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Solving the MHD Equations
by the Space-Time CESE Method
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We apply the Space-Time Conservation Element and Solution Element (CESE) method
to solve the ideal MHD equations with special emphasis on satisfying the divergence free
constraint of magnetic field, i.e., V.B = 0. In the setting of the CESE method, four
approaches are employed: (i) the original CESE method without any additional treatment,
(ii) a simple corrector procedure to update the spatial derivatives of magnetic field B after
each time marching step to enforce V-B = 0 at all mesh nodes, (iii) an constraint-transport
method by using a special staggered mesh to calculate magnetic field B, and (iv) the
projection method by solving a Poisson solver after each time marching step. To
demonstrate the capabilities of these methods, two benchmark MHD flows are calculated (i)
a rotated one-dimensional MHD shock tube problem, and (ii) a MHD vortex problem. The
results show no differences between different approaches and all results compare favorably
with previously reported data.

1. Introduction

HILE many Computational Fluid Dynamics (CFD) methods have been successfully developed for gas

dynamics, extension of these methods for solving the Magneto-Hydro-Dynamic (MHD) equations involves
unique requirements and poses greater challenges [1-14]. In particular, for multi-dimensional MHD problems, it is
critical to maintain the divergence-free constraint of magnetic field, i.e., V-B = 0, at all locations in the space-time
domain. Analytically, the constraint is ensured if it is satisfied in the initial condition. However, it has been difficult
to maintain this constraint in calculating evolving MHD problems. Violating the constraint allows numerical errors
to be accumulated over the computational time, leading to erroneous solutions and/or numerical instability

To satisfy V-B = 0, a special treatment directly incorporated into the CFD method employed is often required.
Special treatments have been categorized into three groups: (i) The projection method, e.g., Brackbill and Barnes [5]:
At each time step, the method solves a Poisson equation to update the magnetic field to enforce V-B = 0. (ii) The
eight-wave formulation by Powell [6]: V-B is not treated as zero in deriving the MHD equations, leading to
additional source/sink terms in equations for B. The CFD solver employed would activate the sink/source terms to
counter the unbalanced V-B in numerical solutions. (iii) The constrained-transport procedure, e.g., Evans and
Hawley [7], Dai and Woodward [8], Balsara and Spice [9], and Toth [12], based on the use of staggered mesh to
enforce the constraint at certain spots of the control volume. Various versions of these three approaches have been
developed to solve the MHD equations in multiple spatial dimensions [4-13]. Recently, these methods have been
assessed and summarized by Toth [12].

In the present paper, we report the application of the Space-Time Conservation Element and Solution Element
(CESE) method [17-20] to solve the two-dimensional MHD equations. Four approaches are employed: (i) the
original CESE method without any additional treatment for V-B = 0, (ii) a simple modification procedure to update
the spatial derivatives of B after each time marching step such that V-B = 0 is enforced at all mesh nodes, (iii) an
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extended CESE method based on the constraint-transport procedure, and (iv) the projection method coupled with the
CESE method. The approach (i) is trivial. Nevertheless, its results are comparable with other results by the three
other approaches. Approaches (ii) and (iii) are new schemes for V-B = 0. Approach (iv), the projection method, is a

conventional and reliable approach to impose V-B = 0. All results in the present paper compare well with previously
published data.

The rest of the paper is arranged as follows. Section 2 illustrates the governing equations. Section 3 provides a
brief review of the CESE method for two-spatial-dimensional problems. Section 4 shows the new CESE schemes,

i.e., approaches (ii) and (iii), for V-B = 0. Section 5 provides the results and discussions. We then offer conclusions
and provide cited references.

2. Governing Equations

The ideal MHD equations include the continuity, the momentum, the energy, and the magnetic induction
equations. In two spatial dimensions, the dimensionless equations can be cast into the following conservative form:

6—U+8—F+@:O, 2.1
o ox Oy
where
U= (p,pu,pv,pw,e,BX,By,Bz)T = (ul,uz,u3,u4,u5,u6,u7,u8)T, (2.2)
pu Si
pu’ + Py —sz /i
puv—B.B, VE
w—B B J4
F(U)= (e+p0)u—pll;x(uBXx+ :/By +WBZ) - £l (2:3)
0 Js
uB, —vB, /s
uB, —wB, fx
and
PV &
pvu—B B, 2
pv2 + Do _Bi 83
G(U)= pow =B, B S 2.4)
(e+p0)v—By(qu +VvB, +WBZ) gs
vB, —uBy g6
0 &7
vB, —wBy g5

In the above equations, p, p and e are density, pressure and specific total energy, respectively; u, v, and w are
velocity components and B,, B, and B, are magnetic field components in the x, y, and z directions, respectively. The
total pressure and the specific total energy are

p0=p+(Bf+B§+Bzz)/2, (2.5)
e:pg+p(u2+v2+w2)/2+(Bf+B§+BZZ)2. (2.6)
For calorically ideal gases, the specific internal energy & can be expressed as
__p___RT_ o
r-1p (-1)

where yis the specific heat ratio, T is temperature, and R is the gas constant. To proceed, we apply the chain rule to
Eq. (2.1) and obtain
U, U U _y (2.8)
ot Ox oy
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where J* and J¥ are Jacobian matrices of the spatial fluxes in the x and y directions, respectively. The components of

the matrices are listed in Appendix. The eigenvalues of matrix J* are u + c;ﬁ , utc

