including flow manipulation through plasma, on-board
power generation, and drag reduction in hypersonic
vehicles. The flow phenomena in plasma is much more
complex than that in gas dynamics. While many
numerical modules developed for gas dynamics could
be used in solving the MHD equations, numerical
solution of the MHD equations involves unique
requirements and thus poses a greater challenge than
the CFD for gas dynamics.

To date, efforts in developing viable MHD solvers
have been focused on the use of modern upwind
method [1-10]. Thus the Riemann solvers based on the
knowledge on the eigensystem of the governing
equations has been a critical issue. For computational
efficiency, approximated Riemann solvers have been
employed. Although this approach has been successful
for ideal MHD equations, extension to more complex
MHD processes will be difficult due to the fact that
Riemann solutions to complex MHD waves have been
scant.

Another important issue is to maintain the divergence
free condition for the magnetic field, i.e., V-B=0, at
all time for all locations. Analytically, this constraint is
ensured if it is satisfied at the initial condition.
However, it has been a difficult task to maintain this
constraint numerically. Violating the V-B=0
constraint and allowing the error to be accumulated
over a period of time may result in erroneous solutions,
which in turn may lead to numerical instability. Special
treatments are required to numerically enforce the
constraint for problems in multiple space dimensions.
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In the past, numerical procedures for maintaining the
constraint can be categorized into three groups: (i) the
projection procedure [3], (ii)) the eight-wave
formulation [4], and (iii) the constrained transport
procedures [5-9]. These three approaches were assessed
and compared by Toth [9]. In general, special
treatments have been indispensable for MHD
computation based on the use of the upwind schemes.

Due to the complexity of the MHD problems, highly
accurate but simple method is desired. This is
particularly important for extending the solvers to
model complex MHD processes, in which the model
equations could include multiple fluids with chemical
reactions. In the present paper, we report the numerical
solution of the ideal MHD equations by the Space-Time
Conservation Element and Solution Element (CESE)
method as the first step for the development of a
general numerical framework for complex MHD
models. We shall show that we do not need to construct
a Riemann solver for the complex MHD equations, and
we do not need to employ a special treatment to
numerically enforce V-B =0 constraint.

In a series of publications [11-17], Chang and
coworkers have successfully developed the CESE
method for linear and nonlinear convection-diffusion
equations in one, two, and three spatial dimensions.
Numerous results, obtained by using the CESE method,
have been reported in the cited references, including
flows with steady and moving shock, rarefaction
waves, and acoustic waves, flows dominated by

vortices, detonation waves, shock/acoustic
waves/vortices interactions, dam-break flows, hydraulic
jump, cavitations, and the turbulent flows with
embedded sprays.

The rest of the paper is organized as follows. Section
2 illustrates the model equations for two-dimensional
MHD problem. Section 3 presents the CESE method
for two-dimensional MHD equations. In Section 4,
numerical results and analysis are presented. We then
offer concluding remarks and provide cited references.

2. Model Equations

The two-dimensional ideal MHD equations in the
conservation form are

a_u ﬂ+a—g =0, 2.1
o oOx 0oy
where

2

ll=< ,pu,pv,pw,e,Bx,By’BZ)T (22)

= (ul!u2!”3'u4'”5'”6vu7'”8)

pou
2
pu2 + Py _Bx
puv—B.B,
pMW_Bsz
(e+p0)u —Bx(qu +vB}, + WBZ)
0
uB, —vB,
uB, —wB,

=(fiforfsifusSsifor S fs )

(2.3)
and

pv
pvu—B,B,
pv2 + po —By2
pvw—B B,
(e+ po)v—By(qu +VvB, + WBZ)
vB, —uB,
0
vB. —wB,

=(gl,gz,g3,g4,g5,g6,g7,g3)T (24)

The specific total energy e is

ezp/(]/—l)+ p(u2 +v? +w2)/2
+(B§ +By2, +BZZ)/2 '

The total pressure is
_ ( 2 2 2
po=p+\By +B, +Bz)/2.

In addition to the above equations, the magnetic field
satisfies the divergence free constraint V-B=0.

3. The CESE Method

The MHD equations in two spatial dimensions can be
expressed as

Gty I %8 _, 3.1)
ot ox oy
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form=1, 2,....,
variables, Eq. (2.2), and fluxes in x- and y- directions,
Egs. (2.3-4), respectively. Let X, = Xx,Xx, = ¥ and

8, where u,, f, and g, are flow

X, =1t be the coordinates of a three-dimensional
Eucilidean space FE;. Equation (3.1) becomes the

divergence free condition in £,
(3.2)

um) are the current density

=(fr &

vectors in £ . By using Gauss’ divergence theorem in

where

E,, we have

jv.hmdh §hm~ds=o (3.3)
4 s(v)
form =1, 2,...., 8, where S(¥) is the boundary of an

arbitrary space-time region V in E; and ds=ndo,

where do and n are the area and the outward unit
normal vector of a surface element on S(7).

