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Abstract 
The CESE method is a new numerical paradigm for 
nonlinear hyperbolic conservation laws. In this paper, 
we extend the CESE method for solving viscous flows. 
Both viscous and inviscid fluxes are incorporated into 
the space-time integration of the CESE method to 
enforce flux conservation locally and globally. To 
overcome excessive numerical damping, incurred by 
clustered mesh for resolving the boundary layer, a CFL 
number insensitive scheme, recently developed by 
Chang, is employed. The capabilities of the present 
scheme are demonstrated by numerical solutions of a 
shock/ boundary layer interaction problem and a driven 
cavity flow. Without preconditioning the flow equations, 
the present approach can calculate flows at all speed.  

 

1. Introduction 
The space-time conservation element and solution 

element (CESE) method is a new numerical framework 
for solving hyperbolic conservation laws. Contrast to 
modern upwind schemes, no reconstruction procedure 
or Riemann solver is needed and the computational 
logics and operational counts of the CESE method are 
much simpler and more efficient. Numerous one-, two-, 
and three-dimensional, steady and unsteady results, 

obtained  

by using the CESE method, have be reported in the 
cited references [1-8], including flows with complex 
shock systems, aero acoustics, flow dominated by 
vortices,  

The present paper aims at solving the Navier-stokes 
equations for viscous flows. In the setting of the 
space-time integral formation of the CESE method, the 
inviscid and viscous fluxes are incorporated in an equal 
footing manner to enforce local and global flux 
conservation. Moreover, to overcome the 
over-dissipation problem when CFL is smaller than 0.1, 
we also employ the newly developed CFL insensitive 
scheme by Chang and coworkers [9, 10, 11].  We note 
that numerical dissipation of the original CESE method 
tends to increase with decreasing local CFL number. 
Because the CFL numbers may vary significantly across 
the computational domain, usually due to non-uniform 
mesh, numerical solutions may become overly 
dissipated. To overcome this problem, Chang [9] 
proposed the CFL insensitive scheme for the Euler 
equations in one spatial dimension. The scheme was 
further extended for Euler equations in two spatial 
dimensions [10, 11]. Numerical results shows that the 
scheme is CFL number insensitive and could crisply 
resolve shocks as well as contact discontinuity. In the 
present paper, the new CFL insensitive methods are 
employed to resolve the boundary layer in solving the 
Navier-stokes equations. 

The present paper is organized as follows. In Section 2, 
we present the CESE method for the Navier-Stokes 
equations in two spatial dimensions. In section 3, we 
review the CFL insensitive scheme. Section 4 shows the 
numerical results for viscous flows. In particular, the 
same computer code has been used for a supersonic flow 
with shock/boundary layer interactions and 
incompressible cavity flow. We then offer concluding 
remarks and provide cited references. 
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2. Numerical Methods  

2.1  Space-Time Integration 
The dimensionless unsteady Navier-stokes equations 

in two-spatial-dimensions can be expressed as 

0=
∂
∂

−
∂
∂

−
∂
∂

+
∂
∂

+
∂
∂

y
g

x
f

y
g

x
f

t
u vmvmmmm ,   (2.1) 

for m = 1, 2, 3, 4, where mu , mf , mg  mfν  and mgν  
are flow variables, inviscid fluxes and viscous fluexs in 
x- and y- directions, respectively, as  

( ) ( )TT evuuuuu ,,,,,, 4321 ρρρ= ,       (2.2a) 

( ) ( )( )TT upeuvpuuffff ++= ,,,,,, 2
4321 ρρρ , 

                 (2.2b) 

( ) ( )( )TT vpepρvρvuρvgggg ++= ,,,,,, 2
4321 , 

                 (2.2c) 

( ) ( )Txxyxxxyxx
T qvuffff −+= ττττνννν ,,,0,,, 4321

                 (2.2d) 

and 

( ) ( )Tyyyxyyyxy
T qvugggg −+= ττττνννν ,,,0,,, 4321

                 (2.2e) 

where ρ, p, u and v are density, pressure, velocity 
components in x- and y-direction. The specific total 
energy e is ( ) ( ) 21 22 vupe ++−= ργ . γ is the specific 
heat ratio. The stress components in Eq (2.2d-e) are as 
follows, 
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where Re is the Reynolds number, Pr the Prandtl number 
and M the freestream Mach number. 