X

X X
2> urcy, uand u, where c,,

c; and C;Cr are the speeds of the Alfvan wave, the slow shock wave, and the fast shock wave, respectively, and they

are defined as

ca =|B.
x 1
Cf_ E
Lo
cy =9—

I_/J_,

, BB
et ——+
P

2+ BB_

p

2 25 2

[cz +ﬂ] OB
P P

2 25, 2

(Cz +£] 4B
P P

(2.9)
12

(2.10)

12

@.11)

In Egs. (2.10-11), ¢ = /jp/p is the speed of sound. Similarly, the eigenvalues of matrix J” are v+ cjy, , vt CZ ,

y y

vic],vandv, where ¢;, c¢; and ¢} are defined as
¢ :|By|/f, (2.12)
_ - 2
2p 2
) . B,
ey =11 02+—+\/(02+B Bj R T (2.13)
: 2 p p p
2p 2
. B
=1L 02+——\/(62+B BJ e 2.14)
2 p P P
3. The CESE Method
The above MHD equations can be expressed as
G T G g m=1,2,....8, 3.1)
ot Ox oy

where u,,, f,,and g, are the entries of the flow variable vector and the flux vectors in the x and y directions,

respectively, and m is the index for the equation. Let x; =x,x, =y and x; =¢ be the coordinates of a three-

dimensional Euclidean space E5, Eq. (3.1) becomes a divergence free condition:
V-h,=0,m=1,2,...,8,

where h,, =(f,,,g,,.u, ) are the current density vector. By using Gauss’ divergence theorem in Es, we have

(3.3)

3.2)

jV~hde:§ h,-ds=0,m=1,2,...,8,
J s)

where (i) S(¥) is the boundary of an arbitrary space-time region ¥ in E;, and (ii) ds = ndo with do and n,
respectively, are the area and the unit outward normal of a surface element on S(¥). The CESE method integrates Eq.
(3.3) for the evolving flow variables.

For completeness, we will briefly illustrate the CESE method based on the following three parts: (i) The
definition of SE and CE in the space-time domain. (ii) The integration of Eq. (3.3) over a CE to form the algebraic
equations for the flow variables at a new time step. (iii) The re-weighting procedure with added artificial damping in
calculating the gradients of the flow variables. The discussion of the CESE method here will be based on the
modified CESE method for a quadrilateral mesh [19]. To be concise, our discussion of the CESE method will be
focused on a uniform quadrilateral mesh.

3.1 Definition of Solution Element and Conservation Element
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In Fig. 1, the spatial domain is divided into non-

overlapping quadrilaterals and any two neighboring

quadrilaterals share a common side. The centroid of each o) N P ke
quadrilateral is marked by either a hollow circle or a solid ¢ /Q\ .

circle. Point G, the centroid of quadrilateral ABCD, is Al > I\) AY/2
marked by a solid circle, while the points N, E, W and S are AN

the centroids of the four neighboring quadrilaterals, and are w Q’\ /,(G\ , pE .
marked by hollow circles. Because of the uniform mesh, G is ‘B ‘ é AY/2
also the centroid of polygon NAWBSCED, which coincides NS

with quadrilateral NWSE. Let j, k and # be the indices for x, y, i c?; . - kz

and ¢, respectively. Shown in Fig. 2, points 4, B, C, D, N, E, Y
W, S and G are at the time level n-1/2; points A’, B’, C’, D’,
N’, E’, W, S” and G’ are at the time level n; and points 4~

s E s b E
B”, C”, D”, N”, E”, W”, §” and G” are at the time level X Ax/2 | Ax/2

n+1/2. J12 J J+12
As shown in Fig. 2, the solution element SE(j, k, n)

associated with point G’ is defined as the union of three  Fig. 1: Definition of space-time mesh for a
quadrilateral planes, N'W’S’E’, A”ACC”, B”"BDD”, and two-dimensional problem.

their immediate neighborhoods. Its spatial projection is
shown in Fig. 1 as the dashed lines. Similarly, associated
with points N, E, W, and S, there are four solution elements:
SE(, k+1/2, n-1/2), SE (j+1/2, k, n-1/2), SE (j-1/2, k, n-1/2),
and SE (j, k-1/2, n-1/2). To calculate the unknowns at G, the

algebraic equations are derived based on space-time flux m+1/2

conservation involved flow solutions at points G, N, E, W,

and S, referred to as the solution points. Point G’, located at ¢ 21

= It/’; is staggered with respect to points N, E, W, and S at ¢ =

A "
As shown in Fig. 2, a space-time cylinder can be formed Atz

with surfaces associated with SE(j, k, n) and surfaces

associated with one of the four SEs at the time level n-1/2. . .