The SE and CE in a two spatial dimensions are shown
in Fig. 1. For the sake of conciseness, we present the
two-dimensional CESE method based on the use of a
uniform mesh. In Fig. 1a, the spatial domain is covered
by congruent triangles. The centorid of each triangle is
marked by either a hollow circle or a solid circle. If the
centroid of a triangle is marked by a solid (hollow)
circle, the centorids of the three neighboring triangles
are marked by hollow (solid) circles. In Fig. la, point
G, centorid of ABDF, is marked by a solid circle, while
the points 4, C and E are the centorids of AFMB,
ABJD, and ADLF and are marked by hollow circles.
Let j, k and n be indexes for x, y and t, respectively.
Points A, B, C, D, E, F and G are at the time level
n-1/2. 4 B, C, D, E, F and G are at the

time level n . A", B", C", D", E", F' and G are
at the time level n+1/2. The centorids are in a
staggered arrangement in £ . Points G,G,A4,Cand E
are marked by (j, k, n), (j, k,n— 1/2),
(1, k1, n=1/2), (j2, k2, n—=1/2) and (3, k3, n—1/2)
respectively. As presented in Fig. lc, the solution
element SE(j, k, n) for point (j, k, n) is the union of
four planes, hexagon ABCDEF, quadrilateral
B'BGG', quadrilateral D DGG
F FGG' , and their intermediate neighborhood.

and quadrilateral

There are three ie.,
SE(j1, k1, n—1/2), SE(j2, k2, n —1/2) and
SE(;3, k3, n—1/2) associated with points 4, C and E
respectively. The surfaces of the four SEs form three
CEs for point ( j, k, n) They are quadrilateral cylinders
ABGFA'BG'F', CDGBC'D'G B’ and
EFGDE'F'G'D', and are referred to as CE, (j,k,n),
CEz(j k, n) and CE3(j k, n) respectively. CE(j,k,n)
is the union of CE, (] k, n) CEz(j,k,n) and
CE;(j,k,n).

SEs,

Inside SE(j, k, n) , the

expansion is employed to descritize the flow variables
and fluxes:

first-order Taylor series

u;(x’y’t;j7k7”) = (um ),/lk + (umx )’;k (x - xjk)
+(umy):yk(y_yj,k)+( mt)jk(t_t )
3.4

(x y'tjkn) (fm),jl‘,k+(fmx);l‘,k(x_xj,k)
+ (fmy ),;»‘k (y - yj,k )+ (fmt )’;‘,k (t - tn ),
3.5)

g:n(x’y!t;j!k'n): (gm);l‘,k + (gmx);l‘,k(x_xj,k)
tHem ) -3+ @ iil—1). o)

form=1,2,...., 8. Eq. (3.3) is then approximated by
§hj,, “ds =0, 3.7)
s(r)

where h (fm,gm, m) At point (j k, n) we let
() =~ Vi =& S (3.8)

for m = 1, 2,...., 8. To proceed, let f, , and g, , be

the entries of Jacobian matrixes F and G which are
presented in Appendix, i.e.,

9, g
=—" and ==n
fm,l aul gm,l aul

3.9)

form, I=1,2,...., 8. Aided by the chain rule, we have,

3
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8
z ’”ljk ulx Ik’

(3.10)
=1
8
(m}) ;fml /k( ly)jk’ (311)
8
(& Sig = D (g )1 ) (3.12)
=1
and
8
(g )1 =D (g V1 s ) (3.13)

-
I

Aided by Egs. (3.10-13), Eq. (3.8) can be recast to

() =3 o s

= , (3.14)

i(gml)jk( ly)

Aided by the chain rule and Egs. (3.14), (fmt )jk and
(gmt )j , can be expressed as,
8
(fmt)l: = Z(fml)’;k(ult)]k
I=1
8 8
= _Z (fm ! )j Z (fl,r );l]{ (urx );l‘,k
I=1 r=1
8 8
Z( ml), Z(gl,r )f;,k (uzy );k > (315)
I=1 r=1
8
gmt /k ngl Jik ult
=1
8 8
Z Em,i jkz flr)]k( rx),/lk
I=1 r=1
8 8
zgml;lkz glr)/k< ),Jlk ’
I=1 r=l
(3.16)

form=1,2,...., 8.

Aided by Egs. (3.9-13), Egs. (3.4-6) could fully
specify the distribution of um , fm and g,*n inside

SE(j,k,n) when values of (um)'/'k (umx)’/lk and
(umy )';k are known. For each m, there are three

unknowns, (u,, )';.’k, (i) )’J’k and (umy )';k . Three CEs,

ie., CE(jkn), CEy(jk,n) and CE;(j.k,n),
associated with point (j,k,n) are constructed to

provide three algebraic equations to solve the

unknowns.

