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We apply the Space-Time Conservation Element and Solution Element (CESE) method 
to solve the ideal MHD equations with special emphasis on satisfying the divergence free 
constraint of magnetic field, i.e., ∇⋅B = 0. In the setting of the CESE method, four 
approaches are employed: (i) the original CESE method without any additional treatment, 
(ii) a simple corrector procedure to update the spatial derivatives of magnetic field B after 
each time marching step to enforce ∇⋅B = 0 at all mesh nodes, (iii) an constraint-transport 
method by using a special staggered mesh to calculate magnetic field B, and (iv) the 
projection method by solving a Poisson solver after each time marching step. To 
demonstrate the capabilities of these methods, two benchmark MHD flows are calculated (i) 
a rotated one-dimensional MHD shock tube problem, and (ii) a MHD vortex problem. The 
results show no differences between different approaches and all results compare favorably 
with previously reported data. 

1. Introduction 
HILE many Computational Fluid Dynamics (CFD) methods have been successfully developed for gas 
dynamics, extension of these methods for solving the Magneto-Hydro-Dynamic (MHD) equations involves 

unique requirements and poses greater challenges [1-14]. In particular, for multi-dimensional MHD problems, it is 
critical to maintain the divergence-free constraint of magnetic field, i.e., ∇⋅B = 0, at all locations in the space-time 
domain. Analytically, the constraint is ensured if it is satisfied in the initial condition. However, it has been difficult 
to maintain this constraint in calculating evolving MHD problems. Violating the constraint allows numerical errors 
to be accumulated over the computational time, leading to erroneous solutions and/or numerical instability 

To satisfy ∇⋅B = 0, a special treatment directly incorporated into the CFD method employed is often required. 
Special treatments have been categorized into three groups: (i) The projection method, e.g., Brackbill and Barnes [5]: 
At each time step, the method solves a Poisson equation to update the magnetic field to enforce ∇⋅B = 0. (ii) The 
eight-wave formulation by Powell [6]: ∇⋅B is not treated as zero in deriving the MHD equations, leading to 
additional source/sink terms in equations for B. The CFD solver employed would activate the sink/source terms to 
counter the unbalanced ∇⋅B in numerical solutions. (iii) The constrained-transport procedure, e.g., Evans and 
Hawley [7], Dai and Woodward [8], Balsara and Spice [9], and Toth [12], based on the use of staggered mesh to 
enforce the constraint at certain spots of the control volume. Various versions of these three approaches have been 
developed to solve the MHD equations in multiple spatial dimensions [4-13]. Recently, these methods have been 
assessed and summarized by Toth [12].  

In the present paper, we report the application of the Space-Time Conservation Element and Solution Element 
(CESE) method [17-20] to solve the two-dimensional MHD equations.  Four approaches are employed:  (i) the 
original CESE method without any additional treatment for ∇⋅B = 0, (ii) a simple modification procedure to update 
the spatial derivatives of B after each time marching step such that ∇⋅B = 0 is enforced at all mesh nodes, (iii) an 
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extended CESE method based on the constraint-transport procedure, and (iv) the projection method coupled with the 
CESE method. The approach (i) is trivial. Nevertheless, its results are comparable with other results by the three 
other approaches. Approaches (ii) and (iii) are new schemes for ∇⋅B = 0. Approach (iv), the projection method, is a 
conventional and reliable approach to impose ∇⋅B = 0. All results in the present paper compare well with previously 
published data.  

The rest of the paper is arranged as follows. Section 2 illustrates the governing equations. Section 3 provides a 
brief review of the CESE method for two-spatial-dimensional problems. Section 4 shows the new CESE schemes, 
i.e., approaches (ii) and (iii), for ∇⋅B = 0. Section 5 provides the results and discussions. We then offer conclusions 
and provide cited references. 

2. Governing Equations 
The ideal MHD equations include the continuity, the momentum, the energy, and the magnetic induction 

equations. In two spatial dimensions, the dimensionless equations can be cast into the following conservative form: 
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and  
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In the above equations, ρ, p and e are density, pressure and specific total energy, respectively; u, v, and w are 
velocity components and Bx, By and Bz are magnetic field components in the x, y, and z directions, respectively. The 
total pressure and the specific total energy are 

( ) 2222
0 zyx BBBpp +++= ,                       (2.5) 

( ) ( ) 22 222222
zyx BBBwvue ++++++= ρρε .                 (2.6) 

For calorically ideal gases, the specific internal energy ε can be expressed as 

( ) ( )11 −
=

−
=

γργ
ε RTp ,                        (2.7) 

where γ is the specific heat ratio, T is temperature, and R is the gas constant. To proceed, we apply the chain rule to 
Eq. (2.1) and obtain 
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where Jx and Jy are Jacobian matrices of the spatial fluxes in the x and y directions, respectively. The components of 
the matrices are listed in Appendix. The eigenvalues of matrix Jx are x

fcu ± , x
acu ± , x

scu ± , u and u, where x
ac , 

x
sc  and x

fc  are the speeds of the Alfvan wave, the slow shock wave, and the fast shock wave, respectively, and they 
are defined as 

ρx
x
a Bc = ,                          (2.9) 
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In Eqs. (2.10-11), ργpc =  is the speed of sound. Similarly, the eigenvalues of matrix yJ  are y
fcv ± , y

acv ± , 
y
scv ± , v and v, where y

ac , y
sc  and y

fc  are defined as 
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a Bc = ,                          (2.12) 
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3. The CESE Method 
The above MHD equations can be expressed as  
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where mu , mf and mg  are the entries of the flow variable vector and the flux vectors in the x and y directions, 
respectively, and m is the index for the equation. Let xx =1 , yx =2  and tx =3  be the coordinates of a three-
dimensional Euclidean space 3E , Eq. (3.1) becomes a divergence free condition: 