For instance, cylinder N'4A°G’D’NAGD is formed by surfaces

associated with SE(j, k, n) and SE(j, k+1/2, n-1/2) . This
cylinder is one of the Basic Conservation Elements (BCE) of
point G’. There are three other BCEs associated with point
G, ie, AWB'GAWBG, B'S’C’'G'BSCG  and . . . .
C’E’D’G’CEDG. The union of these four BCEs forms a  ¥ig 2: Grid ‘arrangement in space-time
Compounded Conservation Element (CCE) N'W'S’E’'NWSE domain.

with its top center at point G’.

3.2  The Space-Time Integration
Inside SE(j, k, n), the discretized variables and fluxes, denoted with a superscript *, are assumed to be linear. For
m=1,2,...,8,let

u:z(x$y$t;j5k$n):(um)1k+(umx) (x xjk) ( y-(y_yjk>+(umt);"yk(t_tn)a (34)
Fleti )= (Y U V=) B = b (=), 6:5)
Em (X, t]kn) ( ),k+(gmx)};',k(x_xj,k)+(gmyyjl»’k(y_yj,k)+(gmt)};',k(t_t”)’ (36)

Where (um )J k° (fm )J k° ( m )’; k° (umx );",k > (umy )j,k > (umt )’;‘,k > ( .mx );l',k > (.fmy ):",k > (fmt );l',k > (gmx );,‘,k > (gmy );,k ’and

(g )".  are flow variables, fluxes, and their first-order derivatives at point G". Aided by the chain rule we have

8
(S ) ik = me/ ik () Teem=1,2,...8, (3.7)
=1
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M-

(@ Vip =D @ma ) )}y m=1,2,...8 (3.8)

()1,

=1

(s V1, (ub,);’k om=1,2,...,8 (3.9)

~
Il

1

M-

(g0 )’},k = > (g )f},k (" )';,k ,m=1,2,...,8 (3.10)

~
1l

1

where ( ml );’k , (gm,, )’;k are the (m, [)th entries of the Jacobian matrixes J* and J¥ in the x and y directions,

respectively. To proceed, we assume that u; (x, .t j,k,n) , f,: (x, V.t j,k,n) and g; (x, vt j,k,n) satisfy the
original MHD equations, Eq. (3.1), at point, (j, &, n):
(umt)j‘,k (fmr)]k (gmy) :1’2:'”98- (311)

Aided by Egs. (3.7) and (3.10), , Eq. (3.11) becomes
8

8
(umt )’;‘,k = _Z(fm,l );l"k (ulx )Z',k - Z(gm,l )Z,k (uly ));-’k ,m=1,2,...,8, (312)

=1 =1
Similarly, form =1, 2, ..., 8, we have

8 8 8
(fmt)f;,k:Z(fmljk Uy 1k = mel ij[flr Upx ]k (gll)’jlk( ry)jk] (313)
=1 =1 r=1
8

8 8
(gml)j' _Z(gml)” ult Z l kZ[fl’”Jk Uy 1k (gl,r);,k<ury)j-’k]' (314)
r=1

=1 =1

Therefore, a set of given values of (x,, )';k (14, )'j’ . and ( ) , completely determine the distribution of the

flow variables and fluxes, i.e., Egs., (3.4-6), inside SE(j, k, n). Thus the flow variables (um )'J’k and their spatial

gradients (u,,, )j . and ( my )] , are the unknowns to be solved in the CESE method.

The time marching scheme to calculate (um )j . 1s based on integrating Eq. (3.3) over the CCE associated with

point G’. Recall that the CCE is a quadrilateral cylinder with surfaces associated with five different SEs. The top
surface, quadrilateral N'W’S’E’ belongs to SE(j, k, n); quadrilaterals NAGD, N’A’AN and N’D’DN belong to SE(j,
k+1/2, n-1/2); quadrilaterals WAGB, W’A’AW and W’B’BW belong to SE(j-1/2, k, n-1/2); quadrilaterals SBGC,
S’B’BS and S’C’CS belong to SE(j, k-1/2, n-1/2); and quadrilaterals EDGC, E’C’CE and E’D’DE belong to
SE(j+1/2, k, n-1/2).

The flux leaving each planar surface of the CCE is equal to the inner product of the current density

vectorh, =\f.. g u, |, evaluated at the centroid of the surface, and the surface vector s = nS. For example, the
top surface of the CCE is quadrilateral N'W’S’E’ with an area Swp and the centroid is G’ (x;4, ¥, ¢"). At the centroid

of the top surface of the CCE, the current density vector h (( mr ( m x’k,(um y;k) , and the surface vector is

(0, 0, Sy5p). Thus the flux leaving the top surface of the CCE is
(FLUX,)ip = (4, ) Siopom=1,2, ..., 8. (3.15)
Similarly calculation for fluxes through other surfaces of the CCE can be performed. For surfaces associated
with SE(j, k+1/2, n-1/2), the centriods of surfaces NAGD, NDD’N’ and NAA’'N’ are denoted as (x?\,, y?\,,t”_l/ 2),
(x]lv,y}\,,t”_m) and (xi,,yjzv,t”_”“), respectively. Their surface vectors are (0, 0, -S)), (ﬂlx,/lkf ,0), and (/sz,iﬁ,y ,O),
where S, is the area of quadrilateral NAGD, and
Ay =(vy —yp)At/2, (3.16)
A = (xp —xy )AL/2, (3.17)
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A = —yw )hef2, (3.18)