To proceed, we calculate the flux leaving surfaces of
CEs. Consider CE,; ( Js k,n), quadrilateral cylinder

ABGFA'B'G'F . The surfaces of CEl(j,k,n) consist
of two groups. As shown in Fig. 1d, quadrilaterals
FGGF, ABGF ad BGGB
SE(j,k,n), and quadrilaterals ABGF ABB' A and
AFF' A" belong to SE(jl,kl,n—1/2). Let S be the
area of the quadrilaterals. Let (xcen,ycen, Cen) be the

belong to

coordinates of the centroid of each area. Over each
area, let the outward normal vector be n, and the
surface vector s =n S.

The flux leaving a surface is equal to the scalar
hm = (.fm’gm’um )9
evaluated at surface’s centroid, and the surface vector s.

product between the vector

For quadrilateral ABGF inE 3, its surface vector is

S wor =10,0,5,), (3.17)

ABGF

and the coordinates of its centroid O, as shown in Fig.
1d, are

(xO,yo,to)=(xq1,yq1,t”), (3.18)

where S, and (qu, yql) are area and centroid’s spatial

coordinates of quadrilateral ABGF'. The flux
leaving the surface ABGF is

(FLUXm )A'B'G'F'

R (700 P S (3.19)

+ (yql — Ve X”my )’;k

For quadrilateral F' GG F, its surface vector is

_ A

oo = (3.20)

VE =Y X6 —Xp,0),
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and the coordinates of its centroid Q, as shown in Fig.
1d, are

xF+xG yF+yG n At
X0 !t = ) 1t -
(QyQ Q) ( 5 5 4j

(3.21)

The flux leaving the surface F GG F'is

(F LUX,, )FGG'F' =
%(yF - VG {(fm );l‘,k +(.x%x-6)(fmx)j‘,k

- At n
+w<fmy);’k_7(fmt )‘,',k}
+%(xG —Xp {(gm )I;k + (xF _XG)(gmx):l‘,k

2

Yr Y 71 At n
%(gmy)j‘k _T(gmt)j,k:|'

+ (3.22)

For quadrilateral BGG B, its surface vector is

At
SB6G'B :7( Y6 — Vg Xp —Xg, 0 ), (3.23)

and the coordinates of its centroid P, as shown in Fig.
1d, are

Xp+Xg Vp+YVe . At
(xPsyPJP):( E 0 =t __j

2 2 4
(3.24)
The flux leaving the surface BGG B is
At " (xB —xG) "
?(yG_yB (fm)j,k—i_ 2 (fmx)j,k
(y -y ) At n
+ BTG<fmy );Yk - T(fmt )j,k
A 7 - V]
+7t(xB _xG{(gm)j,k + (XB ZXG)(gmx)j,k
(y — Y ) At 7
+BTG<gmy)§’k _T(gmt)‘j,k
(3.25)

The flux leaving three surfaces belonging to
SE(j,k,n) is the sum of Egs. (3.19), (3.22) and (3.25).

Similar calculation could be performed to obtain fluxes

leaving three surfaces of SE(jl,kl,n—1/2), and we
have

(fhex,, )i
= _Sql [(um )l:l_,}c/lz + (qu Xy Xumx )l:l_,}c/lz

+ (yql — Va4 Xumy )j;}c/lz ]

At n—
+ 7(3’3 — e o )jl,}c/lz

A
+Tt[(x3 _xA)(yB —J/A)
_(xF Xy )(J’F —Va )](fm)j;}c/f
A

+T[()’B _yA)2 _()’F —YA)Zkfmy);;,le

~

At -
+( 8) (vs _yF)(fmt)jl,}c/lz
At n—

+ ?(XF —Xp )(gm )jl,llc/lz

At .
+ e (xF Xy )2 - (xB Xy )2 kgmx )_/1,11!12

A
+Tt[(xF _xA)(yF _J’A)

—(xB —xA)(yB _J’A)](gmyyjl‘l_;c/lz

(ar)

8

= (e =2 g Siks (3.26)

With the aid of Egs. (3.19), (3.22), (3.25) and (3.26),
the flux conservation over CE, ( j,k,n) is
Sql [(um );lk + (qu —Xg Xumx )’;k

+ (yql _yGXumyy;‘k

At "
+7()’F _yB)(fm)j,k

+%[(xF —xG)(yF _yG)
_(xB _xGXyB _yG):Kfmx)’;’,k
oo - -ro Pl ),

(ar)
8

(J’F ~ VB Xfmt )’;k
At
+ 7(‘)(3 —XF )(gm )};',k

+ %[(XB —xg) = (xp —xg ) kgmx )jk
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A
+Tt[(x3 _XG)(yB —)’G)

_ (XF - Xg )(yF mZe )](gmy )(;,k

(ar)’
8

(x5 =5 N );qu + (flux,, );,71/2 =0,

(3.27)

for m =1, 2,...., 8, where (flux,, );’_1/2 is provided in
Eq. (3.26).

