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Abstract

The CESE method is a new numerical paradigm for
nonlinear hyperbolic conservation laws. In this paper,
we extend the CESE method for solving viscous flows.
Both viscous and inviscid fluxes are incorporated into
the space-time integration of the CESE method to
enforce flux conservation locally and globally. To
overcome excessive numerical damping, incurred by
clustered mesh for resolving the boundary layer, a CFL
number insensitive scheme, recently developed by
Chang, is employed. The capabilities of the present
scheme are demonstrated by numerical solutions of a
shock/ boundary layer interaction problem and a driven
cavity flow. Without preconditioning the flow equations,
the present approach can calculate flows at all speed.

1. Introduction

The space-time conservation element and solution
element (CESE) method is a new numerical framework
for solving hyperbolic conservation laws. Contrast to
modern upwind schemes, no reconstruction procedure
or Riemann solver is needed and the computational
logics and operational counts of the CESE method are
much simpler and more efficient. Numerous one-, two-,
and three-dimensional, steady and unsteady results,
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obtained

by using the CESE method, have be reported in the
cited references [1-8], including flows with complex
shock systems, aero acoustics, flow dominated by
vortices,

The present paper aims at solving the Navier-stokes
equations for viscous flows. In the setting of the
space-time integral formation of the CESE method, the
inviscid and viscous fluxes are incorporated in an equal
footing manner to enforce local and global flux
conservation. Moreover, to overcome the
over-dissipation problem when CFL is smaller than 0.1,
we also employ the newly developed CFL insensitive
scheme by Chang and coworkers [9, 10, 11]. We note
that numerical dissipation of the original CESE method
tends to increase with decreasing local CFL number.
Because the CFL numbers may vary significantly across
the computational domain, usually due to non-uniform
mesh, numerical solutions may become overly
dissipated. To overcome this problem, Chang [9]
proposed the CFL insensitive scheme for the Euler
equations in one spatial dimension. The scheme was
further extended for Euler equations in two spatial
dimensions [10, 11]. Numerical results shows that the
scheme is CFL number insensitive and could crisply
resolve shocks as well as contact discontinuity. In the
present paper, the new CFL insensitive methods are
employed to resolve the boundary layer in solving the
Navier-stokes equations.

The present paper is organized as follows. In Section 2,
we present the CESE method for the Navier-Stokes
equations in two spatial dimensions. In section 3, we
review the CFL insensitive scheme. Section 4 shows the
numerical results for viscous flows. In particular, the
same computer code has been used for a supersonic flow
with  shock/boundary  layer interactions and
incompressible cavity flow. We then offer concluding
remarks and provide cited references.
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2. Numerical Methods

2.1 Space-Time Integration

The dimensionless unsteady Navier-stokes equations
in two-spatial-dimensions can be expressed as

aufn +%+agm _afvm _6g\/‘lﬂ

ot Ox oy Ox oy

=0, 2.1)

form=1,2,3,4, where u,,, f,,, £, fm and g,

are flow variables, inviscid fluxes and viscous fluexs in
x- and y- directions, respectively, as

(u13u27u39u4)r :(papuapvae)Ta (223)
(fl’f25f3’f4)T =(pu,pu2+p,puv,(e+p)u)T,
(2.2b)
(gl,gz,g3,g4)T :(PV’PV%PVZJFP,(%LP)V)T,
(2.2¢)
(fvl!fv2’fv3’fv4)T :(O’Txxsrxy’urxx"—vrxy_qx)T
(2.2d)

and

T
= (O,Txy,ryy,urxy +vr,, —qy)
(2.2¢)

(gvlsgv2>gv3»gv4)T

where p, p, u and v are density, pressure, velocity
components in x- and y-direction. The specific total

energy eis e = p/(}/ - 1)+ p(u2 +v? )/2 .y is the specific
heat ratio. The stress components in Eq (2.2d-e) are as

follows,
;o= A4 _20v
™ Rel3ox 30y
_ L[4 _20u
7 Re\3dy 3ox
1 (0ou ov
T, =—|—+—
¥ Reldy ox
~ 1 or
o (y —1)M*RePr ox
1 or

O (y —1)M*RePr y

where Re is the Reynolds number, Pr the Prandtl number
and M the freestream Mach number.