23 =y —x)AL/2. (3.19)

The flux leaving each of the three surfaces can be calculated as the inner product of the corresponding flux
vector and the surface vector at the surface centroid. By summing up the fluxes, form =1, 2, ..., 8, we have,

(FLUX,,)\ =—Su,, (x?\,,y?\,,t"_“z;j,k +1/2,0"2 )+ AN f (x}v,y}v,t”‘”“;j,k + 1/2,t”‘”2)
e 2 (el b ke 2,02 ) 23 (e v ke 12,02
+ /ﬁyg; (xlz\,,ylz\,,t"_l/4;j,k + l/2,t"_”2)
(3.20)
Because the solution at the time step n-1/2 is known, the value of this flux can be readily calculated. Similarly,

the fluxes leaving surfaces associated with SE(j-1/2, k, n-1/2), SE(j, k-1/2, n-1/2), and SE(j+1/2, k, n-1/2) can be
readily calculated. For conciseness, we simply name these fluxes as (FLUX m )W , (FLUX, )S and (FLUX,, ) - Asa

result, the space-time flux conservation over the CCE is
NEWS

FLUX,) + Y (FLUX,) =0,m=1,2,...,8. (3.21)
top !
!

Note that only the first term in the above equation contains the unknowns to be solved at point G°. Aided by Eq.
(3.15), the flow variables at the current time step # can be calculated by
NEWS

> (FLux,,),

(um)’},k:_lS—omzlazo"'a8~ (322)
top

3.3  Solutions of Flow Variable Gradients

To proceed, we calculate the spatial gradients of the flow variables (u,,, )j , and (umy )’: , - The calculation is
divided into two steps: (i) Finite-differencing the flow variables u,, at point G’, N, E’, W’, and S’, at ¢ = {" to obtain
four sets of u,, and Uy, - (ii) Apply a reweighing procedure to the above four sets of u,,. and u,, to determine

(umx )jk and (umy );’,,k at G’. In what follows, these two calculation steps are illustrated.

Flow variables u,, at point G’ are obtained from Eq. (3.22). The flow variables #, at four neighbor points N’,

W’, S’ and E’ are obtained by using the Taylor series expansion along the time axis from the time level n-1/2, i.e.,
form=1,2,...,8,

() =l 7 + %(um)?‘” : (3.23)

where /=1, 2, 3, and 4 denoting point N’, E’, W’ and S’, respectively.
The square plane N’E’S’W’ is divided into four triangles; N'W’'G’, W’S'G’, S’E’G’, and E’N’G’. In each
triangle, we finite-difference #,, at the three vertices to obtain the flow variable gradient (umx )'; . and (umy );' .

Consider triangle AN’W’G’, the flow variable gradient at its centroid can be expressed as,

W) = ./a, (3.24)
W), =4, /A, (3.25)
where

7 T e

A=\, ) (3.26)
(”m )W' - (”m )G' Yw =Yg
I 7 P

S 8 A S | 27
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A= Ay —X¢ YN~ Jag i (3.28)
Xy —Xg Yw — Vg
and
(4 )gr = () - (3.29)

For triangles AW’S’G’, AS’E’G’ and AE’N’G’, the flow variable gradients at their centroids, denoted by ( (2 ))

(u,(nzy) ) s (u,(,i) ) o (u,(,fy) ) s (u(4))0 and ( fny)) , can be obtained in a similar way.

To proceed, a re-weighting procedure is applied to the four sets of flow variable gradients to obtain the final flow
variable gradient at G, i.e., for m=1,2,...,8,

(um)j-,ﬁZjl[W»ﬂ ul) }/Z,IW”Q : (3.30)
(my)” Z,l[ L) }/Z,l ) (3.31)

where
I _ 4 q =
w! _qul,q i, forl=1,2,3,4, (3.32)
and

wg =) F ), (3.33)

For shock capturing, & = 1, or 2, is a prescribed constant. For flows without shock, we let & = 0. As such, Egs.
(3.30-31) reduce to the standard central-differencing method.

4. Extended CESE Schemes for V-B =0

In this section, we illustrate two new CESE schemes for V-B = 0: Schemes I and Schemes II. Both schemes are
built based on special features of the original CESE method. Scheme I takes advantage of the fact that the flow

variable gradients (i,,, )'/’ . and ( my) are directly used as the unknowns and they march in time hand-in-hand with

the flow variables (x,, )'j’ - Scheme I is a simple adjustment to the calculation of (it )jk and ( my) such that V-B

= 0 is satisfied at all mesh points after each time marching step. Scheme 2 takes advantage of staggered mesh
arrangement in the original CESE method. By a simple adjustment of the mesh nodes employed in calculating the
magnetic flux, we ensure the satisfaction of V-B = 0 at all solution points. In what follows, we report these two
schemes.