0=⋅∇ mh , m = 1, 2, … , 8,                       (3.2) 
where ( )mmmm ugf ,,=h  are the current density vector. By using Gauss’ divergence theorem in 3E , we have  

( )
0=⋅=⋅∇ ∫∫ VS

m
V

m ddV shh , m = 1, 2, … , 8,                 (3.3) 

where (i) S(V) is the boundary of an arbitrary space-time region V in 3E , and (ii) σdd ns = with σd  and n, 
respectively, are the area and the unit outward normal of a surface element on S(V). The CESE method integrates Eq. 
(3.3) for the evolving flow variables. 

For completeness, we will briefly illustrate the CESE method based on the following three parts: (i) The 
definition of SE and CE in the space-time domain. (ii) The integration of Eq. (3.3) over a CE to form the algebraic 
equations for the flow variables at a new time step. (iii) The re-weighting procedure with added artificial damping in 
calculating the gradients of the flow variables. The discussion of the CESE method here will be based on the 
modified CESE method for a quadrilateral mesh [19]. To be concise, our discussion of the CESE method will be 
focused on a uniform quadrilateral mesh.   

 
3.1  Definition of Solution Element and Conservation Element 
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In Fig. 1, the spatial domain is divided into non-
overlapping quadrilaterals and any two neighboring 
quadrilaterals share a common side. The centroid of each 
quadrilateral is marked by either a hollow circle or a solid 
circle. Point G, the centroid of quadrilateral ABCD, is 
marked by a solid circle, while the points N, E, W and S are 
the centroids of the four neighboring quadrilaterals, and are 
marked by hollow circles. Because of the uniform mesh, G is 
also the centroid of polygon NAWBSCED, which coincides 
with quadrilateral NWSE. Let j, k and n be the indices for x, y, 
and t, respectively. Shown in Fig. 2, points A, B, C, D, N, E, 
W, S and G are at the time level n-1/2; points A’, B’, C’, D’, 
N’, E’, W’, S’ and G’ are at the time level n; and points A”, 
B”, C”, D”, N”, E”, W”, S” and G” are at the time level 
n+1/2.  

As shown in Fig. 2, the solution element SE(j, k, n) 
associated with point G’ is defined as the union of three 
quadrilateral planes, N’W’S’E’, A”ACC”, B”BDD”, and 
their immediate neighborhoods. Its spatial projection is 
shown in Fig. 1 as the dashed lines. Similarly, associated 
with points N, E, W, and S, there are four solution elements: 
SE(j, k+1/2, n-1/2), SE (j+1/2, k, n-1/2), SE (j-1/2, k, n-1/2), 
and SE (j, k-1/2, n-1/2). To calculate the unknowns at G’, the 
algebraic equations are derived based on space-time flux 
conservation involved flow solutions at points G’, N, E, W, 
and S, referred to as the solution points. Point G’, located at t 
= tn is staggered with respect to points N, E, W, and S at t = 
tn-1/2.  

As shown in Fig. 2, a space-time cylinder can be formed 
with surfaces associated with SE(j, k, n) and surfaces 
associated with one of the four SEs at the time level n-1/2. 
For instance, cylinder N’A’G’D’NAGD is formed by surfaces 
associated with SE(j, k, n) and SE(j, k+1/2, n-1/2) . This 
cylinder is one of the Basic Conservation Elements (BCE) of 
point G’. There are three other BCEs associated with point 
G’, i.e., A’W’B’G’AWBG, B’S’C’G’BSCG and 
C’E’D’G’CEDG. The union of these four BCEs forms a 
Compounded Conservation Element (CCE) N’W’S’E’NWSE 
with its top center at point G’. 

 
3.2  The Space-Time Integration 

Inside SE(j, k, n), the discretized variables and fluxes, denoted with a superscript *, are assumed to be linear. For 
m = 1, 2, … , 8, let  
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,

,and 

( )n kjmtg , are flow variables, fluxes, and their first-order derivatives at point G’.  Aided by the chain rule we have 
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Fig. 1: Definition of space-time mesh for a 
two-dimensional problem. 

Fig. 2: Grid arrangement in space-time 
domain.



AIAA 2006-9711, AIAA Sciences Meeting, Reno Nevada 

 
American Institute of Aeronautics and Astronautics 

 

5

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjlx

n
kjlm

n
kjmx ugg , m = 1, 2, … , 8                 (3.8) 

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjly

n
kjlm

n
kjmy uff , m = 1, 2, … , 8                 (3.9) 

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjly

n
kjlm

n
kjmy ugg , m = 1, 2, … , 8                 (3.10) 

where ( )n kjlmf ,, , ( )n kjlmg ,,  are the (m, l)th entries of the Jacobian matrixes Jx and Jy in the x and y directions, 

respectively. To proceed, we assume that ( )nkjtyxum ,,;,,* , ( )nkjtyxfm ,,;,,*  and ( )nkjtyxgm ,,;,,*  satisfy the 
original MHD equations, Eq. (3.1), at point, (j, k, n): 
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Aided by Eqs. (3.7) and (3.10), , Eq. (3.11) becomes  
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Similarly, for m = 1, 2, … , 8, we have  