Let X, = X,x, =y and x; =¢ be the coordinates of
a three-dimensional Eucilidean space E5. Equation (2.1)

becomes the divergence free condition in Ej,

V-h, =0, 2.3)

where h,, :(f;n —fom>&m —gwn,um) are the current
density vectors in E; . By using Gauss’ divergence

theorem in E;, we have

J'V -h,dV = ff)h
4 s()

‘ds=0, (2.4)

m

for m =1, 2, 3, 4, where S(V) is the boundary of an
arbitrary space-time region V in E; and ds=ndo ,
where do and n are the area and the outward unit
normal vector of a surface element on S(7).

2.2 CE and SE

The two-dimensional spatial domain is divided into
no-overlapped triangles. Refer to Fig. 1. Point G, the
centroid of ABDF, is marked by a solid circle, and A, C
and E, centorids of AFMB, ABJD and ADLF, and are
marked by hollow circles. In Fig. 2, A, B, C, D, E and F

form a hexagon ABCDEF. Point G , marked by a solid
square is the centroid of hexagon ABCDEF, and it is the
solution point of ABDF. Let S, S, and S ; be areas
of quadrilaterals ABGF, BCDG and DEFG, and
(qu,yql) s (xqz,yqz) and (xq3,yq3) be the spatial
coordinates of their centroids. The spatial coordinates of
point G are

Sq]xq] +Sq2xq2 + Sq3xq3

XE =
Sq] Jqu2 +Sq3

Squql +Sq2yq2 +Sq3yq3
Sq+Sp+ 8

2.5)

Y =

Points A, C and E , marked by hollow squares in
Fig. 2, and are the solution points of AFMB, ABJD and
ADLF, respectively. In the space-time domain, A, B, C,

D, E, F and G are at the time level n—1/2, and A4 B s
C s D', E s F' and G are at the time level 7. Points
A“, B’ s C", D" s E' s F" and G are at the time level
n+1/2 . Let j, k and n be indices for x, y and ¢,
respectively. Points G , A, C and G are marked by
(okon) o (LKLR=1/2) , (j2,k2,n-1/2) and
(j3,k3,n—1/2), respectively. Shown in Fig. 3, the
solution points G , 4, C and E are placed in a
staggered positions in E;, and their coordinates are

American Institute of Aerospace and Astronautics



marked by (j,k,n), (j1, k1, n—1/2), (j2,k2,n—1/2)

4
\ A ", 2.11
and (3, k3, n —1/2). Note that, a triangle’s centroid G Fow) 12:1: ml )C,k (s )-/’k @11
and the associated solution point, G have different
spatial coordinates. In the calculation, flow variables are ( f )n
my

stored at the solution points. J

M»

(fml)/k(l)”k» (212)

~
I

1
As presented in Fig. 4, the solution element

4

SE(j, k,n) associated with point G' (j, k,n), is the gmx Z gm,)” u,x jk , (2.13)
union of four planes, i.e., the hexagon ABC'D'E'F', =1
the quadrilaterals B'BGG' , D' DGG and F FGG ,  and
and their immediate neighborhood. Similarly, there are 4
three SEs, ie., SE(jLkl,n—1/2), SE(j2,k2,n—1/2) gmy)]k > (g i ' (u ,y)/k (2.14)
and SE(j3, k3,n— 1/2) associated with points 4, C and I=1
E, respectively. The surfaces of the four SEs form three  Aided by Egs. (2.11-14), Eq. (2.9) can be recast to
CEs for point G . Refer to Fig. 3. Three CEs are 4 4

. - BOF 0 = Sy - Sl b 219
quadrilateral cylinders ABGFABGF s mt ) j ~ ml ) j g\l ) jk = Emi )iy )
CDGBC'D'G B and EFGDE'F'G' D' , and are referred
to as CEl(j,k,n) , CE,(j,k,n) and CE3(j,k,n) ,  Aided by the chain rule and Egs. (2.15), (fmt);’.’k and

respectively. CE(j,k,n) is the union of CE,(j,k,n), (& )Zk can be expressed as,
CE,(j.k,n) and CE,(j.k,n). ’
4
Inside SE(j»k,n) , the first-order Taylor series Z o 1 jk h jk

expansion is employed to descritize the flow variables I=1

and inviscid fluxes:

4 4
)1
ot k)= Y+ GV () =2 )| 200 )

x J jk r=1

=1
gy V1 0= 2 )+ )i le="). 26) 24:

Mb

ml }j glr };k< )j,k s (216)

r=

f;;(xﬁyat;jakan):(fm)’},k+(fmx)jk(x X k) 4
) b= s G =), @ (g ); ;gmz (1 );

gn eyt jken)= (g, )i, +(gm )il —x;, 4 4
ube=vis) = (e 2 ) )
+ (gmy )_’;',k (y _yj,k)+ (gmt )?;‘,k (t_tn)’ (28) =1 =
4 4
form =1, 2, 3, 4. At point (j,k,n),welet ngl’;kz glrjk( )ﬁ ) (2.17)
=1 r=1
e U (g,,,y)” 29 form=1,2,3, 4 Aided by Egs. (2.11-17), Egs. (2.6-8)

form=1,2, 3, 4. To proceed, let fm,l and g, , be the could fully specify the distribution of u,,, fm and g,

entries of Jacobian matrixes F and G, i.e., inside SE (j ,k,n) when values of (um )71( (u"’x )71( and

s =L and g, = %n (2.10)

717
y (umy )j’k are known.
aul ’ 6”]

The above expressions are all concerned with the
form, [=1, 2, 3,4. Aided by the chain rule, we have, distribution of flow variables and inviscid fluxes inside a
SE. For expressing the viscous fluxes, f,, and g,, ,

3
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with u,, u,, and u,, , let’s express Ou/dx and 6v/dy

mx my >
with u,, , u,, and u,, as,
ou_10lpw) pudp _wy wihe g
ox p ox  prox wou
v _10lpy) pvop sy uhy (2.18b)

2

dy p oy poy u oy

With the aid of Eq. (2.18), 7, can be expressred as

1 Upu u usiy U
Ty = | 4 g T g 3 W |
3Re U L U U

(2.19)

Similar expressions can be obtained for 7 T

woo tayo
g, and g, in Eq. (2.2d-e). Moreover the viscous fluxes,

S and g, , can be expressred by u,,, u,,, and u,,.

Aided with Eq. (2.6), the distribution of flow variables
inside SE ( j,k,n) can be obtained. With flow variables,

the distribution of viscous fluxes, f,,, and g, , can be

further expressed by (um )'; ot )Zk and (umy ): r

With known values of (i, );’k s (e );’k and (umy )'j' L
the distribution of flow variable u :n , inviscid fluxes f;
and g; , and viscous fluxes f:;n and g, , can be fully
specified SE(j,k,n) . Let

h, = (fm* — g —g;n,u;) , and Eq. (2.4) can be
approximated by

inside

§hf,, ds =0, (2.20)
s()

form=1,2,3,4.

2.3 Time Marching for u

By imposing Eq. (2.20) over CE( j,k,n), an algebraic
equation can be obtained based on the global flux
conservation and (x,, )';k can be obtained directly for
each m =1, 2, 3, 4. To proceed, we calculate the flux
leaving surfaces of CE( j,k,n). Consider CE(j,k,n),
the hexahedral cylinder ~ABCDEFABCDE'F'
referring to Fig. 3. The surfaces of CE(j,k,n)can be
divided into four groups. Hexahedron 4B CD'E'F’
belongs to SE( j,k,n). Quadrilaterals ABGF ABB' A

and AFF' A belong to SE(j1,k1,n—1/2). Quadrilaterals

CDGB , CDDC and CBBC  belong
to SE(j2,k2,n—1/2) . Quadrilaterals EFGD , EFF'E'
and EDD'E' belong to SE(;j3,k3,n—1/2). Let S be the
area of the surface. Over each area, let the outward
normal vector be n, and the surface vector s =n S.