41  SchemeI

As illustrated in the above section, the flow variables (u,, )'; . are calculated by space-time flux conservation i.e.,

Eq. (3.22), over a CCE with its top center at point (j, & n), while the flow variable gradients (x,,, )'jlk and (umy)'/’, ‘

are calculated by a combination of a central differencing and a reweighing procedure. In Scheme I, we first follow
the above CESE algorithm to calculate the flow variables and their spatial gradients. After each time marching step,

a corrector step is applied to adjust the values of 0
Ox oy

" oB,\"
Bx] and (—yj . The calculated results of all other
k jk

n 8 B ) n )

unknowns remain intact. Note that (8&] and (—}] are denoted as (u6x )j , and (u7x )’; . in Eq. (2.2). The
ox ik Oy Iy -

adjustments to these two terms are

(”6x );le: = (”6x )’;k - % |:(u6x )’/Ik + (“7y )jk } ) 4.1)
(”7y )’]w: = (“7y )jk - %[(uu ):k + (”7y )’;k} ’ (4.2)

where the updated gradient is denoted by the superscript new. By adding the two equations above, we yield

7
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oo+, ) =0 (43)

ox

OB
That is, with the additional treatment for (anJ and (6_yJ by Egs. (4.1-2), the constraint (V . B) ik = 0is
Jok y Jik ‘

satisfied at each mesh node in each time marching step.
4.2  Scheme IT

Scheme II is based on a specially defined SE for solving
the magnetic induction equations. As illustrated in Fig. 3, the Q' N P
Special Conservation Element (SCE) associated with point
G’ is defined as quadrilateral P’Q’R’T’PQORT, which

)

I

I
composes of six planes: P’'Q'R’T’, P’Q’OP, Q'R'RQ, W = |
R’T’TR, T’P’PT and PORT. The six planes are referred to as E
Special Solution Elements (SSE). The SSE and SCE are R 5 : | [P
defined for solving magnetic field components By and B, kuzok-————-F-- A AP )
only. Shown in Fig. 3, the solution points N’, E’, W’, and S’ ¥

surrounding G’ are at the middle of line segments P'Q’, P'T",
QO’R’ and R’T’, respectively. Thus the SCE here includes a
space-time region larger than the original CCE. v G

To proceed, the SSEs, P’Q’R’T’ and PQORT, are defined Lals . 5 R
to be associated with the solution points G’ and G, J e g i
respectively. Slmllarly, the SSES, P’Q ’QP, Q’R ’RQ, R’T’TR Fig. 3: Definition of Special SE and CE for
and T’P’PT are associated with the solution points N, W, S an inherent constrained-transport
and E, respectively. Inside SSEs, the profiles of B, and B, scheme.

follow the first-order Taylor series expansion. For example,
we consider SSE P’Q QP associated with the solution point NV:

(%, 3,05 jk +1/2,n=1/2) = (u,, )’;_klﬁ/z + (te );,_klﬁ/z (x - xj,k+1/2)
)

k we °G ‘E\E n-1/a

» n- -2 )’ (4.4)
+ (“my )j,kl-ﬁ/Z (y =V jk+1)2 )+ (um, j’klf/z (t _n-i2 )
Iyt +1/2,0-1/2)= (£, )j‘,_klﬁ/z + (S );,_klﬁ/z (x - xj,k+1/2) (4.5)
+ ( my )’/’,_klﬁ/z (y —Vjk+1)2 >+ (fmt )’11,_1{14/3/2 (t _ tnfl/z ),
g, eyt k+1/2,n-1/2)= (g, )Zy_klﬁ/z + (g );,_lclﬁ/z (x - xj,k+1/2) (4.6)
e V2, b=y ) e b= )

where m = 6 and 7. Similar discretization procedure is employed in the other SSEs.

To proceed, we perform numerical integration of the magnetic induction equations in x and y directions over the
SCE based on the above discretization scheme for the SSEs. The magnetic induction equations can be reformulated
as

B, Xy, @.7)
ot Oy
OB
&y K 0, (4.8)
ot 0Ox
where (2= vB,—uB, . Integrating Eqs. (4.7-8) over the SCE, we have
jﬁ (0,9,B,)-ds =0, (4.9)
s()
-Q,0,B,)-ds=0. 4.10
§S(V)( Y ) S ( )
Consider Eq. (4.9), flux leaving plane P'Q’R’T" is
FLUX pgpy = AxAy(B. )}, . (4.11)

Flux leaving plane PORT is

8
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FLUX pogr = —AxAy(B, )1 °.

Flux leaving plane P'Q QP is

AxAt . At n— AxAt n—
FLUX P'Q'OP ~ T |:(Q)j,k1-ﬁ/2 + T (Qt )/,klg/z} = T (Q) j,klﬁ/z :

Flux leaving plane R 'T’TR is

AxAt " At n— AxAt [ \n—
FLUX gy = _T[(Q)_/,kl/?/z + T(Qt )j,kl/?/Z:l = _T(Q)j,klﬁ/z :

Fluxes leaving planes O 'R’'RQ and T°P’PT are zero,
FLUX gppo =0,
FLUX ppgr =0

The flux balance over SCE is

FLUX ppp + FLUX popy + FLUX pigiop + FLUX g + FLUX pepigg + FLUX ippr =0 .