Let xx =1 , yx =2  and tx =3  be the coordinates of 
a three-dimensional Eucilidean space 3E . Equation (2.1) 
becomes the divergence free condition in 3E , 

0=⋅∇ mh ,           (2.3) 

where ( )mmmmmm uggff ,, νν −−=h  are the current 
density vectors in 3E . By using Gauss’ divergence 
theorem in 3E , we have 

( )
∫∫ =⋅=⋅∇
VS

m
V

m ddV 0shh ,      (2.4) 

for m = 1, 2, 3, 4, where S(V) is the boundary of an 
arbitrary space-time region V in 3E  and σdd ns = , 
where σd  and n are the area and the outward unit 
normal vector of a surface element on S(V). 

2.2 CE and SE 
The two-dimensional spatial domain is divided into 

no-overlapped triangles. Refer to Fig. 1. Point G, the 
centroid of ∆BDF, is marked by a solid circle, and A, C 
and E, centorids of ∆FMB, ∆BJD and ∆DLF, and are 
marked by hollow circles. In Fig. 2, A, B, C, D, E and F 
form a hexagon ABCDEF. Point G , marked by a solid 
square is the centroid of hexagon ABCDEF, and it is the 
solution point of ∆BDF.  Let 1qS , 2qS  and 3qS  be areas 
of quadrilaterals ABGF, BCDG and DEFG, and 
( )11, qq yx , ( )22 , qq yx  and ( )33, qq yx  be the spatial 
coordinates of their centroids. The spatial coordinates of 
point G  are 
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Points A , C  and E , marked by hollow squares in 
Fig. 2, and are the solution points of ∆FMB, ∆BJD and 
∆DLF, respectively. In the space-time domain, A, B, C, 
D, E, F and G are at the time level 21−n , and 'A  'B , 

'C , 'D , 'E , 'F  and 'G  are at the time level n . Points 
"A , "B , "C , "D , "E , "F  and "G  are at the time level 

21+n . Let j, k and n be indices for x, y and t, 

respectively. Points 'G , A, C and G are marked by 
( )nkj ,, , ( )21,1,1 −nkj , ( )21,2,2 −nkj  and 
( )21,3,3 −nkj , respectively. Shown in Fig. 3, the 

solution points 'G , A , C  and E  are placed in a 
staggered positions in 3E , and their coordinates are 
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marked by ( )nkj ,, , ( )21,1,1 −nkj , ( )21,2,2 −nkj  

and ( )21,3,3 −nkj . Note that, a triangle’s centroid 'G  

and the associated solution point, 'G  have different 
spatial coordinates. In the calculation, flow variables are 
stored at the solution points.  

As presented in Fig. 4, the solution element 
( )nkjSE ,,  associated with point 'G ( )nkj ,, , is the 

union of four planes, i.e., the hexagon '''''' FEDCBA , 
the quadrilaterals ""BGGB , ""DGGD  and ""FGGF , 
and their immediate neighborhood.  Similarly, there are 
three SEs, i.e., ( )21,1,1 −nkjSE , ( )21,2,2 −nkjSE  
and ( )21,3,3 −nkjSE  associated with points A, C and 
E, respectively.  The surfaces of the four SEs form three 
CEs for point 'G .  Refer to Fig. 3.  Three CEs  are 
quadrilateral cylinders '''' FGBABGFA , 

'''' BGDCDGBC  and '''' DGFEFGDE , and are referred 
to as ( )nkjCE ,,1 , ( )nkjCE ,,2  and ( )nkjCE ,,3 , 
respectively. ( )nkjCE ,,  is the union of ( )nkjCE ,,1 , 

( )nkjCE ,,2  and ( )nkjCE ,,3 . 