The flux leaving a surface is equal to the scalar product
between the vector h), = (fn: — g —g:m,ufn) ,
evaluated at surface’s centroid, and the surface vector s.
For hexahedron ABCDE'F inE 3, its surface vector
is

s =(0,0,8, + 8, +5,). (2.21)

ABCDEF
and the coordinates of its centroid G are (xg, yg,t").
The flux leaving the surface A BC'D'E'F' is

(FLUXm )A’B'C'D'E'F' = (Sql +S8g0 84 Xum )jk :
(2.22)

Let’s calculate the fluxes leaving surfaces belonging to
SE ( jLkL,n-1/ 2). For quadrilateral ABB' A’ , its surface
vector is

SABB'A':%(yB_yAaxA_xB’O)r (2.23)
and the coordinates of its centroid are
(XA *Xp ,yA Vg ,t""l/z +£j The flux leaving the

2 2 4
surface ABB'A' is

(FLUXm )ABB’A’ =

At n— + n—
LR ARty T,

YV4tVp 2, At n-1/2 4B
+ [T - ij<f;n ) )Zl,kl + T(fmt )A;‘l,kl “—Jwm

At — +
25y ){(gm Yoz 4 (M B

+ Jjp | At _
+(yA zyB —ij(gmy)';ljc/lZ +T(gmt);l'1}c/12 _g‘/:fj| )

(2.24)

. 4B 4B .
where the viscous fluxes, f,,° and g, are obtained

from flow variables at the centroid of surface ABB A

n—1/2 ( y—l/Z
and (umx )jl,kl and \u,,, ok

For quadrilateral AFF A , its surface vector is
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S i :%(yA ~ Y, Xp —x,,0), (2.25)
and the coordinates of its centroid are
(xA erxF , V4 -;yp ,t”_l/z +%j . The flux leaving the
surface AFF A is

(FL ux,, )AFF'A’ =

IR (R e I

YE+ V4 -2, M -1/2 AF
+(T_yAJ<fmy);1’k/1 +T(fmt)’;'1,k/l _fvm :|

j(gmx );’1 }c/lz

AF
~8wm :|3

(2.26)

At n X +Xx
+2(xF_xA{(gm)/1}c/lz+[AzF_

Yaty At _
+[% yA j(gmy )jl le +T(gmt)';'1,}’c/12

where the viscous fluxes, £ and g/, are obtained

from flow variables at the centroid of surface AFF 4’
and (u,, )ZIZIZ and (umy )j;le . The flow variables at
centroid are obtained following Eq. (2.6).

For quadrilateral ABGF, its surface vector is
S aBGF = (O, 0,-S, )a

and the coordinates of its centroid are (qu , yql,t"’l/ 2).
The flux leaving the surface ABGF is

=8, )12
+( Xq1 —XG X mx ;lk/l (yql yaxu'ny)’z1i/12J (2.28)

The flux Ileaving three surfaces belonging to
SE(j1,k1,n—1/2) is the sum of Eqs. (2.24), (2.26) and

(2.28). We have
( X )n 172 _

(2.27)

(FLUX )ABGF

n—1/2 ( X n—1/2
Sql[(um)jlkl + ql - X7 umv)jlkl

At -
+(yq1_yzx my ;lli/]z] yF)(fm)jI,le

At
+7[(XB +XA)(J’B _.VA)+(xF +XA)(J’A _.VF)

~2x5 (g~ v o Vit

At -
+7[y§ 2 =275 =y W yie

At)? n—
+( ) (yB _J’F)( mt)jl}c/lz

8
+%(xF —xB)(gnz);l_,;l’c/lz
AL 2 (e xa g ol
2l —x Mo+ )
e =2t e )2 (e = e )i
+%(xF _xBXgmt)j;,}c/lz
—% (5 = va)find + (s =x5)gi

=y A 4 (- x,)e ] (229)

n—1/2 ( )n—l/Z
)jl’kl and (u,,, o are values

where (u,, );’;}(/12 s (e

stored at solution point A . Similarly, the fluxes leaving
three quadrilaterals belonging to conservation over

SE(j2,k2,n—1/2) are
~x St

_SqZ[(” )’;211@ (

+ (yqz -ve X”my )legj

n 1/2

n—1/2 _
= /2 2

(ﬂuxm )2

At n—
+ T(yD ~ VB )(fm )jz,llg

At
+T[(XD + xc)(YD - J’c)