Substituting Eqs. (4.11-16) into Eq. (4.17), we have

1 n— At J— 11—
(Bx )j,k = (Bx )j,kl/z + E (Q)j,klfl‘/Z - (Q)j,klﬁ/Z ]

Similarly, integration of Eq. (4.10) over SCE gives

B, =) 2o b, - @), ]

For SCEs associated with points £’ and W’ we have

n n— At n— e
(Bx ) 2k T (Bx )j+iﬁ,k o (Q) j+}§;,k—1/2 - (Q) j+}72‘,k+1/2 ]

2Ay
n _ n—1/2 At n-1/4 n—1/4 ]
(Bx )j—l/2,k - (Bx )_/71/2,1{ + E (Q)_H/z,kfl/z - (Q)_,'71/2,k+1/2 :

For SCEs associated with points N’ and S’, we have
" - At - e
(By )j,k+1/2 = (By );,klﬁ/z + E (Q)j+};42¥,k+l/2 - (Q)j—}jg,kﬂ/z ]
_ At n— _
(By );l',k,l/z = (By ):",klf/z + E (Q);#i;‘z‘,kfl/Z - (Q)l}—ig,kflﬂ]'
At point G’, we obtain (8B, /ox) and (8By / dy) as

(GBX jn ~ (B, )};‘H/Z,k (B, )j'-l/2,k

ox ik Ax

( 0B, ]n B (B y ):‘,k+1/2 B (B ¥ )’;,kq/z

), Ay '

Aided by Egs. (4.20-23) we have

(Bx )Z'+l/2,k - (Bx );—1/2,1( 3 (B y );l',k+1/2 h (B ¥y )Z',k—l/Z
Ax Ay

That is, if (V-B)/;> =0, then (V-B), =0.

(V-B), = - (V~B)j.jkl/2.

(4.12)

(4.13)

(4.14)

(4.15)
(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

Based on the use of the above SSE and SCE, this extended CESE scheme is proposed to solve B,, B,, 0B, /ox
and aBy / Oy at point G’. All other variables are calculated by using the original CESE scheme as illustrated in

Section 3.

5. Results and Discussions

In this section, we report results obtained from the CESE schemes. Section 5.1 presents the two-dimensional
results of a MHD shock tube problem. Section 5.2 shows the solution of a MHD vortex problem, which is a real
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two-dimensional problem. For the two problems, we employ the new CESE schemes for maintaining V-B = 0.
Moreover, for the MHD vortex problem, we also employ the projection procedure, i.e., the Poisson solver, for
maintaining V-B = 0.

5.1 A Rotated Shock Tube Problem

In a one-dimensional problem, V-B = 0 is automatically satisfied. A common practice to assess multi-
dimensional solvers for V-B = 0 is to perform two-dimensional calculation of an inherently one-dimensional
problems formulated in the rotated coordinates such that the one dimensionality of the flow is not aligned with the
numerical mesh and V-B = 0 may not be easily satisfied. As such, the degree of deficiency in satisfying V-B = 0 can
be straightforwardly judged by direct comparison between the two-dimensional results with the corresponding one-
dimensional result. As shown in Fig. 4, the computation is conducted in the rectangular domain O4BC. The one-
dimensional problem is defined along the &-direction. Through coordinate rotation, flow variables in the x-y
coordinates can be transformed to be in the &7 coordinates, and vice versa.

AY

1 C B

/

y ¢ -

A X

Fig. 4: Relation between x-y coordinates and &-77 coordinates. Rectangle OABC is the computational domain.

The initial condition, defined along &-direction, consists of two distinct states:
(oo, B, B.)= (1, 10,0,20,5/+4x ,5/\/ax ) for left
B (1,—10,0, 1,5//ax ,5/\Jax ) forright’

with y =5/3, w =0, and B, =0. The flow condition and computational parameters are taken from Toth [12]. The
computational domain is (x,y)e [0,1]>< [0,2/ N ], where N is the grid point in x direction and set to N = 256. The
rotated angle is set to tan™ 2 ~ 63.43°. A periodic condition is imposed in the 7 direction. The computation is up to ¢
= 0.08/ \/g , and the computational domain is covered by a mesh of 256x2 grid points.

Figure 5 shows results by the original CESE scheme, in which dots denote the present solution and solid lines
represent one-dimensional solution in Toth [12]. The right-moving waves include a fast shock, a slow shock and a
contact discontinuity. The left-moving waves include a fast shock and a slow rarefaction wave. Favorable
comparison is found between our present two-dimensional results and the one-dimensional results. We also
employed the new schemes proposed in Section 4 for this problem. Figure 6 shows the comparison of the pressure
and magnetic field component B,, profiles obtained by using (i) the original CESE scheme, (ii) the scheme I with a
simple adjustment and (iii) the scheme II based on the constraint-transport procedure. For shock capturing, there is
no obvious difference between the original CESE scheme and the new schemes.