Inside ( )nkjSE ,, , the first-order Taylor series 
expansion is employed to descritize the flow variables 
and inviscid fluxes: 
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for m = 1, 2, 3, 4. At point ( )nkj ,, , we let 
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for m = 1, 2, 3, 4. To proceed, let lmf ,  and lmg ,  be the 

entries of Jacobian matrixes F and G, i.e.,  
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for m, l = 1, 2, 3, 4.  Aided by the chain rule, we have, 
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Aided by Eqs. (2.11-14), Eq. (2.9) can be recast to 
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Aided by the chain rule and Eqs. (2.15), ( )n kjmtf ,  and 

( )n kjmtg ,  can be expressed as, 
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for m = 1, 2, 3, 4. Aided by Eqs. (2.11-17), Eqs. (2.6-8) 
could fully specify the distribution of *

mu , *
mf  and *

mg  

inside ( )nkjSE ,,  when values of ( )n kjmu ,  ( )n kjmxu ,  and 

( )n
kjmyu

,
 are known.  

The above expressions are all concerned with the 
distribution of flow variables and inviscid fluxes inside a 
SE. For expressing the viscous fluxes, mfν  and mgν , 
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with mu  mxu  and myu , let’s express xu ∂∂ and yv ∂∂  
with mu , mxu  and myu  as, 
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With the aid of Eq. (2.18), xxτ  can be expressred as  
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             (2.19) 

Similar expressions can be obtained for yyτ , xyτ , 

xq and yq  in Eq. (2.2d-e). Moreover the viscous fluxes, 

mfν  and mgν , can be expressred by mu , mxu  and myu . 
Aided with Eq. (2.6), the distribution of flow variables 
inside ( )nkjSE ,,  can be obtained. With flow variables, 

the distribution of viscous fluxes, *
mfν  and *

mgν , can be 

further expressed by ( )n
kjmu ,  ( )n kjmxu ,  and ( )n

kjmyu
,

.  

With known values of ( )n kjmu , , ( )n kjmxu ,  and ( )n
kjmyu

,
, 

the distribution of flow variable *
mu , inviscid fluxes *

mf  

and *
mg , and viscous fluxes *

mfν  and *
mgν ,  can be fully 

specified inside ( )nkjSE ,, . Let 

( )****** ,, mmmmmm uggff νν −−=h , and Eq. (2.4) can be 
approximated by 

( )
∫ =⋅
VS

m d 0* sh ,         (2.20) 

for m = 1, 2, 3, 4. 

2.3 Time Marching for u 

By imposing Eq. (2.20) over ( )nkjCE ,, , an algebraic 
equation can be obtained based on the global flux 
conservation and ( )n kjmu ,  can be obtained directly for 
each m = 1, 2, 3, 4. To proceed, we calculate the flux 
leaving surfaces of ( )nkjCE ,, . Consider ( )nkjCE ,, , 

the hexahedral cylinder '''''' FEDCBABCDEFA  
referring to Fig. 3. The surfaces of ( )nkjCE ,, can be 

divided into four groups. Hexahedron '''''' FEDCBA  
belongs to ( )nkjSE ,, . Quadrilaterals ABGF , '' AABB  

and '' AAFF  belong to ( )21,1,1 −nkjSE . Quadrilaterals 

CDGB , ''CCDD  and ''CCBB  belong 
to ( )21,2,2 −nkjSE . Quadrilaterals EFGD , ''EEFF  

and ''EEDD  belong to ( )21,3,3 −nkjSE . Let S be the 
area of the surface. Over each area, let the outward 
normal vector be n, and the surface vector s = n S.  

The flux leaving a surface is equal to the scalar product 
between the vector ( )****** ,, mmmmmm uggff νν −−=h , 
evaluated at surface’s centroid, and the surface vector s. 
For hexahedron '''''' FEDCBA  in E3, its surface vector 
is 

( )321,0,0'''''' qqqFEDCBA SSS ++=s ,   (2.21) 

and the coordinates of its centroid 'G are ( )n
GG tyx ,, . 

The flux leaving the surface '''''' FEDCBA  is  

( ) ( )( )n kjmqqqFEDCBAm uSSSFLUX ,321'''''' ++= . 
             (2.22) 

Let’s calculate the fluxes leaving surfaces belonging to 
( )21,1,1 −nkjSE . For quadrilateral '' AABB , its surface 

vector is 
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where the viscous fluxes, AB
mfν  and AB

mgν , are obtained 

from flow variables at the centroid of surface '' AABB  
and ( ) 21

1,1
−n

kjmxu  and ( ) 21
1,1

−n
kjmyu . 