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjlt

n
kjlm

n
kjmt uff ( ) ( ) ( ) ( ) ( )[ ]∑ ∑

= =

+−=
8

1

8

1
,,,,,,,,

l r

n
kjry

n
kjrl

n
kjrx

n
kjrl

n
kjlm uguff ,       (3.13) 

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjlt

n
kjlm

n
kjmt ugg ( ) ( ) ( ) ( ) ( )[ ]∑ ∑

= =

+−=
8

1

8

1
,,,,,,,,

l r

n
kjry

n
kjrl

n
kjrx

n
kjrl

n
kjlm ugufg .       (3.14) 

Therefore, a set of given values of ( )n kjmu , , ( )n kjmxu ,  and ( )n
kjmyu

,
completely determine the distribution of the 

flow variables and fluxes, i.e., Eqs., (3.4-6), inside SE(j, k, n). Thus the flow variables ( )n kjmu ,  and their spatial 

gradients ( )n kjmxu ,  and ( )n
kjmyu

,
are the unknowns to be solved in the CESE method. 

The time marching scheme to calculate ( ) n
kjmu ,  is based on integrating Eq. (3.3) over the CCE associated with 

point G’. Recall that the CCE is a quadrilateral cylinder with surfaces associated with five different SEs. The top 
surface, quadrilateral N’W’S’E’ belongs to SE(j, k, n); quadrilaterals NAGD, N’A’AN  and N’D’DN belong to SE(j, 
k+1/2, n-1/2); quadrilaterals WAGB, W’A’AW and W’B’BW belong to SE(j-1/2, k, n-1/2); quadrilaterals SBGC, 
S’B’BS  and S’C’CS belong to SE(j, k-1/2, n-1/2); and quadrilaterals EDGC, E’C’CE and E’D’DE belong to 
SE(j+1/2, k, n-1/2).  

The flux leaving each planar surface of the CCE is equal to the inner product of the current density 
vector ( )**** ,, mmmm ugf=h , evaluated at the centroid of the surface, and the surface vector s = nS.  For example, the 
top surface of the CCE is quadrilateral N’W’S’E’ with an area Stop and the centroid is G’ (xj,k, yj,k, tn). At the centroid 

of the top surface of the CCE, the current density vector ( ) ( ) ( ) 




=

n
kjm

n
kjm

n
kjmm ugf ,,,

* ,,h , and the surface vector is 

(0, 0, Stop). Thus the flux leaving the top surface of the CCE is  
(FLUXm)top = ( )n kjmu , Stop, m = 1, 2, … , 8.                   (3.15) 
Similarly calculation for fluxes through other surfaces of the CCE can be performed. For surfaces associated 

with SE(j, k+1/2, n-1/2), the centriods of surfaces NAGD, NDD’N’ and NAA’N’ are denoted as ( )2/100 ,, −n
NN tyx , 

( )4/111 ,, −n
NN tyx  and ( )4/122 ,, −n

NN tyx , respectively. Their surface vectors are (0, 0, -S1), ( )0,, 11 y
N

x
N λλ , and ( )0,, 22 y

N
x

N λλ , 
where S1 is the area of quadrilateral NAGD, and 

( ) 21 tyy DN
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( ) 21 txx ND
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( ) 22 tyy NA
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N ∆−=λ ,                        (3.18) 

( ) 22 txx AN
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N ∆−=λ .                        (3.19) 
The flux leaving each of the three surfaces can be calculated as the inner product of the corresponding flux 

vector and the surface vector at the surface centroid. By summing up the fluxes, for m = 1, 2, … , 8, we have, 
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                               (3.20) 
Because the solution at the time step n-1/2 is known, the value of this flux can be readily calculated. Similarly, 

the fluxes leaving surfaces associated with SE(j-1/2, k, n-1/2), SE(j, k-1/2, n-1/2), and SE(j+1/2, k, n-1/2) can be 
readily calculated. For conciseness, we simply name these fluxes as ( )WmFLUX , ( )SmFLUX  and ( )EmFLUX . As a 
result, the space-time flux conservation over the CCE is  

( ) ( )∑ =+
NEWS

l
lmtopm FLUXFLUX 0 , m = 1, 2, … , 8.                (3.21) 

Note that only the first term in the above equation contains the unknowns to be solved at point G’. Aided by Eq. 
(3.15), the flow variables at the current time step n can be calculated by 
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l
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n
kjm S

FLUX
u
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−=, , m = 1, 2, … , 8.                  (3.22) 

 
3.3  Solutions of Flow Variable Gradients 

To proceed, we calculate the spatial gradients of the flow variables ( )n kjmxu ,  and ( )n
kjmyu

,
. The calculation is 

divided into two steps: (i) Finite-differencing the flow variables um at point G’, N’, E’, W’, and S’, at t = tn to obtain 
four sets of mxu and myu . (ii) Apply a reweighing procedure to the above four sets of mxu  and myu  to determine 

( )n kjmxu , and ( )n
kjmyu

,
 at G’. In what follows, these two calculation steps are illustrated.  

Flow variables mu  at point G’ are obtained from Eq. (3.22). The flow variables mu  at four neighbor points N’, 
W’, S’ and E’ are obtained by using the Taylor series expansion along the time axis from the time level n-1/2, i.e., 
for m = 1, 2, … , 8,  

( ) ( ) ( ) 2121'

2
−− ∆

+=
n
lmt

n
lmlm utuu ,                    (3.23) 

where l =1, 2, 3, and 4 denoting point N’, E’, W’ and S’, respectively.  
The square plane N’E’S’W’ is divided into four triangles; N’W’G’, W’S’G’, S’E’G’, and E’N’G’. In each 

triangle, we finite-difference mu  at the three vertices to obtain the flow variable gradient ( )n kjmxu , and ( )n
kjmyu

,
. 