Analytically, B is constant along the & direction. Figure 7 shows the B profiles calculated by the three different
CESE schemes. We observe oscillations around the moving shocks. The oscillations with the original scheme are
smaller than that with scheme I, and are comparable with that with scheme II. Away from shocks, the solutions are
smooth.

The same assessment was conducted by Toth [12] by using several special treatments for V-B = 0, including the
8-wave method, various versions of the constraint transport methods, and projection method. Refer to Fig. 11 in [12],
oscillations of B occur around shocks for all approaches employed. Comparing with the results shown by Toth [12],
the magnitudes of B oscillations near the moving shocks calculated by the present three CESE methods are much

10
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smaller. Moreover, as shown in Fig. 14 of Toth [12], spurious oscillations of other variable were also observed. In
our case, as shown in Fig. 6, no oscillation is observed in present results. Without using a special treatment for V-B
= 0, the calculated results compare favorably with one-dimensional data. With the use of special treatments for V-B
=0, i.e., Scheme I and II, illustrated in Section 4, no obvious improvement is observed.

160 4r
E e —
140F 35E d
120F 3k
100:— Qz'ﬁ'_
80F =
o E 5 2+
60 E
i O1sf
40F F
20 1r
ok 05F
a1l g 1 PPN | il ” | PR [N WO Y SN T [N RN S TN A [ S
720 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
X X
Sa. Pressure. 5b. Density.
12E 0.5
10
04F
o F
6E e "
4k 0.2F
2F 0.1F !
1Y L | -k [
CE D O f—
ek 04E
4F Gt "
S N X
_8:_ -D.3:— -.‘
-10F 04
1ok JEETES CTSTITINT SN, OTSR CPT R (TS S (0 : o &L | il ey L Ly
) 0z 04 06 08 1 0.5 02 04 06 08
X X

5¢c. Velocity component U 5d. Velocity component U,

162 04 08 03

5e. Magnetic field component B,,

Fig. 5: Solution to shock tube B. Solid lines stand for one-dimensional results by Toth [12], dots for present
results.
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Fig. 6: Comparison between different CESE schemes for a MHD shock tube problem.

1.45

Original CESE scheme
— — — - Schemel
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P ST T S S I S I
1'350 02 0.4 0.6 0.8 1

X

Fig. 7: Profiles of B for a MHD shock tube problem with different CESE schemes.

5.2 The MHD Vortex Problem

In this subsection, we report the numerical solution of a MHD vortex problem by Orsazg and Tang [21]. The
same problem has been employed by Jiang and Wu [4], Tang and Xu [11], and Toth [12] for assessing the numerical
treatments for V-B = 0. In particular, Jiang and Wu [4] reported numerical instability if the projection procedure was
not used. The initial conditions of the flow field are

p(x,9,0)=7, p(x,».0)=y
u(x,y,0)==siny, v(x,y,0)=sinx, w(x,y,0)=0 |,
B, (x,y,O) =—siny, B, (x,y,O) =sin2x, B, (x,y,O) =0
where the specific heat ratio y = 5/3 . The computational domain is [0, 27| x [0, 27]. Periodic boundary condition is

imposed on boundaries in both x- and y-directions. We use a uniform mesh of 193x193 grid nodes. The same mesh
was used by Jiang and Wu [4] and Tang and Xu [11].

Figure 8 shows the pressure contours of the present CESE results at # = 0.5, 2, and 3, respectively. The results
here are calculated by using the original CESE method. Although not shown, the results calculated by using
Schemes I and II are virtually the same in these contour plots. To assess the accuracy of the present results, the
employed contour levels are exactly the same as that used by Jiang and Wu [4], i.e., 12 equally spaced contour
levels ranging from 1.0 to 5.8 for # = 0.5, from 0.14 to 6.9 for ¢ = 2, and from 0.36 to 6.3 for # = 3. Although not
shown in the present paper, side-by-side comparisons between the present results and Jiang and Wu’s results showed
no obvious difference.
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8c. Pressure contours at ¢ = 3.

Fig.8: Pressure contours of a MHD vortex problem by the original CESE scheme.

For quantitative details of the calculated results, Fig. 9 shows the pressure profiles along the line of y = 0.6257 at
time ¢ = 0.5, 2 and 3, calculated by using the three CESE schemes: the original scheme and the extended schemes I
and II. For ¢ = 0.5, there is no difference between the results by the three schemes. At ¢ = 2, result by Scheme 11
showed a more pronounced gradient near x = 5.5. For ¢ = 3, small differences could be discerned on the left end of
the plot. In Fig. 9c, result reported by Tang and Xu [11] is also plotted. No obvious difference can be observed
between their results and the present results by the original CESE scheme and Scheme 1.

We remark that in scheme II, there is no damping treatment for discontinuity in calculating the first-order
derivatives 0B, /ox and 0B, /ay. Moreover, the mesh stencil for calculating B, , B, , 0B, /ox, and 0B, /6y are

larger than that the one (the original CESE method) used for the rest of unknowns due to the use of SSE and SCE.
Figure 10 shows time history of the magnetic energy of the whole flow field. Solid line is the result from the original
CESE method, and dots are Tang and Xu’s results in [11].