For quadrilateral '' AAFF , its surface vector is 
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where the viscous fluxes, AF
mfν  and AF

mgν , are obtained 

from flow variables at the centroid of surface '' AAFF  
and ( ) 21

1,1
−n

kjmxu  and ( ) 21
1,1

−n
kjmyu . The flow variables at 

centroid are obtained following Eq. (2.6). 

For quadrilateral ABGF, its surface vector is 

( )1,0,0 qABGF S−=s ,       (2.27) 

and the coordinates of its centroid are ( )21
11 ,, −n

qq tyx . 
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mCD gxxfyyt

νν −+−
∆

−
2

 

( ) ( ) ]CB
mCB

CB
mBC gxxfyy νν −+−+ . (2.30) 

The fluxes leaving the three surfaces of 
( )21,3,3 −nkjSE  are 

( ) =− 21
3
n

mflux ( ) ( )( )[ 21
3,33

21
3,33

−− −+− n
kjmxEq

n
kjmq uxxuS  

( )( ) ]21
3,33

−−+ n
kjmyEq uyy  

( )( ) 21
3,32

−−
∆

+ n
kjmDF fyyt  

( )( )[ EFEF yyxxt
−+

∆
+

4
 

( )( ) ( )]( ) 21
3,32 −−−−++ n

kjmxDFEDEED fyyxyyxx

 ( )[ ]( ) 21
3,3

22 2
4

−−−−
∆

+ n
kjmyDFEDF fyyyyyt  

( ) ( )( ) 21
3,3

2

8
−−

∆
+ n

kjmtDF fyyt  

( )( ) 21
3,32

−−
∆

+ n
kjmFD gxxt  

( )[ ]( ) 21
3,3

22 2
4

−−−−
∆

+ n
kjmxFDEFD gxxxxxt  

( )( )[ EDED yyxxt
+−

∆
+

4
 

( )( ) ( )]( ) 21
3,3

2 −−−+−+ n
kjmyFDEFEFE gxxyyyxx

 ( ) ( )( ) 21
3,3

2

8
−−

∆
+ n

kjmtFD gxxt  

( ) ( )[ EF
mFE

EF
mEF gxxfyyt

νν −+−
∆

−
2

 

( ) ( ) ]ED
mED

ED
mDE gxxfyy νν −+−+ . (2.31) 

For each m =1, 2, 3, 4. The viscous fluxes, CD
mfν , 

CD
mgν , CB

mfν , CB
mgν , EF

mfν , EF
mgν , ED

mfν  and ED
mgν , are 

obtained in the similar way of that for AF
mfν  and AF

mgν . 
For flux conservation over ( )nkjCE ,, , we have  

( ) ( ) 21
1''''''
−+ n

mFEDCBAm fluxFLUX  

( ) ( ) 021
3

21
2 =++ −− n

m
n

m fluxflux . (2.32) 

Aided by Eq. (2.22), an explicit expression for ( )n kjmu ,  

can be obtained from above equation as  

( ) ( ) ( ) ( )
321

21
3

21
2

21
1

,
qqq

n
m

n
m

n
mn

kjm SSS
fluxfluxflux

u
++

++
−=

−−−

.

             (2.33) 

2.4 Time Marching for ux and uy 
In this section, we illustrate the calculation of the 

spatial derivatives of the flow variables, i.e., 
( ) ( )n

kjmy
n

kjmx uu
,,  and . We note that point 'G  is not the 

centroid of ''' ECA∆  unless a uniform mesh is used. As 
shown in Fig. 5, a triangle *** ECA∆ , whose centroid is 
point 'G , is obtained by parallel moving ''' ECA∆  in 
the spatial domain. The vertices’ coordinates of 

*** ECA∆  are 

( )
( ) 323

323

*

*

ECAGA

ECAGA

yyyyy

xxxxx

−−+=

−−+=
,   (2.34) 

( )
( ) 323

323

*

*

EACGC

EACGC

yyyyy

xxxxx

−−+=

−−+=
,    (2.35) 