Consider triangle ∆N’W’G’, the flow variable gradient at its centroid can be expressed as, 
( )( ) ∆∆= xGmxu '
1 ,                          (3.24) 
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yyxx
yyxx

−−
−−

=∆ ,                       (3.28) 

and 
( ) ( )n kjmGm uu ,' = .                          (3.29) 

For triangles ∆W’S’G’, ∆S’E’G’ and ∆E’N’G’, the flow variable gradients at their centroids, denoted by ( )( ) '
2

Gmxu , 
( )( )

'
2

Gmyu , ( )( ) '
3

Gmxu , ( )( )
'

3
Gmyu , ( )( ) '

4
Gmxu  and ( )( )

'
4

Gmyu , can be obtained in a similar way.  
To proceed, a re-weighting procedure is applied to the four sets of flow variable gradients to obtain the final flow 

variable gradient at G’, i.e., for m = 1, 2, … , 8, 

( ) ( ) ( )( ) ( )∑∑ == 



=

4

1

4

1 ', l
l

ml G
l

mx
l

m
n

kjmx WuWu
αα ,                   (3.30) 

( ) ( ) ( )( ) ( )∑∑ == 



=

4

1

4

1 ', l
l

ml G
l

my
l

m
n

kjmy WuWu
αα

,                  (3.31) 

where 

∏ ≠=
=

4

,1 lqq
q

m
l

m WW ,  for l =1, 2, 3, 4,                   (3.32) 

and 
( )( )[ ] ( )( )[ ]2

'

2
' G

q
myG

q
mx

q
m uuW += .                      (3.33) 

For shock capturing, α = 1, or 2, is a prescribed constant. For flows without shock, we let α = 0. As such, Eqs. 
(3.30-31) reduce to the standard central-differencing method.  

4. Extended CESE Schemes for ∇⋅B = 0 
In this section, we illustrate two new CESE schemes for ∇⋅B = 0: Schemes I and Schemes II. Both schemes are 

built based on special features of the original CESE method. Scheme I takes advantage of the fact that the flow 
variable gradients ( )n kjmxu , and ( )n

kjmyu
,

are directly used as the unknowns and they march in time hand-in-hand with 

the flow variables ( )n kjmu , . Scheme I is a simple adjustment to the calculation of ( )n kjmxu ,  and ( )n
kjmyu

,
such that ∇⋅B 

= 0 is satisfied at all mesh points after each time marching step.  Scheme 2 takes advantage of staggered mesh 
arrangement in the original CESE method. By a simple adjustment of the mesh nodes employed in calculating the 
magnetic flux, we ensure the satisfaction of ∇⋅B = 0 at all solution points. In what follows, we report these two 
schemes.  
4.1  Scheme I 

As illustrated in the above section, the flow variables ( )n kjmu ,  are calculated by space-time flux conservation i.e., 

Eq. (3.22), over a CCE with its top center at point (j, k, n), while the flow variable gradients ( )n kjmxu ,  and ( )n
kjmyu

,
 

are calculated by a combination of a central differencing and a reweighing procedure. In Scheme I, we first follow 
the above CESE algorithm to calculate the flow variables and their spatial gradients. After each time marching step, 

a corrector step is applied to adjust the values of 
n

kj

x

x
B

,








∂
∂  and 

n

kj

y

y
B

,









∂

∂
.  The calculated results of all other 

unknowns remain intact.  Note that 
n

kj

x

x
B

,








∂
∂  and 

n

kj

y

y
B

,








∂

∂
are denoted as ( )n kjxu ,6 and ( )n kjxu ,7  in Eq. (2.2). The 

adjustments to these two terms are  

( ) ( ) ( ) ( ) 



 +−=

n

kjy
n

kjx
n

kjx
new

kjx uuuu
,7,6,6,6 2

1 ,                   (4.1) 

( ) ( ) ( ) ( ) 



 +−=

n

kjy
n

kjx
n

kjy
new

kjy uuuu
,7,7,7,7 2

1 ,                   (4.2) 

where the updated gradient is denoted by the superscript new. By adding the two equations above, we yield 
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( ) ( ) 0
,7,6 =+

new

kjy
new

kjx uu .                        (4.3) 

That is, with the additional treatment for 
kj

x

x
B

,








∂
∂  and 

kj

y

y
B

,








∂

∂
by Eqs. (4.1-2), the constraint ( ) 0, =⋅∇ kjB  is 

satisfied at each mesh node in each time marching step.  
4.2  Scheme II 

Scheme II is based on a specially defined SE for solving 
the magnetic induction equations. As illustrated in Fig. 3, the 
Special Conservation Element (SCE) associated with point 
G’ is defined as quadrilateral P’Q’R’T’PQRT, which 
composes of six planes: P’Q’R’T’, P’Q’QP, Q’R’RQ, 
R’T’TR, T’P’PT and PQRT. The six planes are referred to as 
Special Solution Elements (SSE). The SSE and SCE are 
defined for solving magnetic field components Bx and By 
only. Shown in Fig. 3, the solution points N’, E’, W’, and S’ 
surrounding G’ are at the middle of line segments P’Q’, P’T’, 
Q’R’ and R’T’, respectively.  Thus the SCE here includes a 
space-time region larger than the original CCE.  