+ (XB + Xc )(yc ) 2x= (yD Vg ):kfmx )’/’:}@

At -
+ T[yé T o () ),212

+ﬂ()’[)

3 ~— VB )(fml‘ )Z;,lk{é

At
+ 7("3 xp g )'}21,@

At] 5 1/2
+T Xp ~ 2xc kgmx 1/721(2

At
+T[(XB _xC)(yB +yc)

+(xc _XD)(J’D +J’C)_2y5(x5 _xD)Kgmy);l_}"/lz

(ar)°

8

n—1/2

+ (xp _xD)(gmt)jlkl

5
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A
B =5+ (e~ 50 )
+ (J’C —J’B)fviB + (XB —xc) 55J (2.30)

The fluxes leaving the three

SE(j3,k3,n—1/2) are
(ﬂux )n - Sq3 [(um )j;,llg + (xq3 g Xumx )Z;llg

(s =g o )5 2

surfaces  of

At n—
+7(}’F —J’D)(fm)ﬂ,llg
At
+T[(XF +XE)(J’F _yE)
+(XD +xE)(yE —yD)_zx*(yF ~—Vp kfmx)’;;llg
At n
+T[J’% YD 2yE ) k ,3%
At 2 n—
+( 8) (yF _yD)(fmt)ﬂ,ll@
At n
= > (XD _xF)(gm)ﬂllg
At n—
+T[x,% - X% —ZXE(XD —Xg )kgmx)jS,llg
At
+T (XD —XE)(J/D +J/E)
B a _ ]( )n—l/Z
+(xp —xp Nyg +vr) 2yE(xD xp) Emy) 33
At 2 n
+ ( 8) (xD _XF)(gnzt)j;k/g
A
_TI[(J’F _yE)fwb;zF +(xE _xF) 55

+(J’E—J’D) vﬁD (xD ngwnJ (2.31)

For each m =1, 2, 3, 4. The viscous fluxes, fvm s

ED

d ED
> 8&m » Jym A &y, , are

gl/rn’f 7gvm7f

obtained in the similar way of that for £4" and gF .

For flux conservation over CE ( j,k,n) , we have
(F LUX,, )A'B'C'D'E'F (ﬂ”x )n v
+ (flue,, Yo+ (fu, 77 =0 (2.32)

Aided by Eq. (2.22), an explicit expression for (um );’ k

can be obtained from above equation as

( X )n 1/2 (ﬂux )n 1/2 ( X )n 1/2
S +S,+S,; '

(”m )r,lk =

(2.33)

2.4 Time Marching for u, and u,

In this section, we illustrate the calculation of the
spatial derivatives of the flow variables, i.e.,

(tty )'j’k and (umy )’j’k . We note that point G is not the

centroid of A4 C E ' unless a uniform mesh is used. As
shown in Fig. 5, a triangle AA*C*E" , whose centroid is

point G, is obtained by parallel moving A4 C E in
the spatial domain. The vertices’ coordinates of

* k%

AA C E are
X :(3x5 +2x2—x5—xf)/3

, 2.34
= (v +2v7 —ve — vz )3 239
XC* :(3x5 +2x5—x;—xf)/3 ’ (235)
Ve =Byg +2va —y5 -5 )3
3x- +2 3
=g 25 o) (2.36)

yE =(3yG +2yE vi- yc)/3

Flow variables at G, i.e., (u,, )’;k, are calculated

from Eq. (2.33). Flow variable at point 4" is obtained
by a first-order Taylor series, Eq. (2.6), as

)”‘1/2 + (yA* Vi Xumy )’,11_2/12 :

+ (xA* - xZXumx jLk1 (237)
Slmllarly,( )nz  and ( y]l3k3 , at C" and E" can

be obtained. Based on (u;nyﬂkl , (u;n)j'ZkZ and

(um Yi3,k3 on points A, C" and E”, we apply central

differencing to calculate (x,,, );’ . and (umy): , at point

G ,i.e.,
(”,fuc ):k = ﬁ[(yc* Vg Xum ):1,/(1
+ <yE* Yy Xu;n )’;‘2,1(2 + (yA* Ve X”m )’;3,k3:| ,(2.38)
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i
my j,k