Similarly, the flux conservation over CE, ( Js k,n) is

Sq2 k”m )};k + (xq2 —XG X“mx ):k

+ (J’qz - )G Xumy)’;kl

A
+7t(y3 _yD)(fm)l;',k

A
+Tt[(x3 —XG)(J’B _yG)

— (xD - x@)(J/D - yG)](fm)’;,k

+%[(y3 —y6 ) = (o _yG)ZIf"W);,k
_ (A;)z (yB — Vb )(fmt );lk

At 1
+7(XD —Xp )(gm)j,k

+ %[(XD —xg ) = (x5 —x6 ) kgmx )l;k

A
+Tt[(x0 _XG)(yD —J’G)

77

— (xB — XG)()/B - yG)](gmy )j,k

(ar)

(xD —Xp )(gmt );qu + (ﬂuxm );71/2 =0
(3.28)

where S, is the area of the quadrilateral BCDG,
and (xqz,yqz) are the spatial coordinates of its

centroid. In Eq. (3.28), the fluxes leaving three surfaces
of SE(j2,k2,n—1/2) are

(flu, )52 =

- Sq2 |_(um )j;,llg e

+ (qu —Xc Xumx )j2,k2

+ ()/ql ~Yc X”my );l;lg J

6

At n—
"‘T(J’D — v /o )jzllg

A
+Tt[(xD ‘xc)(J’D ‘J/C)

- (xB —Xc XyB —JYc ):Kfmx):lg,l]c/g

At -
+T[(y1) e )2 _(J’B —)’C)Z:kfmy)jz,llg
At) -
+(%)(J/D _yBXfmt)jZ,ll/é

At -
+ 7("3 —Xp Xgm )'}21,@

At e
T TR A N PO R

A
+Tt[(x3 —xc)(J’B ‘J’C)

—(xp —xcNvp —ye )](gmy )7;11/12

(ac)
8

n-1/2

+ (XB _xDXgmt)jl,kl .

(3.29)

Similarly, the flux conservation over CE;(j,k,n) is

Sp3 [(“m )’;k + (xq3 —XG X”mx )7/(
+ (yq3 el Xumy )j,k ]

A ’
+7I(J’D —JVrF )(fm );k

+%[(XD —X(;)(yD _yG)
—(XF —XG)()’F _yG):Kfmx);l‘,k
+%[(y0 S i o ) P S

(ar)

8

o =y Vi
At 1
"’?(XF —xp g )j,k

+%[(xF —x) = (xp ‘xG)zkgmx)};”k

+%[(XF —X¢ )(yF _yG)_(xD —Xg )(yD —Je )](gmy)_);,k
At) " -
ey X )+ e, =0,

(3.30)

where S 5 is the area of the quadrilateral DEFG,

and (xq3, yq3) is the spatial coordinates of its centroid.

American Institute of Aerospace and Astronautics



In Eq. (3.30), the fluxes leaving the three surfaces of
SE(j3,k3,n —1/2) is

)n 1/2

(fluex
N Sq3 l(um )’;;llg + (x 3~ XE Xumx);zgllg
+ (qu —VE Xumy ):l;lk/;J

- yD )(fm )j;,lk/g

+ 2L
5 YF
At
+T[(XF _xE)(yF _J’E)
_(XD _XE)(yD _yE)](fmx)jgllg
n—1/2

+%[(yp —ve) =0 _yE)zkf’"y )j3yk3

(At)2 (y F

8
t

- yD Xfmt ):l;,l]g
A n—1/2
- > (XD —XF )(gm )/3,k3

A n
T i L0 v

At
+T[(xD _xE)(yD _yE)

~(xp —xg )(J’F —JVE )](gmy )j;llg
At) -
o ;) (v = e Newe )5k - (3.31)

For each m =1, 2,...., 8, Egs. (3.27), (3.28) and (3.30)
are the three equations, which could be used to solve

(u m )Z’,k ’ (Lt mx )ﬂ and

for the three unknowns, I

)
umy s

The spatial coordinates of point G, i.e., the centroid of
the hexagon ABCDEF, shown in Figs. la, can be
expressed as

B Sqlqu +Sq2xq2 +Sq3xq3

.XG -
Sq1 +Sq2 +Sq3

. (3.32)
Squql + SquqZ + Sq3yq3

Sq1 + qu + Sq3

Y =

Aided by Egs. (3.32), the summation of Egs. (3.27),
(3.28) and (3.30) is

(um )r/’k =

(o, ) (e, )3+ (e,
Sq+8,+8,

(3.33)

Equation (3.33) is equivalent to imposing the space-
time flux conservation, i.e., Eq. (3.7) over CE( j,k,n).