To proceed, the SSEs, P’Q’R’T’ and PQRT, are defined 
to be associated with the solution points G’ and G, 
respectively. Similarly, the SSEs, P’Q’QP, Q’R’RQ, R’T’TR 
and T’P’PT are associated with the solution points N, W, S 
and E, respectively. Inside SSEs, the profiles of Bx and By 
follow the first-order Taylor series expansion. For example, 
we consider SSE P’Q’QP associated with the solution point N: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2121

21,21,
21

21,

21,
21

21,
21

21,
* 21,21,;,,

−−
++

−
+

+
−
+

−
+

−+−+

−+=−+

nn
kjmtkj

n
kjmy

kj
n

kjmx
n

kjmm

ttuyyu

xxuunkjtyxu
,       (4.4) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2121

21,21,
21

21,

21,
21

21,
21

21,
* 21,21,;,,

−−
++

−
+

+
−
+

−
+

−+−+

−+=−+

nn
kjmtkj

n
kjmy

kj
n

kjmx
n

kjmm

ttfyyf

xxffnkjtyxf
,       (4.5) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2121

21,21,
21

21,

21,
21

21,
21

21,
* 21,21,;,,

−−
++

−
+

+
−
+

−
+

−+−+

−+=−+

nn
kjmtkj

n
kjmy

kj
n

kjmx
n

kjmm

ttgyyg

xxggnkjtyxg
,       (4.6) 

where m = 6 and 7.  Similar discretization procedure is employed in the other SSEs.  
To proceed, we perform numerical integration of the magnetic induction equations in x and y directions over the 
SCE based on the above discretization scheme for the SSEs. The magnetic induction equations can be reformulated 
as  

0=
∂
Ω∂

+
∂
∂

yt
Bx ,                          (4.7) 

0=
∂
Ω∂

−
∂

∂

xt
By ,                          (4.8) 

where Ω = vBx –uBy . Integrating Eqs. (4.7-8) over the SCE, we have 
( )

( )
0,,0 =⋅Ω∫ VS

x dB s ,                        (4.9) 

( )
( )

0,0, =⋅Ω−∫ VS
y dB s .                        (4.10) 

Consider Eq. (4.9), flux leaving plane P’Q’R’T’ is 
( )n kjxTRQP ByxFLUX ,'''' ∆∆= .                      (4.11) 

Flux leaving plane PQRT is 

Fig. 3: Definition of Special SE and CE for 
an inherent constrained-transport 
scheme. 
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( ) 21
,
−∆∆−= n
kjxPQRT ByxFLUX .                      (4.12) 

Flux leaving plane P’Q’QP is 

( ) ( ) ( ) 41
21,

21
21,

21
21,'' 242

−
+

−
+

−
+ Ω

∆∆
=



 Ω

∆
+Ω

∆∆
= n

kj
n

kjt
n

kjQPQP
txttxFLUX .            (4.13) 

Flux leaving plane R’T’TR is 

( ) ( ) ( ) 41
21,

21
21,

21
21,'' 242

−
−

−
−

−
− Ω

∆∆
−=



 Ω

∆
+Ω

∆∆
−= n

kj
n

kjt
n

kjTRTR
txttxFLUX .           (4.14) 

Fluxes leaving planes Q’R’RQ and T’P’PT are zero,  
0'' =RQRQFLUX ,                         (4.15) 
0'' =RTRTFLUX .                          (4.16) 

The flux balance over SCE is  
0'''''''''''' =+++++ PTPTTRTRRQRQQPQPPQRTTRQP FLUXFLUXFLUXFLUXFLUXFLUX .     (4.17) 

Substituting Eqs. (4.11-16) into Eq. (4.17), we have 

( ) ( ) ( ) ( )[ ]41
21,

41
21,

21
,, 2

−
+

−
−

− Ω−Ω
∆
∆

+= n
kj

n
kj

n
kjx

n
kjx y

tBB .                 (4.18) 

Similarly, integration of Eq. (4.10) over SCE gives 

( ) ( ) ( ) ( )[ ]41
,21

41
,21

21
,, 2

−
−

−
+

− Ω−Ω
∆
∆

+= n
kj

n
kj

n
kjy

n
kjy x

tBB .                 (4.19) 

For SCEs associated with points E’ and W’, we have 

( ) ( ) ( ) ( )[ ]41
21,21

41
21,21

21
,21,21 2

−
++

−
−+

−
++ Ω−Ω

∆
∆

+= n
kj

n
kj

n
kjx

n
kjx y

tBB .              (4.20) 

( ) ( ) ( ) ( )[ ]41
21,21

41
21,21

21
,21,21 2

−
+−

−
−−

−
−− Ω−Ω

∆
∆

+= n
kj

n
kj

n
kjx

n
kjx y

tBB .              (4.21) 

For SCEs associated with points N’ and S’, we have 

( ) ( ) ( ) ( )[ ]41
21,21

41
21,21

21
21,21, 2

−
+−

−
++

−
++

Ω−Ω
∆
∆

+= n
kj

n
kj

n
kjy

n
kjy x

tBB .              (4.22) 

( ) ( ) ( ) ( )[ ]41
21,21

41
21,21

21
21,21, 2

−
−−

−
−+

−
−−

Ω−Ω
∆
∆

+= n
kj

n
kj

n
kjy

n
kjy x

tBB .              (4.23) 

At point G’, we obtain ( )xBx ∂∂  and ( )yBy ∂∂  as  

( ) ( )
x

BB

x
B

n
kjx

n
kjx

n

kj

x

∆

−
=








∂
∂ −+ ,21,21

,
,                    (4.24) 

( ) ( )
y

BB

y
B

n
kjy

n
kjy

n

kj

y

∆

−
=








∂

∂ −+ 21,21,

,

.                    (4.25) 

Aided by Eqs. (4.20-23) we have 

( )
( ) ( ) ( ) ( )

( ) 21
,

21,21,,21,21
,

−−+−+ ⋅∇=
∆

−
−

∆

−
=⋅∇ n

kj

n
kjy

n
kjy

n
kjx

n
kjxn

kj y

BB

x

BB
BB .         (4.26) 

That is, if ( ) 021
, =⋅∇ −n
kjB , then ( ) 0, =⋅∇ n

kjB . 