( )
( ) 323

323

*

*

CAEGE

CAEGE

yyyyy

xxxxx

−−+=

−−+=
.    (2.36) 

Flow variables at 'G , i.e., ( )n kjmu , , are calculated 

from Eq. (2.33). Flow variable at point *A  is obtained 
by a first-order Taylor series, Eq. (2.6), as 

( ) ( ) ( ) 21
1,1

21
1,11,1

'

2
−− ∆

+=
n

kjmt
n

kjm
n

kjm utuu

( )( ) ( )( ) 21

1,1

21
1,1 **

−−
−+−+

n

kjmyAA
n

kjmxAA uyyuxx . (2.37) 

Similarly, ( )n kjmu 2,2
' and ( )n kjmu 3,3

' , at *C  and *E can 

be obtained. Based on ( )n kjmu 1,1
' , ( )n kjmu 2,2

'  and 

( )n kjmu 3,3
'  on points *A , *C  and *E , we apply central 

differencing to calculate ( )n kjmxu ,  and ( )n
kjmyu

,
 at point 

'G , i.e.,  

( ) ( )( )
 −=

n
kjmEC

ECA

n
kj

c
mx uyy

S
u 1,1

'
, **

***2
1

( )( ) ( )( ) 
−+−+

n
kjmCA

n
kjmAE uyyuyy 3,3

'
2,2

'
**** ,(2.38) 
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( ) ( )( )
 −=

n
kjmCE

ECA

n

kj
c
my uxx

S
u 1,1

'
, **

***2
1

( )( ) ( )( ) 
−+−+

n
kjmAC

n
kjmEA uxxuxx 3,3

'
2,2

'
**** ,(2.39) 

where *** ECAS∆  is the area of *** ECA∆ : 

( *********
2
1

AEECCAECA yxyxyxS ++=∆  

   )****** CEACEA yxyxyx −−− .  (2.40) 

Similar central differencing can be applied to calculate 
( )( )n kjmxu ,
1  and ( )( )n

kjmyu
,

1  for '** GEC∆ , ( )( )n kjmxu ,
2  and 

( )( )n
kjmyu

,
2  for *'* EGA∆ , and ( )( )n kjmxu ,

3  and ( )( )n
kjmyu

,
3  for 

'** GCA∆ . Based on the re-weighting procedure in [4], 
we calculate ( ) ( )n

kjmy
n

kjmx uu
,,  and  as, 

( ) ( )n kj
w
mx

n
kjmx uu ,,  =  and ( ) ( )n

kj
w
my

n
kjmy uu

,,
 = ,  (2.41) 

where 

( ) ( ) ( )( )
=

n
kjmxmm

n
kj

w
mx uu ,

1
32,

1 αθθ
ω

 ( ) ( )( ) ( ) ( )( ) 
++

n
kjmxmm

n
kjmxmm uu ,

3
21,

2
31

αα θθθθ ,  (2.42) 

( ) ( ) ( )( )

=

n

kjmymm
n

kj
w
my uu

,
1

32,
1 αθθ
ω

 ( ) ( )( ) ( ) ( )( )

++

n

kjmymm
n

kjmymm uu
,

3
21,

2
31

αα θθθθ , (2.43) 

and  

( )( ) ( )( )
n

kj

r
my

r
mxmr uu

,

22








+=θ ,      (2.44) 

( ) ( ) ( )ααα θθθθθθω 313221 mmmmmm ++= .  (2.45) 

The above CESE schemes are stable for CFL number < 
1., while α≥0. Equations (2.33) and (2.41) form the 
commonly used CESE scheme, the a-α scheme. 
Hereafter we refer it as the original scheme. 

 

3. CFL Insensitive Scheme  

3.1 The CFL Condition 
The CFL number in two spatial dimensions is defined 

hereafter. The spatial projections of solution points are 
presented in Fig. 6, in which solid squares are at time 

level ...,2,1,0=n , and hollow squares are at 
...,25,23,21=n . According to the CESE method, 

the flow variables at solution point 'G  (j, k, n) are 
determined by those at seven solution points A , B , C , 
D , E , F  and G  at the time level n-1. The hexagon 

FEDCBA  is the numerical domain of dependence for 
the solution at 'G  at time level n-1.  