In what follows, we deal with the calculation of the
spatial ~derivatives of the flow variables, i.e.,

(umx) and ( my )jk :

To proceed, we subtract Eq. (3.27) from Eq. (3.28),
and have

8
( ml jk ulx +z ml jk(uly)
=1 =1

(61m)1k H

Moo

N

(3.34)

where m,! = 1, 2, 3,.., 8 In Eq. (3.34),
(alml);’k and (b1, )kare 8x8 matrices and (cl,, )"

is a 8x1 column vector, and they can be expressed as

7.k

(alml)Jk
[qu( Xq2 xG)_Sql(qu _xG) ml
+ %(fm,z ) s =y Xxs —xg)
~(vp =26 Nxp —x6)=(vr =6 Nxp —xg)]
O RER I,

- 2(xB —Xg )2 kgm,l );lk

i

p=1
A i S n n
- ( é) 2x3 Z(gm,P )j,k (fp,l )j,k
p=1
(3.35)
(blml )j k
lSq2 (yqz yG) ql (yql )J§m1

2 b — 6 F -~ o P
—(J/F —Ye )2 kfm,] );lk

A 71
+ Tt(gm,z ) Joep =26 X = v6)
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+(xF _xG)(yF _yG)_2 Xg _xG)(yB —J’G)]

_ (&)’ (vp +yr -2y )i (fm,p )jk (gp" )'Jqlk

8

_<A;2(sz_xD_xF>p§_;(g,,,p);k(gp,)»;k
(3.36)
and
(€1, )0 (ﬂux N~ (s,
+ (S =S, Juen )
—%(2y3 o =velfu)iy 337

A[ n
_7(XD +xp —2xp )(gm )j,k

Similarly, we subtract Eq. (3.27) from Eq. (3.30), and
we have
8

Z( Jkuh jk+zb2 /k(”ly)

=1

=(c2,)% (3.38)
where
(azml )’]1‘,]{ =
[Scﬂ (xq3 —XG )_ Sa (qu - XG) ml
A 71
+ Tt(fm,l )‘,,k (s = v Xoxs = x6)

+(J’D —J’G)(XD _xG)_z(yF —)’G)(xp —XG)]

A
# 20 —xg f g v )

_ (xD -Xg )2 kgm,l )r,lk

(A;)z (ZyF —Yg+YVp )28: (fm,p )jk (fPJ ),/lk

p=1
At) : ; .
- (&) (e +2xp —2x7) (gm,p )j,k (fp,l )_/,k
p=1
(3.39)
(bzml )’Jl',k =

|.Sq3(yq3 _yG)_Sql(yql _yG) ml
P2 s e

4
+(vp—ve ) —20vr

—)’G)ZJ

A P
+ Tt(gm,z ) s —x6 Xor = v6)

_(xB _xG)(yB _yG)_(xD _xGXyD _yG)]

(ar)? (2yr -5 -¥p )28: (f mp )'Zk (g pl );k

8 p=l
() (xp +xp —2xp) 8 R
P (3.40)
and
(22 = Ut )2 = ()
+( Sq1— q3Xum)l;k
—%(}’B +¥p _ZYFXfm)’Jl"k
) % (xp —xp —xp)ew ). (Ga)

For each m = 1, 2,...., 8, Egs. (3.34) and (3.38)

n

provide two equations for two unknowns, i.e., (umx )/ k

72
and (umy )j’k .

The combination of Eq. (3.33) for (u );kand Eqgs.
(3.34) and (3.38) for (umx)';.!k and (umy)J is the a

scheme of the two-dimensional CESE method. In what

follows, (umx)jk and (umy)'; . calculated by the a

scheme, i.e., Egs. (3.34) and (3.38), are referred to as
(u,‘,’u )jk and (u“ )n iy For

my ),
discontinuities, further modification for the calculation

of (umx)'/lk and (um))'; , is needed, while the

solutions  with

calculation of (um )'; ; does not change in this

extension. The present two-dimensional a scheme will
be extended to the a-¢ and the a-&a-f schemes.

8, flow variables at G',
(,, )", . is obtained from Eq. (3.33). Flow variables
m)jk

(um )j‘l,kl’ (u )"“2 and ( )/3k3 at points A', C' and

E, respectively, are calculated by a first-order Taylor
series expansion

To proceed, form =1, 2,....,
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( , )n ( )n—l/Z At( )n—l/Z
Um jrkr =Wy jrkr +? U e jrkr

for r = 1, 2, 3. Refer to Fig le. Based on (u )n.l e

(3.42)

( ' )’;2“ and ( )J3k3 on points A C' and E we

apply central differencing to calculate (umx)jk and

(e ), s
Uy )

(”;u )jk = 2S114CE [(J’C —YE )(“m )_’;l,kl

( J’A)( )72k2+(y J’C)( )r;laks}

(3.43)

>

and

PR

+ (xA —Xg )(”m )_’;2,1(2 + (xc Xy )<”m )j‘3,k3:|

(3.44)

Similar central differencing can be applied to

calculate (u(l) )j and ( ()) for ACE'G, ( @ ))’: k

mx my

and (())"k for AAGE', and (());’k and (())”k

my ) my
for AAC G . Moreover, because point G is the
centroid of A4 C'E’, one could easily show that
Vi l 3 ( ) 71
(“rcnx )j,k = EZ(”W:X )j,k
fj . (3.45)
c 1 1 ANy
( ’ny)jk _EZ(”EW))M
r=1

Aided by Egs. (3.43-44), (u,, ), and (umy ),  for
the a-& scheme are

_foa ¥ c | a
_(“mx )_/,k +2¢ (”mx )f,k ‘(”mx )C,k ;

(umx )_’;,k

(3.46)

n | . a c ) _( a )"
(”my)_,-,k _(umyx,k +2¢ (umy)j,k Umy )i |

(3.47)

for m =1, 2,....,
have 0 <g<1.