Based on the use of the above SSE and SCE, this extended CESE scheme is proposed to solve Bx, By, xBx ∂∂  
and yBy ∂∂  at point G’. All other variables are calculated by using the original CESE scheme as illustrated in 
Section 3. 
 

5. Results and Discussions 
In this section, we report results obtained from the CESE schemes. Section 5.1 presents the two-dimensional 

results of a MHD shock tube problem. Section 5.2 shows the solution of a MHD vortex problem, which is a real 
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two-dimensional problem. For the two problems, we employ the new CESE schemes for maintaining ∇⋅B = 0. 
Moreover, for the MHD vortex problem, we also employ the projection procedure, i.e., the Poisson solver, for 
maintaining ∇⋅B = 0. 
 
5.1  A Rotated Shock Tube Problem 

In a one-dimensional problem, ∇⋅B = 0 is automatically satisfied. A common practice to assess multi-
dimensional solvers for ∇⋅B = 0 is to perform two-dimensional calculation of an inherently one-dimensional 
problems formulated in the rotated coordinates such that the one dimensionality of the flow is not aligned with the 
numerical mesh and ∇⋅B = 0 may not be easily satisfied. As such, the degree of deficiency in satisfying ∇⋅B = 0 can 
be straightforwardly judged by direct comparison between the two-dimensional results with the corresponding one-
dimensional result. As shown in Fig. 4, the computation is conducted in the rectangular domain OABC. The one-
dimensional problem is defined along the ξ-direction. Through coordinate rotation, flow variables in the x-y 
coordinates can be transformed to be in the ξ-η coordinates, and vice versa.  

 
Fig. 4: Relation between x-y coordinates and ξ-η coordinates. Rectangle OABC is the computational domain. 

 
The initial condition, defined along ξ-direction, consists of two distinct states: 

( ) ( )
( )





−
=

rightfor      45,45,1,0,10,1
leftfor       45,45,20,0,10,1 , , , , ,

ππ
ππρ η zBBpvu , 

with 35=γ , w = 0, and Bz =0. The flow condition and computational parameters are taken from Toth [12]. The 
computational domain is ( ) [ ] [ ]Nyx 2,01,0, ×∈ , where N is the grid point in x direction and set to N = 256. The 
rotated angle is set to tan-1 2 ≈ 63.430. A periodic condition is imposed in the η direction. The computation is up to t 
= 508.0 , and the computational domain is covered by a mesh of 256×2 grid points. 

Figure 5 shows results by the original CESE scheme, in which dots denote the present solution and solid lines 
represent one-dimensional solution in Toth [12]. The right-moving waves include a fast shock, a slow shock and a 
contact discontinuity. The left-moving waves include a fast shock and a slow rarefaction wave. Favorable 
comparison is found between our present two-dimensional results and the one-dimensional results. We also 
employed the new schemes proposed in Section 4 for this problem. Figure 6 shows the comparison of the pressure 
and magnetic field component Bη profiles obtained by using (i) the original CESE scheme, (ii) the scheme I with a 
simple adjustment and (iii) the scheme II based on the constraint-transport procedure. For shock capturing, there is 
no obvious difference between the original CESE scheme and the new schemes. 

Analytically, Bξ is constant along the ξ direction. Figure 7 shows the Bξ profiles calculated by the three different 
CESE schemes. We observe oscillations around the moving shocks. The oscillations with the original scheme are 
smaller than that with scheme I, and are comparable with that with scheme II. Away from shocks, the solutions are 
smooth. 

The same assessment was conducted by Toth [12] by using several special treatments for ∇⋅B = 0, including the 
8-wave method, various versions of the constraint transport methods, and projection method. Refer to Fig. 11 in [12], 
oscillations of Bξ occur around shocks for all approaches employed. Comparing with the results shown by Toth [12], 
the magnitudes of Bξ oscillations near the moving shocks calculated by the present three CESE methods are much 
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smaller. Moreover, as shown in Fig. 14 of Toth [12], spurious oscillations of other variable were also observed.  In 
our case, as shown in Fig. 6, no oscillation is observed in present results. Without using a special treatment for ∇⋅B 
= 0, the calculated results compare favorably with one-dimensional data. With the use of special treatments for ∇⋅B 
= 0, i.e., Scheme I and II, illustrated in Section 4, no obvious improvement is observed. 

    
5a. Pressure.              5b. Density. 

 

    
5c. Velocity component Uξ.        5d. Velocity component Uη. 

 

 
5e. Magnetic field component Bη. 

 
Fig. 5: Solution to shock tube B. Solid lines stand for one-dimensional results by Toth [12], dots for present 

results. 
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6a. Profiles of P.            6b. Profiles of Bη 

 
Fig. 6: Comparison between different CESE schemes for a MHD shock tube problem. 

 

 
Fig. 7: Profiles of Bξ for a MHD shock tube problem with different CESE schemes. 