Figure 7 shows the projection of a Mach cone on the 
spatial plane at t = (n-1)∆t, with point 'G  being its 
vertex. The result is a circle with a radius of tc∆ on the 
plane with O as the center of the circle. The boundary 
and interior of the circle form the domain of dependence 
for the flow solution at 'G .  Thus, the CFL condition for 
the solution at 'G  is defined such that if and only if the 
domain of dependence, i.e., the circle, lies in the interior 
of the hexagon FEDCBA .  Let u, v and c be velocity 
components and sonic speed at solution point 'G at time 
level n-1. As shown in Fig. 7, for the velocity vector 

OG , we have  

22 vutOG +∆= , and ( )uvarctan0 =θ .  (3.1) 

Let line segment HG  be the distance from point G  to 
boundary BA , we have  

( ) ( )222 ABABGBA yyxxSHG −+−= ∆ , and  

AB

BA

yy
xx

−
−

= arctan1θ .        (3.2) 

As shown in Fig. 7, we choose a point P on the circle 
such that the line segment OP is parallel to line segment 

HG . Let R and S be the projection of O and P on HG . 
Obviously P is the closest point to the boundary BA on 
the circle. To keep the circle inside the hexagon, with 

BA as one of the boundary segments, we require that 
( ) 11 <= HGSGv ,        (3.3) 

where  

( )



 −++∆= 01

22 cos θθvuctSG .   (3.4) 

For the other five boundary line segments, we have 
similar conditions, i.e., ( )2v  for CB , ( )3v  for DC , 
( )4v  for ED , ( )5v  for FE , and ( )6v  for AF . The 

CFL condition is that, 
( ) ( ) ( ) ( ) ( ) ( ){ }654321 ,,,,,max vvvvvvve = .   (3.5) 
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1<ev .            (3.6) 

Essentially, Eqs. (3.5-6) specify that the domain of 
dependence of the flow solution at G ′ must lies within 
its numerical domain of dependence, i.e., hexagon 

FEDCBA . In computation, t∆ is chosen to satisfy Eq. 
(3.5-6).  

3.2 The CFL Insensitive Scheme  
According to [9-11], the CFL insensitive scheme is 

constructed such that (i) it would reduce to the original a 
scheme in the limit of CFL→0, and (ii) it would reduce 
to the original a-α scheme in the limit of CFL→1.  

As shown in Fig. 8, points Q1, Q2 and Q3 are centroids 
of quadrilaterals ABGF, BCDG and DEFG, points P1, P2 
and P3 are defined within line segments 1QA ′ , 2QC ′  
and 3QE ′  as, 

( )
( ) 1

1

1

1

1

1

qeAep

qeAep

yvyvy

xvxvx

−+=

−+=

′

′ ,       (3.7) 

( )
( ) 2

2

1

1

2

2

qeCep

qeCep

yvyvy

xvxvx

−+=

−+=

′

′ ,       (3.8) 

( )
( ) 3

3

1

1

3

3

qeEep

qeEep

yvyvy

xvxvx

−+=

−+=

′

′ ,       (3.9) 

Take Eq. (3.7) for instance, with CFL number, ev , 
changing from 0 to 1, point P1 moves from point Q1 to 
A ′ . Similar to the fact that the centroid of ''' ECA∆  

may not be G ′ , the centroid of 321 PPP∆  may not be G ′ . 

Similar to that in section 2.4, the centroid of *
3

*
2

*
1 PPP∆ , 

i.e., point G ′ , can be obtained by parallel translation of 
''' ECA∆ . The coordinates of the vertexes of *

3
*
2

*
1 PPP∆  

are 

( )

( )321

321

23
3

1

23
3

1

**
1

**
1

qqqG
e

Aep

qqqG
e

Aep

yyyyvyvy

xxxxvxvx

−−+
−

+=

−−+
−

+=

′

′
,(3.10) 

( )

( )312

312

23
3

1

23
3

1

**
2

**
2

qqqG
e

Cep

qqqG
e

Cep

yyyyvyvy

xxxxvxvx

−−+
−

+=

−−+
−

+=

′

′
,(3.11) 

( )