8. For numerical stability we must

For the a-&o-f scheme, (umx )Z , and (umy )’7 , are
5 J»

= (”ranx y;,k + 25[(”5;)( )’:k - (“Zvc )’;k }
28 N

(umy )’;k (”;lny )” + 28[( my y/‘ k (”rany )jk }
+ 4( Tk )]

, 8. For numerical stability, we have

(umx );,k

(3.48)

(3.49)

for m =1, 2,.
£20. In Eqs. (3.4849), [u* ),k and (my)jk are

defined as,

(u:;x ):k = é[(‘gngm )a (”Srlv)c );,k

(00 W), + OV W), |

(3.50)

m3 )a (ur(r%y) )’;k + (9m1‘9m2 )a (”r(sy) rk }

(3.51)

form=1,2,...., 8, where

bu = T P |
Jk

1,2,3. And

(3.52)

for r=

= (€m19m2 )a + (‘9m2‘9m3 )a + (9m1‘9m3 )a . (3.53)
This concludes the discussion of the two-dimensional

a—&—a—f scheme, used for numerical analysis of

the benchmark MHD flows in the present paper.
Because the spatial derivatives of flow variables are
unknowns, we need to specify their initial values and
boundary values. In all calculated flows presented in
the present paper, the parameters ¢, « and f are set to
half, unity and unity, respectively.
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4. Results and Discussions

In this section, we shall do two-dimensional
calculations based on rotated one-dimensional
problems. In a one-dimensional problem, V-B =0 is
automatically satisfied by setting B, to be a constant.
By rotating the coordinates with a non-zero angle, the
one-dimensional problem becomes two-dimensional.
As such, the constraint V-B=0 may not be easily
maintained numerically. The effect of violating
V-.B=0 in numerical results can be judged by the
comparison between the two-dimensional results with
the corresponding one-dimensional results. Previously,
this approach has been adopted by [2, 4, 6,7, 9].

Moreover, we define the following error
measurement to assess the divergence free constraint
for the magnetic field,

2 2l Bl

Error = R
NxM

4.1)

Note that the spatial domain is descritized by a
N x M mesh, and (V - B), , in Eq. (4.1) is defined

by using Gauss’ divergence theorem. For example,

J‘V-Bdo- jSBds

(V'B)j,k _ ABCDEF _ ABCDEF (4.2)
Ida J.dO'
ABCDEF ABCDEF

As presented in Fig. 1, Points 4, B, C, D, E and F form
a hexagon in the spatial plane. Equation (4.2) is an area
average of V-B over a spatial cell, i.e., hexagon
ABCDEF.

4.1 A Smooth Alfven Wave

The smooth Alfven wave problem was proposed in
[9]. We adopt this flow to test the capabilities of the
CESE method in keeping the constraint V-B =0 for
flows of smooth solutions. To proceed, we let £ be the
coordinate of the original one-dimensional problem and
n as the coordinate perpendicular to & The Alfven
wave propagates in the & direction at the speed of

vange/\/_:—l. Let v, +uz =0, and the wave

becomes a standing wave and the solution is

p=1

p=0.1,

u§ = 1,

u, =0.1sin(27¢),

w = 0.1cos(27¢),

Bg = 1,

B, =0.1sin(27&),
B, =0.1cos(27¢),

(4.3)

with y = 5/3. We rotate the coordinates with the angle

¢ and let the new coordinates be (x, y). Refer to Fig. 2.
The relation between the two sets of the coordinates is

-
n y
where
T cos¢ sing T = cos¢g -—sing
| —sing cosg | sing cosg)
(4.5)

The numerical calculation is performed in the x-y
coordinates and the computational domain is
rectangular. Refer to OABC in Fig. 2. The size of
domain is xe[0,1/cosg| and yel0,1/sing]. In the

present paper, ¢ is set at 60° and three meshes are used:
33x65, 17x33 and 9x17. The corresponding time steps
are set to 0.01, 0.02 and 0.05. Periodic boundary
condition is imposed in both x- and y-directions.
Because there is no shock, « in the CESE method is set
to be null.

The initial conditions of vector variables in x-y
coordinate are obtained by coordinate transformation
as,

o)) ()
B, B, 4 Uy
Aided by Egs. (4.3-6), the initial flow conditions in x-
y coordinate can be expressed as functions of spatial
variables x and y. Moreover, the spatial derivatives of
the flow variables can also be obtained. After the
calculation, i.e., t = 5, flow variables are converted to

be in the &7 coordinate through the simple coordinate
transformation, Eq. (4.6).