+ (xA* X Xu;n )j'z,kz + (xc* Xy Xum )j3,k3:| A(2.39)

— ZS;[(XE X X”m x'l,kl

ACE

where SAA*C*E* istheareaof AA C E :
s |
MCE =5 X o Vor TX oY pr H XY o

—X Vg m XY~ XY ) (240)

Similar central differencing can be applied to calculate

(u,(,}))cy:k and (u(l)/.yj,k for AC'E'G", (u(z)rk and

my

(u(z)y_k for AA*EIE*, and ( (3 yk and ( T for

my ). mx

AA’C"G' . Based on the re-weighting procedure in [4],

71 n
we calculate (umx )/‘,k and (umy )_,/‘,k as,

(umx)’;k Z(MZX )jk and (“my)’;,k :(u,‘,;yxk (2.41)

where

(u;x);k Clu|:(‘9mze )(S’”Zxk
(010, ) (2 )Y, (0100 ) () T } (2.42)

(M:rfy)j,k Clu{(endem}) ( r(nlyyj‘-,k
+ 00V W), + 00, (), 249
and
9{ (ug,;g)a(ug;;)ﬂ” , (2.44)
J.k
(0n110m2) (0m26 ) (9,"1(9 ) . (245)

The above CESE schemes are stable for CFL number <
1., while a>0. Equations (2.33) and (2.41) form the
commonly used CESE scheme, the a-o scheme.
Hereafter we refer it as the original scheme.

3. CFL Insensitive Scheme

3.1 The CFL Condition

The CFL number in two spatial dimensions is defined
hereafter. The spatial projections of solution points are
presented in Fig. 6, in which solid squares are at time

and hollow are at
According to the CESE method,

level n=0,12,... ,
n=1/2, 3/2,5/2,....

the flow variables at solution point G (j, k, n) are

squares

determined by those at seven solution points A,B,C,
D,E,F and G at the time level n-1. The hexagon
ABCDEF is the numerical domain of dependence for

the solution at G at time level n-1.

Figure 7 shows the projection of a Mach cone on the
spatial plane at ¢ = (n-1)At, with point G being its
vertex. The result is a circle with a radius of cAf on the

plane with O as the center of the circle. The boundary
and interior of the circle form the domain of dependence

for the flow solutionat G . Thus, the CFL condition for

the solution at G is defined such that if and only if the
domain of dependence, i.e., the circle, lies in the interior
of the hexagon ABCDEF . Let u, v and ¢ be velocity

components and sonic speed at solution point G at time
level n-1. As shown in Fig. 7, for the velocity vector

% , we have
|50| = AtNu? +v?* ,and 6, = arctan(v/u).

Let line segment GH be the distance from point G to

3.1)

boundary 4B , we have

|6H| = 2SAZEE/\/(xB x;)Z +(y§ —y;)2 , and
6, =arctanm, (3.2)
Yg—Ya

As shown in Fig. 7, we choose a point P on the circle
such that the line segment OP is parallel to line segment
GH . Let R and S be the projection of O and P on GH .
Obviously P is the closest point to the boundary 4B on
the circle. To keep the circle inside the hexagon, with
AB as one of the boundary segments, we require that

) Gs|/|GH|<1, (3.3)
where
Gs|= At[c +u? +v2 cos(6, -6, )} . (3.4)

For the other five boundary line segments, we have
similar conditions, i.e., v(2) for BC , v(3) for CD ,
v® for DE , WO for EF , and v for FA . The
CFL condition is that,

v, = max{v(l),v(z),v(3),v(4),v(5),v(6)}. 3.5)
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v, <1.

(3.6)

e

Essentially, Eqs. (3.5-6) specify that the domain of
dependence of the flow solution at G’ must lies within
its numerical domain of dependence, i.e., hexagon
ABCDEF . In computation, At is chosen to satisfy Eq.
(3.5-6).

3.2 The CFL Insensitive Scheme

According to [9-11], the CFL insensitive scheme is
constructed such that (i) it would reduce to the original a
scheme in the limit of CFL—0, and (ii) it would reduce
to the original a-o scheme in the limit of CFL—1.