( )213

213

23
3

1

23
3

1

**
3

**
3

qqqG
e

Eep

qqqG
e

Eep

yyyyvyvy

xxxxvxvx

−−+
−

+=

−−+
−

+=

′′

′
.(3.12) 

Flow variables at *
1P , *

2P  and *
3P  are obtained by 

( ) ( ) ( )

( )( ) ( )( )[ ]21
1,1

21
1,1

21
1,1

21
1,1

'

*
1

*
1

*
1 2

−−

−−

−+−+

∆
+=

n
kjmyAp

n
kjmxAp

n
kjmt

n
kjmpm

uyyuxx

utuu
,

                 (3.13) 

( ) ( ) ( )

( )( ) ( )( )[ ]21
2,2

21
2,2

21
2,2

21
2,2

'

*
2

*
2

*
2 2

−−

−−

−+−+

∆
+=

n
kjmyCp

n
kjmxCp

n
kjmt

n
kjmpm

uyyuxx

utuu

                 (3.14) 

( ) ( ) ( )

( )( ) ( )( )[ ]21
3,3

21
3,3

21
3,3

21
3,3

'

*
3

*
3

*
3 2

−−

−−

−+−+

∆
+=

n
kjmyEp

n
kjmxEp

n
kjmt

n
kjmpm

uyyuxx

utuu

                 (3.15) 

With the values of flow variables at points *
1P , *

2P , 
*

3P  and G ′  known, the CFL insensitive scheme can be 
constructed. There are several versions of CFL 
insensitive scheme as stated in [9-11]. In the present 
paper, the Scheme II in [10] is applied. For completeness, 
the equations are provided in the following. 

( ) ( )( )[ ] ( )( )
( )( )[ ] ( )( ) ( )( )[ ] ( )( )


++++


 +≈

n
kjmx

n
kjme

n
kjmx

n
kjme

n
kjmx

n
kjme

n
kj

w
mx

usvfusvf

usvf
e

u

,
3

,3,
2

,2

,
1

,1,

11

11

                 (3.16) 

( ) ( )( )[ ] ( )( )
( )( )[ ] ( )( ) ( )( )[ ] ( )( )


++++


 +≈

n

kjmy
n

kjme
n

kjmy
n

kjme

n

kjmy
n

kjme
n

kj
w
my

usvfusvf

usvf
e

u

,
3

,3,
2

,2

,
1

,1,

11

11

                 (3.17) 

where 

( ) ( ) ( ) ( )[ ]n
kjm

n
kjm

n
kjme sssvfe ,3,2,13 +++= ,     (3.18) 

( ) ( ) 1
,,min 321

, −=
mmm

mrn
kjmrs

φφφ
φ

,        (3.19) 

321 mmm θθφ = , 312 mmm θθφ =  and 123 mmm θθφ = , 
                 (3.20) 

and 

( ) ee vvf 1= .             (3.21) 
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4. Numerical Results  
Two problems are solved by using the above CESE 

method for the Navier-Stokes equations. 

4.1 Shock Wave Boundary Layer Interaction  
The shock wave boundary layer interaction problem in 

[12] is used as the test case. This problem is often used as 
a standard test for Navier-Stokes solver. As shown in Fig. 
9, the computational domain is (x, y) ∈ [0, 2.4]×[0, 
1.164]. The left boundary is defined as the inlet 
boundary where specified boundary condition is 
employed. The flow on the top boundary is specified to 
form an oblique shock, impinging on the wall. The right 
boundary is a supersonic outlet, where non-reflective 
boundary condition is used. The bottom boundary 
consists of a symmetric boundary and a solid wall, 
whose lengths are 0.8 and 1.6 respectively. For the solid 
wall, the no-slip boundary condition is employed. The 
incoming shock wave, emanating from the upper-left 
corner of the computational domain, impinges on the 
solid wall with an angle of 32.6o with respect to the wall. 
The flow Mach number on the left inlet boundary is 2.0. 
The flow condition on the top boundary is calculated 
based on the oblique shock condition to form the desired 
shock wave angle.  