(4.6)
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Figure 3a shows the profile of B,, along the line of y =
0 with different mesh resolution. The errors in the wave
amplitude are quickly reduced with the use of a refined
mesh. The solution obtained by the mesh of 33x65 is
nearly identical to the analytical solution. We remark
that there is no phase error in the result because the
solution is a standing wave. Figure 3b shows the Error
with respect to different mesh resolution for assessing
the divergence free constraint for the magnetic field.
The Error, defined in Eq. (4.1), is confined to at a very
small magnitude and remains at the same level for the
whole computational time.

To investigate the numerical solution of a traveling
wave, we let u; =0. Refer to Eq. (4.3). The Alfven

wave moves to towards the origin, i.e., (x, ) = (0, 0),
along the & direction. Due to the periodic condition, the
wave returns to its initial position by ¢ = 1. Figure 4a
shows the profile of B, along the line of y = 0 with
different mesh resolution. The errors in phase and
amplitude is reduced with higher mesh resolution.
Figures 4b shows the Error, Eq. (4.1), for assessing the
divergence free condition of the magnetic field with
different mesh resolution. No accumulation of Error
can be observed during the evolution of the flow
solution.

The above results show that for the smooth solutions
the CESE method without using any additional
numerical treatment can automatically keeps the
constraint of V- B = 0 in a satisfactory fashion.

4.2 Rotated Brio and Wu’s One-Dimensional
Test

Brio and Wu’s one-dimensional benchmark test [1] is
solved in a two-dimensional domain through the use of
coordinate rotation as illustrated in Section 4.1. Three
meshes are used: 99x199, 199x399 and 399x799. The
rotation angle is set to 45°. The computational domain

is, xe[0, ~/2/2] and ye[0, ~/2/2]. The initial

condition along the &-direction is

(p,u,v,w, p,Bn,Bz):

(1.000,0,0,0,1.0,+1,0 Jfor£<0.5. (4.7
(0.125,0,0,0,0.1,—1,0 )for £ > 0.5
with B, =0.75 and y=2. Through a simple

coordinate transformation, Eq. (4.6), the initial profiles
of velocity and magnetic fields in the x-y coordinates
are obtained. Non-reflect boundary condition along 7-
direction (y -x) is applied to the computational

11

boundary. Af and o are set to 0.0001 and 1,
respectively.

For comparison with the one-dimensional results in
[17], the two-dimensional results in x-y coordinates at ¢
= 0.1 are transformed to &7 coordinates. Figures Sa-e
show the comparison between one-dimensional results
and two-dimensional results, using a 399x799 mesh. In
Figs. Sa-e, one-dimensional results in [17] are plotted
by lines and two-dimensional results are plotted by
dots. By using the CESE method, the two-dimensional
results are in favorable agreement with the one-
dimensional ones and no special treatment has been
used to enforce the divergence-free constraint for the
magnetic field.

Analytically, the component B, should be a constant
along ¢& direction during evolution of waves. Figures
6a-h show its numerical solution with a mesh of
399x799 grid points at = 0.001, 0.004, 0.007, 0.01,
0.02, 0.04, 0.06 and 0.10, respectively. Some
oscillations are observed in the profile of B, but the
effect on results is small as shown in Fig. 5. Figure 7
shows the evolution of Error in Eq. (4.1) with different
mesh resolution. Starting from very small value, the
error increased to about 10" due to the solution
discontinuities and remained nearly at the same level
during the solution evolution. Figures 8 show the
distribution of B: at ¢ 0.1 with different mesh
resolution. Figures 9 show the distribution of density at
t = 0.1 with different mesh resolution.  For this flow
with solution discontinuities, we demonstrated that the
results by the two-dimensional CESE method are in
good agreement with the one-dimensional solutions
without using any special treatment to numerically
satisfy the constraint V-B=0. The V-B=0 is
violated mainly in the regions near shocks and the
values of |V . B| is bounded as shown in Fig. 7.

5. Concluding Remarks

In this paper, we reported the extension of the CESE
method to calculate the ideal MHD equations in two
spatial dimensions. Contrast to the modern upwind
schemes, the present approach has much simpler logics
and operational counts because no reconstruction
procedure or Riemann solver is needed. We also use
the CESE method to solve multi-dimensional MHD
equations without special treatment for remaining the
constraint of V-B =0. With the CESE method, the
V-B =0 constraint has been faithfully maintained in
smooth region. For region with shocks, the orders
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|V-B| of are bounded. No stability problem is

encountered in present computation. Two standard
MHD problems have been solved. In all cases,
numerical results by the CESE method compared
favorably with that obtained by using the higher order
modern upwind schemes. Present research has paved
the way to solve more complex non-ideal MHD
equations.
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Appendix: The Jacobian Matrix of Two-dimensional MHD Equations