 
5.2 The MHD Vortex Problem 

In this subsection, we report the numerical solution of a MHD vortex problem by Orsazg and Tang [21]. The 
same problem has been employed by Jiang and Wu [4], Tang and Xu [11], and Toth [12] for assessing the numerical 
treatments for ∇⋅B = 0. In particular, Jiang and Wu [4] reported numerical instability if the projection procedure was 
not used. The initial conditions of the flow field are 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 00,,,2sin0,,,sin0,,

00,,,sin0,,,sin0,,
0,,,0,, 2

==−=
==−=

==

yxBxyxByyxB
yxwxyxvyyxu

yxpyx

zyx

γγρ
, 

where the specific heat ratio 35=γ . The computational domain is [ ] [ ]ππ 2,02,0 × . Periodic boundary condition is 
imposed on boundaries in both x- and y-directions. We use a uniform mesh of 193×193 grid nodes. The same mesh 
was used by Jiang and Wu [4] and Tang and Xu [11].  

Figure 8 shows the pressure contours of the present CESE results at t = 0.5, 2, and 3, respectively. The results 
here are calculated by using the original CESE method. Although not shown, the results calculated by using 
Schemes I and II are virtually the same in these contour plots.  To assess the accuracy of the present results, the 
employed contour levels are exactly the same as that used by Jiang and Wu [4], i.e., 12 equally spaced contour 
levels ranging from 1.0 to 5.8 for t = 0.5, from 0.14 to 6.9 for t = 2, and from 0.36 to 6.3 for t = 3. Although not 
shown in the present paper, side-by-side comparisons between the present results and Jiang and Wu’s results showed 
no obvious difference.  
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8a. Pressure contours at t = 0.5.        8b. Pressure contours at t = 2. 

 
8c. Pressure contours at t = 3. 

 
Fig.8: Pressure contours of a MHD vortex problem by the original CESE scheme. 

 
For quantitative details of the calculated results, Fig. 9 shows the pressure profiles along the line of y = 0.625π at 

time t = 0.5, 2 and 3, calculated by using the three CESE schemes: the original scheme and the extended schemes I 
and II. For t = 0.5, there is no difference between the results by the three schemes. At t = 2, result by Scheme II 
showed a more pronounced gradient near x = 5.5. For t = 3, small differences could be discerned on the left end of 
the plot. In Fig. 9c, result reported by Tang and Xu [11] is also plotted.  No obvious difference can be observed 
between their results and the present results by the original CESE scheme and Scheme I. 

We remark that in scheme II, there is no damping treatment for discontinuity in calculating the first-order 
derivatives xBx ∂∂  and yBy ∂∂ . Moreover, the mesh stencil for calculating xB , yB , xBx ∂∂ , and yBy ∂∂  are 
larger than that the one (the original CESE method) used for the rest of unknowns due to the use of SSE and SCE.  
Figure 10 shows time history of the magnetic energy of the whole flow field. Solid line is the result from the original 
CESE method, and dots are Tang and Xu’s results in [11]. 

To further investigate the capability of the CESE method for ∇⋅B = 0, we adopt the projection method and solve 
the Possion equation at every time step, 

∇2φ + ∇⋅B = 0,                           (5.1) 
where B is obtained from the CESE method described in Section 3. According to the mesh arrangement shown in 
Fig. 1, Eqn. (5.1) is discritized as, 

( ) ( )
( ) kj

kjkjkjkjkjkj

yx
,2

21,,21,
2

,21,,21

2

2

2

2
B⋅∇−=

∆

+−
+

∆

+− −+−+ φφφφφφ
.            (5.2) 
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An implicit solver is employed to solve the above equation, and the magnetic field B is updated by, 
φ∇+= BBc .                           (5.3) 

The updated Bc is then used to march the flow solution to the next time step. Fig. 11 shows pressure profiles 
along y = 0.625π at t = 3 with and without the projection procedure. We observe no obvious improvement by 
employing the projection procedure.  

 

    
9a. Pressure profile at t = 0.5.       9b. Pressure profile t = 2. 

  
9c. Pressure profile t = 3. 

 
Fig. 9: Pressure profile of a MHD vortex problem along line y = 0.625π. 

 
Fig. 10: Evolution of magnetic energy of a MHD vortex problem. 
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Fig. 11: Comparison between CESE method with and without a projection procedure for keeping ∇⋅B = 0. 

6. Conclusions 
In this paper, we report the extension of the CESE method for solving the ideal MHD equations in two-spatial 

dimensions with emphasis on satisfying the ∇⋅B = 0 constraint. Three numerical treatments are developed (i) a 

simple algebraic adjustment of 
n

kj

x

x
B

,








∂
∂  and 

n

kj

y

y
B

,









∂

∂
after each time marching step to satisfy ∇⋅B = 0, (ii) an 

extended CESE method based on the constraint-transport method to calculate the magnetic field, and (iii) a 
projection method by coupling a Poisson solver with the original CESE method. To demonstrate the capabilities of 
the CESE methods, two benchmark problems are calculated and compared with the previously published results, 
including a rotated MHD shock tube problem and a MHD vortex problem. All present results produced by the new 
CESE schemes compare favorably with the previous results. Moreover, we demonstrate that the original CESE 
method could be directly used to calculate the MHD equations without any difficulty. For the benchmark problems, 
the results are as accurate as that produced by using sophisticated special treatments.   