We consider the viscous flow with Re=296,000. The 
computational domain is covered by 80,000 triangles. 
To resolve boundary layer, grid points are clustered to 
solid wall. The first grid point to the solid wall is 5×10-5 
of the domain height. Due to the non-uniform mesh, the 
local CFL number varies significantly across the 
computational domain, the difference in CFL numbers is 
around 60 times. Figure 10 shows the pressure contours. 
There are 50 contours ranging equally from 0.01 to 0.25. 
The pressure contours obtained by CFL insensitive 
scheme are shown in Fig. 10a. Pressure contours by the 
original scheme are shown in Fig. 10b. The CFL 
insensitive scheme can crisply capture shocks, while the 
original scheme shows excessive numerical diffusion 
due to small CFL number. For viscous flow simulation, 
the CFL insensitive scheme plays an important role in 
capturing sharp shocks and detailed flow structure 
across the domain.  

Because the impinging shock is strong, boundary layer 
separation occurs at the shock impinging point at the 
wall. Figure 11 shows the velocity vectors in the 
recirculation zone. The change of boundary layer 
thickness and a boundary layer separation can be 
observed. Figures 12-13 show the pressure and the 
friction coefficient along solid wall, respectively. 
Curves are the calculated results and symbols are the 

experimental data. The present results are in good 
agreement with the experimental data.  

4.2 Driven Cavity Flow 
The driven cavity flow is also a benchmark problem 

for testing incompressible viscous solvers [13]. The 
CESE method is employed for this incompressible flow 
calculation. The computational domain is (x, y) ∈ [0, 
1]×[0, 1.]. The top boundary is a moving solid wall, and 
the other three boundaries are stationary walls. We 
conducted computation with Re=1,000. 12,000 triangles 
are used to cover the computation domain. The 
distributions of velocity components along centerlines 
are plotted in Fig. 14 and 15. The velocity vector field is 
plotted in Fig. 16.  The present results are in good 
agreement with the data reported in [13]. 

 

5. Concluding Remarks 
In this paper, the CESE method is extended to solve 

the Navier-stokes equations. In the setting of the 
space-time integration of the CESE method, the inviscid 
flux and viscous flux are incorporated to enforce local 
and global flux conservation. A CFL insensitive CESE 
scheme is employed to provide high resolution across 
the computational domain, for overcoming excessive 
damping incurred by small CFL numbers in the original 
CESE method. To demonstrate the capabilities of the 
new approach, we calculated a shock/boundary layer 
interaction problem and a driven cavity flow. Numerical 
results show that complex physical phenomena at a wide 
range of Mach numbers can be predicted accurately by 
the CESE method.   
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Fig. 1: Spatial computational domain with a                       Fig. 2: Definition of the solution points. 
           triangular mesh. Circles (solid or hollow)  
           are triangles’ centroids. 
 

 

 

  
Fig. 3: Grid point arrangement in the space-time domain.     Fig. 4: Definition of Solution Element ( )nkjSE ,,    
                                                                                                        associated with point ( )nkjG ,,' . 

 
 

 

  
 

Fig. 5: Parallel translation of ''' ECA∆ and *** ECA∆ .      Fig. 6: The numerical domain of dependence 
           Solution point 'G is *** ECA∆ ’s centroid.                       in  the CESE method. 
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Fig. 7: Definition of the local CFL condition for               Fig. 8: Definition of points Q1, Q2, Q3, P1, P2 
           two-dimensional problems.                                                and P3 for the CFL-insensitive schemes. 

 

 
Fig. 9. Geometry of shock boundary layer interaction problem 
 

 
10a.                                                                       10b. 

 
Fig. 10. Pressure contours of the shock boundary layer interaction problem with Re=296000. (a). Pressure 

contours obtained by CFL insensitive scheme. (b). Pressure contours obtained by original CESE 
scheme.  

 
11a.                                                                11b. 

 
Fig. 11. Velocity vectors around shock impinging point at wall. (a). Overall view. (b). Enlarged view.  
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Fig. 12. Pressure distribution along wall.                            Fig. 13. Skin friction distribution along wall. 
 

  
Fig. 14. Distribution of velocity component u                     Fig. 15. Distribution of velocity component v 
             along the vertical centerline.                                                along the horizontal centerline. 
 

 
Fig. 16. Velocity vectors of the cavity driven problem. 