As shown in Fig. 8, points Q, Q, and Q5 are centroids
of quadrilaterals ABGF, BCDG and DEFG, points Py, P,

and P; are defined within line segments 4'Q,, C'Q,
and E'Q; as,

X, = +(l ve)qu 3.7)
Vo =veya +1=v vy’
X, =VXa +(l v, )xq2 3.9
Yp, =VeVer +(1 Ve)qu
X, =V X5 +(l—ve)xq3 ’ 3.9)
Yo, :Veyf’+(1_ve)yq3

Take Eq. (3.7) for instance, with CFL number, v,,
changing from 0 to 1, point P; moves from point Q; to
A" . Similar to the fact that the centroid of Ad C'E’

may notbe G', the centroid of AP,P,P, maynotbe G'.

Similar to that in section 2.4, the centroid of API*PZ*P; ,

i.e., point G', can be obtained by parallel translation of
AA4'C'E' . The coordinates of the vertexes of API*P;P;
are

1-v
X o =VeXy: +Te(3x5, +2x, =X —xq3)
1 ,(3.10)
Y =Vedy 3 (3yG 2V =V Vg3
1-
X =VeXge + Ye <3x6, +2x,5 =Xy xq3)
: . (3.11)
-V
Yy TV t 3 (3)’6 T2V =Yg " Vg3
I-v
X 1 = VeXpe + 3 £ <3xG +2x,3 =Xy —xqz)
. .(3.12)
yp: = vey]? 3 (3_)/(;" +2yq3 _yql —yqz)

Flow variables at Pl* , Pz* and

(7 P 7
U Jp; = WU Jjpr T

7 (“mt );1_,1{1

P; are obtained by

1/2

+ [(xp;’ 7 Xumx )Zl_}c/lz + (ypl* — Vi Xumy )’;1_2/12]
(3.13)
' -2 At _
(um )p;‘ = (“m )jz,kz +— (umt )721112

2
n—1/2
+ [(x » e X”mx )jz,kz

( | ) ( )n71/2
U Jpy = WUm )3 ps

n—1/2
+ [(xp; —XE Xumx )j3,k3

At -
B (uml )Z3,k3

o n—l/Z]
+ (yp§ Ye X”my )jz,kZ

(3.14)
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—1/2
+ (yp;‘ ~JVE X”my )j3,k3]

(3.15)

With the values of flow variables at points P , P, ,

P, and G' known, the CFL insensitive scheme can be

constructed. There are
insensitive scheme as stated in

several versions

of CFL
[9-11]. In the present

paper, the Scheme Il in [10] is applied. For completeness,
the equations are provided in the following.

)
[1+f( Yo ) 72

e e S N

+ [1 + f(ve )(smz )r/lk Iﬁmzy j,k + [1 + f(Vg )(s’”3 )r/lk Iﬂ

BT
e X

))"
mx Jj k

X ), Ji)

h
(3.16)
1)

my

)n
.k

(3)

B

my
(3.17)
where
e =3+ 1l o Vi + (5t s )| G19)
n ¢mr
Sy )i =— -1, (3.19)
( )j’k mln(¢ml ’¢mZ ’¢n13)
¢ml = 9m20m3 > ¢m2 = gml and ¢ gml s
(3.20)
and
fv,)=1/v, . (3.21)
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4. Numerical Results

Two problems are solved by using the above CESE
method for the Navier-Stokes equations.

4.1 Shock Wave Boundary Layer Interaction

The shock wave boundary layer interaction problem in
[12] is used as the test case. This problem is often used as

a standard test for Navier-Stokes solver. As shown in Fig.

9, the computational domain is (x, y) € [0, 2.4]x[0,
1.164]. The left boundary is defined as the inlet
boundary where specified boundary condition is
employed. The flow on the top boundary is specified to
form an oblique shock, impinging on the wall. The right
boundary is a supersonic outlet, where non-reflective
boundary condition is used. The bottom boundary
consists of a symmetric boundary and a solid wall,
whose lengths are 0.8 and 1.6 respectively. For the solid
wall, the no-slip boundary condition is employed. The
incoming shock wave, emanating from the upper-left
corner of the computational domain, impinges on the
solid wall with an angle of 32.6° with respect to the wall.
The flow Mach number on the left inlet boundary is 2.0.
The flow condition on the top boundary is calculated
based on the oblique shock condition to form the desired
shock wave angle.