To further investigate the capability of the CESE method for V-B = 0, we adopt the projection method and solve
the Possion equation at every time step,

Vi +V-B=0, 5.1
where B is obtained from the CESE method described in Section 3. According to the mesh arrangement shown in
Fig. 1, Eqn. (5.1) is discritized as,

¢j+l/2,k =20, + ¢j-1/2,k N ¢j,k+l/2 =20, + ¢j,k—l/2

(ax/2)? (ay/2)?

=—(v- B)j,k . (5.2)
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An implicit solver is employed to solve the above equation, and the magnetic field B is updated by,
B°=B+V4g. (5.3)
The updated B° is then used to march the flow solution to the next time step. Fig. 11 shows pressure profiles

along y = 0.625m at ¢+ = 3 with and without the projection procedure. We observe no obvious improvement by
employing the projection procedure.

Original CESE scheme
— — — — Schemel
—————— — Schemelll

Original CESE scheme

| — — — — Schemel
25 ————— — Scheme Il

0 1 2 3 4 6 0 1 2 3 4 6
X X
9a. Pressure profile at 7 =0.5. 9b. Pressure profile 7 = 2.

ar

Original CESE scheme
I — — — — Schemel

35F ———-— Schemell
- ———— Tangand Xu [11]

PRI NRRTRTIN IVRAVII BRI
0 1 2 3 4 5 6
X

07\\\\|\\\\

9c. Pressure profile ¢ = 3.

Fig. 9: Pressure profile of a MHD vortex problem along line y = 0.625m.
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Fig. 10: Evolution of magnetic energy of a MHD vortex problem.
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[ Without projection procedure
35F — — — — With projection procedure

0’1 1 1 1 1 ! 1

Fig. 11: Comparison between CESE method with and without a projection procedure for keeping V-B = 0.

6. Conclusions

In this paper, we report the extension of the CESE method for solving the ideal MHD equations in two-spatial
dimensions with emphasis on satisfying the V-B = 0 constraint. Three numerical treatments are developed (i) a

simple algebraic adjustment of (ang and [%J after each time marching step to satisfy V-B = 0, (ii) an
X jk y Jik

extended CESE method based on the constraint-transport method to calculate the magnetic field, and (iii) a
projection method by coupling a Poisson solver with the original CESE method. To demonstrate the capabilities of
the CESE methods, two benchmark problems are calculated and compared with the previously published results,
including a rotated MHD shock tube problem and a MHD vortex problem. All present results produced by the new
CESE schemes compare favorably with the previous results. Moreover, we demonstrate that the original CESE
method could be directly used to calculate the MHD equations without any difficulty. For the benchmark problems,
the results are as accurate as that produced by using sophisticated special treatments.

Appendix: Jacobian Matrixes

0 1 0 0 0 0 0 0
-3 -1
%uzJT(vZﬂ?) Byl 1=y (=pw y-1 =B, (2-7)B, (2-7)B.
—uv \Z u 0 0 -B, -B 0
—uw w 0 u 0 -B 0 -B,
oF
J"=%= 4 4 4 T R 5 4 4 (A1)
0 0 0 0 0 0 0 0
B, —VB, B
e = 5 0 0 -v u 0
P P P
_uB, B, E oo B oo w0 u
L p P p ]
where
_2 B?+B? B2 VB, +wB
Al=—)/K+(7/—1)u(u2+v2+w2)+}/—2u#+1u—x+8x;, (A.2a)
P 2 p 2 p p
_ _2B*+B? 2
VI YO S WE S b ACYC SIS et Bl Y 410 (A.2b)
p 2 2 2 o) 2 p
B.B,
Ay =(1=y)uv— P (A.2¢)
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Ay =(1=y)uw— 5.5 , (A.2d)
o)
As =, (A.2¢)
Ao =—mB, ~(vB, +wB.), (A.2f)
47 =—vB, +(2~yuB,, (A29)
and
Ay =-wB_ +(2—yuB,. (A.2h)
i 0 0 1 0 0 0 0 0
uv v u 0 0 -8B, -y, 0
-3
77 L2 ew?) (- Boph (-phw y-1 @-7)B. B, B
oG —-vw 0 w v 0 0 -B, -B, (A.3)
3= il B B, B, B, By B B, B
uB, —vB, B, B
) _ 2y Zx 0 0 v u 0
P P P
0 0 0 0 0 0 0
B, —wB B
T 0 BB 0 Wy
L P P p ]
where
2 B+B? B; B. +wB
B=—p Ly —twd vt 4wty L2 Bt B 1 P g B T W (A.4a)
p 2 p 2 p P
BB,
B, =(1-puy——, (A.4b)
Yol
_ _ 2 2 B2
B=p S 3oy s 2wy 22 BB 7 By (A.4c)
p 2 2 2 yo, 2 p
B B,
By =(1-ypw-—+, (A.4d)
Yo,
Bs=mw, (A.4e)
BGZ(Z_y)VBx_uBya (A4f)
B; =—wB, —(uB, +wB.), (A.4g)
and
By =-wB, +(2-y B, . (A.4h)
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