Appendix: Jacobian Matrixes 
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ρ
γ zx BBuwA −−= )1(4 ,                       (A.2d) 

uA γ=5 ,                           (A.2e) 
( )zyx wBvBuBA +−−= γ6 ,                      (A.2f) 
( ) yx uBvBA γ−+−= 27 ,                       (A.2g) 

and 
( ) zx uBwBA γ−+−= 28 .                       (A.2h) 
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where 

ρρ
γ
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γ zx

y
yzx wBuB
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vwvuvveB
+

++
+−

+++−+−=
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2)()1( ,      (A.4a) 

ρ
γ yx BB

uvB −−= )1(2 ,                       (A.4b) 
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2
3 yzx BBBwuveB −

+−
−+

−
+−+= ,           (A.4c) 

ρ
γ zy BB

vwB −−= )1(4 ,                       (A.4d) 

vB γ=5 ,                           (A.4e) 
( ) yx uBvBB −−= γ26 ,                       (A.4f) 

( )zxy wBuBvBB +−−= γ7 ,                      (A.4g) 
and 

( ) zy vBwBB γ−+−= 28 .                      (A.4h) 

References 
1Brio, M. and Wu, C. C., “An upwind difference scheme for the equations of ideal magnetohydrodynamics,” Journal of 

Computational Physics, Vol. 75, 1988, pp. 400-422. 
2Zachary, L., Malagoli, A. and Colella, P. A., “A high-order Godunov method for multidimensional ideal 

magnetohydrodynamics,” SIAM Journal of Scientific Computation, Vol. 15, 1994, pp. 263-285. 
3Myong, R. S. and Roe, P. L., “On Godunov type schemes for magnetohydrodynamics,” Journal of Computational Physics, 

Vol. 147, 1998, pp. 545-564. 
4Jiang, G.-S. and Wu, C. C., “A high-order WENO finite difference scheme for the equations of ideal magneto-

hydrodynamics,” Journal of Computational Physics, Vol. 150, 1999, pp. 561-594. 
5Brackbill, J. P. and Barnes,D. C., “The effect of nonzero B⋅∇  on the numerical solution of the magnetohydrodynamic 

equations,” Journal of Computational Physics, Vol. 35, 1980, pp. 426-430. 
6Powell, K. P.,“An approximate Riemann solver for magneto-hydro-dynamics,” ICASE Report 94-24, 1994. 
7Evans, C. R. and Hawley, J. F., “Simulation of magnetohydrodynamic flows: a constrained transport method,” Astrophys. J., 

Vol. 332, 1988, pp. 659-677. 
8Dai, W. and Woodward, P. R., “A simple finite difference scheme for multidimensional magnetohydrodanamical 

equations,” Journal of Computational Physics, Vol. 142, 1998, pp. 331-369.  



AIAA 2006-9711, AIAA Sciences Meeting, Reno Nevada 

 
American Institute of Aeronautics and Astronautics 

 

17

9Balsara, D. S. and Spice, D. S., “A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal 
magnetic fields in magnetohydrodynamic simulations,” Journal of Computational Physics, Vol. 149, 1999, pp. 270-292. 

10Ryu, D., Miniati, F. T., Jones, W. and Frank, A., “A divergence-free upwind code for multidimensional 
magnetohydrodynamic flows,” Astrophys. J., Vol. 509, 1998, pp. 244-255. 

11Tang, H. –Z. and Xu, K., “A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics,” Journal of 
Computational Physics, Vol. 165, 2000, pp. 69-88. 

12Tóth, G., “The constraint 0=⋅∇ B  in shock capturing magneto-hydrodynamics codes,” Journal of Computational Physics, 
Vol. 161, 2000, pp. 605-652. 

13Londrillo, P. and Del Zanna, L., “On the divergence-free condition in Godunov-type schemes for ideal 
magnetohydrodynamics: the upwind constrained transport method,” Journal of Computational Physics, Vol. 195, 2000, pp. 17-48. 

14Peyrard, P. R. and Villedieu, P., “A Roe scheme for ideal MHD equations on 2D adaptively refined triangular grids,” 
Journal of Computational Physics, Vol. 150, 1999, pp. 373-393. 

15Chang, S. C. and To, W. M., “A new numerical framework for solving conservation laws – the method of space-time 
conservation element and solution element,” NASA TM 104498, 1991. 

16Chang, S. C. , “The method of space-time conservation element and solution element–a new approach for solving the 
Navier-Stokes and the Euler Equations,” Journal of Computational Physics, Vol. 119, 1995, pp. 295-324. 

17Chang, S. C., Wang, X. Y. and Chow, C. Y., “The space-time conservation element and solution element method: a new 
high-resolution and genuinely multidimensional paradigm for solving conservation laws,” Journal of Computational Physics, Vol. 
156, 1999, pp. 89-136. 

18Wang, X. Y. and Chang, S.C., “A 2D non-splitting unstructured triangular mesh Euler solver based on the space-time 
conservation element and solution element method,” Computational Fluid Dynamics Journal, Vol. 8, 1999, pp. 309-325. 

19Zhang, Z. C., Yu, S. T. and Chang, S. C., “A space-time conservation element and solution element method for solving the 
two- and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes,” Journal of Computational 
Physics, Vol. 175, 2002, pp. 168-199. 

20Zhang, M. J., Lin, S. C., Yu, S. T., Chang, S. C. and Blankson, I., “Application of the space-time conservation element and 
solution element method to the ideal magnetohydrodynamics equations,” AIAA paper 2002-3888, 2002. 

21Orszag, A. and Tang, C. M., “Small-scale structure of two-dimensional magnetohydrodynamic turbulence,” Journal of 
Fluid Mechanics, Vol. 90, 1979, pp. 129-145. 
 