We consider the viscous flow with Re=296,000. The
computational domain is covered by 80,000 triangles.
To resolve boundary layer, grid points are clustered to
solid wall. The first grid point to the solid wall is 5x107
of the domain height. Due to the non-uniform mesh, the
local CFL number varies significantly across the
computational domain, the difference in CFL numbers is
around 60 times. Figure 10 shows the pressure contours.
There are 50 contours ranging equally from 0.01 to 0.25.
The pressure contours obtained by CFL insensitive
scheme are shown in Fig. 10a. Pressure contours by the
original scheme are shown in Fig. 10b. The CFL
insensitive scheme can crisply capture shocks, while the
original scheme shows excessive numerical diffusion
due to small CFL number. For viscous flow simulation,
the CFL insensitive scheme plays an important role in
capturing sharp shocks and detailed flow structure
across the domain.

Because the impinging shock is strong, boundary layer
separation occurs at the shock impinging point at the
wall. Figure 11 shows the velocity vectors in the
recirculation zone. The change of boundary layer
thickness and a boundary layer separation can be
observed. Figures 12-13 show the pressure and the
friction coefficient along solid wall, respectively.
Curves are the calculated results and symbols are the
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experimental data. The present results are in good
agreement with the experimental data.

4.2 Driven Cavity Flow

The driven cavity flow is also a benchmark problem
for testing incompressible viscous solvers [13]. The
CESE method is employed for this incompressible flow
calculation. The computational domain is (x, y) € [0,
11x[0, 1.]. The top boundary is a moving solid wall, and
the other three boundaries are stationary walls. We
conducted computation with Re=1,000. 12,000 triangles
are used to cover the computation domain. The
distributions of velocity components along centerlines
are plotted in Fig. 14 and 15. The velocity vector field is
plotted in Fig. 16. The present results are in good
agreement with the data reported in [13].

5. Concluding Remarks

In this paper, the CESE method is extended to solve
the Navier-stokes equations. In the setting of the
space-time integration of the CESE method, the inviscid
flux and viscous flux are incorporated to enforce local
and global flux conservation. A CFL insensitive CESE
scheme is employed to provide high resolution across
the computational domain, for overcoming excessive
damping incurred by small CFL numbers in the original
CESE method. To demonstrate the capabilities of the
new approach, we calculated a shock/boundary layer
interaction problem and a driven cavity flow. Numerical
results show that complex physical phenomena at a wide
range of Mach numbers can be predicted accurately by
the CESE method.
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M B

G Centroid of hexagon ABCGEDF
G : Centroid of A BDF

Fig. 1: Spatial computational domain with a Fig. 2: Definition of the solution points.
triangular mesh. Circles (solid or hollow)
are triangles’ centroids.
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Fig. 3: Grid point arrangement in the space-time domain. Fig. 4: Definition of Solution Element SE ( j,k,n)

associated with point G' (j,k,n).

G'=(j, k, n) is the solution point and the centroid of AA'G'E"

Fig. 5: Parallel translation of A4 'C'E'and AA'C'E". Fig. 6: The numerical domain of dependence
Solution point G' is A4"C"E" s centroid. in the CESE method.
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Fig. 7: Definition of the local CFL condition for Fig. 8: Definition of points Q, Q,, Qs, Py, P,
two-dimensional problems. and P; for the CFL-insensitive schemes.

326"
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| 0.8 | 1.6 |

Fig. 9. Geometry of shock boundary layer interaction problem
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Fig. 10. Pressure contours of the shock boundary layer interaction problem with Re=296000. (a). Pressure
contours obtained by CFL insensitive scheme. (b). Pressure contours obtained by original CESE

scheme.
WIEEEEEEEE FE = %? %
0.053 : 5 §
0.0251 ; % %
0- | . {
)

11a.

Fig. 11. Velocity vectors around shock impinging point at wall. (a). Overall view. (b). Enlarged view.
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Fig. 13. Skin friction distribution along wall.
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Fig. 16. Velocity vectors of the cavity driven problem.
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