- 0 1 0 0 0 0 0 0
-3 -1
2l 23] G-rke (= (=pv y-1 =B, 2-1)B, (2-7)B,
—uy Vv u 0 O _By _Bx 0
—uw w 0 u 0 -8B 0 -B,
of
F:a: 4 A 4 4 A 4 4 A&, (A.1)
0 0 0 0 0 0 0 0
uB,—vB B
. 2 _B 0 0 -v u 0
P P P
_uB, —wB, B o B 0 _u o u
I p P P |
Where
_» B}+B? B2 vB. +wB
AI=—y£+(7/—1)u(u2+v2+W2)+y—2u#+lu—x+3x#, (A.2a)
2 p 2 p p

VR S WE S b AN PRI S e N A0 (A.2b)
p 2 2

B_B
Ay = (1= y)uv ———=, (A.2¢)
P
B_B
A, =A=-puw———>=, (A.2d)
o)
As =, (A.2¢)
Ag =—mB, —(vB, +wB. ), (A.20)
Ay =—vB, +(2-y)uB,, (A2g)
and
Ay =-wB_ +(2 -y B, . (A.2h)
i 0 0 1 0 0 0 0 0
uv v u 0 0 - 1B, -y, 0
-3 -1

%v2+%(u2+w2) (=7l G=pp =y y-1 @-y)B. 1B, 1B
o —vw 0 w v 0 0 -B. -B,|, (A.3)

G=—== B, B, B, B, B B, B, B,

uBy —vB, _ 5 B, 0 0 v u 0

P P P
0 0 0 0 0 0 0 0
_YB.~vB, 0 B B 0 “w oy
L p p P |
Where
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ve
By =—y—+(y -’
P

B.B
By =(l=y)uv———",
Yo,

By=yLal-yppt+
p 2

BB,
By=(1-ypw- :
P

BS :W’
By =(2-yWB, —uB,,

—2 B4 B2 B’ B+ wB
V=2 Ba T2 (Y, Ty g MOxTWD:

vl 4w?)+ =
2 p 2 p P

2
=7 0 4 w?) y-2B;+B. yB,
P

B; =-wB, —(uB, +wB.,),

and

By =-wB, +(2-y B, .
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(A.4b)

(A.4d)

(A.4de)
(A.4f)
(A.4g)

(A.4h)



" —— n¥f2

, A=(j1, k1,n)
AU2 C'=(12, k2, :)
E'=(i3, k3, n)
¥, G'=( k. n)
. A=(1, K1, n-112)
A2 C=(j2, k2, n-112)
E=(i3, k3, n-1/2)
N Gk
la 1b
o"
. GI
G" F'
_— 1S,
e
l 1
— ,:,JFD\,‘ At/2
~ ) c
<1/ L
=T ; g —L iz
;D .
/ Q: centroid of plane AB'G'F
. ¥ P: centroid of plane BGG'B'
\ B “ Q: centroid of plane FGG'F'
Ic 1d
CI £y

A=(1.K1.n)  C=(2,k2.n)
E=(3,k3,n) G=(,k n)

le

Fig. 1: Definition of space-time mesh for a two-dimensional problem, Solution Elemenet (SE) and
Conservation Element (CE). (a). Spatial meshes, (b) The space-time grid points arrangement. (c).

SE(j, k,n). (d) Three planes belonging to SE(j,k,n) in CEl(j,k,n) (e)AA'C'E" and

its centroid G"'.
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Fig. 2: Relation between x-y coordinates and &7 coordinates. Rectangle OABC is the computational
domain.
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Fig. 3: A standing smooth Alfven wave proposed by Toth [9]. (a) Distribution of B, with different mesh
resolution at £ = 5. (b) Evolution of V - B defined in Eq. (4.3) with different mesh resolution.
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Fig. 4: A traveling smooth Alfven wave proposed by Toth [9]. (a) Distribution of B, with different mesh
resolution at ¢ = 5. (b) Evolution of V - B defined in Eq. (4.3) with different mesh resolution.
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Fig. 5: A Rotated one-dimensional MHD problem proposed by Brio and Wu [1] with 399x799 grid points.
Comparison is between one-dimensional solution and two-dimensional solution. The one-
dimensional solution in [17] is plotted by line. The two-dimensional solution is plotted by dots. (a)
Pressure. (b) Density (c) Velocity u. (d) Velocity v. (e) Magnetic field B,.
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Fig. 6: A rotated one-dimensional MHD problem proposed by Brio and Wu [1]. Snapshot of magnetic
field B at different time with 399x799 grid points: (a) t = 0.001. (b) = 0.004. (c) = 0.007. (d) ¢
=0.01. (e) t=0.02. () t=0.04. (g) t=0.06. (h) t=0.1.
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Fig. 7: A rotated one-dimensional MHD problem
proposed by Brio and Wu [1]. Evolution
of V.-B defined in Eq. (4.3) with

different mesh resolution.
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Fig. 8: A rotated one-dimensional MHD problem
proposed by Brio and Wu [1].
Distribution of By at ¢ = 0.1 with
different mesh resolution.

Fig. 9: A rotated one-dimensional MHD problem
proposed by Brio and Wu [1].
Distribution of density at ¢ = 0.1 with
different mesh resolution.
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