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Abstract

We apply the Space-Time Conservation Element and Solution Element (CESE) method
to solve theideal MHD equations with special emphasis on satisfying the divergence free
constraint of magnetic field, i.e, N8 = 0. In the setting of the CESE method, four
approaches are employed: (i) the original CESE method without any additional treatment,
(it) asimple corrector procedure to update the spatial derivatives of magnetic field B after
each time marching step to enforce N>B = 0 at al mesh nodes, (iii) an constraint-transport
method by using a special staggered mesh to calculate magnetic field B, and (iv) the
projection method by solving a Poisson solver after each time marching step. To
demonstrate the capabilities of these methods, two benchmark MHD flows are calculated
(i) arotated one-dimensional MHD shock tube problem, and (ii) a MHD vortex problem.
The results show no differences between different approaches and all results compare

favorably with previoudly reported data.



1 Introduction

While many Computational Fluid Dynamics (CFD) methods have been successfully
developed for gas dynamics, extension of these methods for solving the Magneto-Hydro-
Dynamic (MHD) equations involves unigue requirements and poses greater challenges
[1-14]. In particular, for multi-dimensional MHD problems, it is critical to maintain the
divergence-free constraint of magnetic field, i.e.,, N>B = 0, at al locations in the space-
time domain. Analytically, the constraint is ensured if it is satisfied in the initial condition.
However, it has been difficult to maintain this constraint in calculating evolving MHD
problems. Violating the constraint allows rumerical errors to be accumulated over the

computational time, leading to erroneous solutions and/or numerical instability.

To satisfy N>B = 0, a special treatment directly incorporated into the CFD method
employed is often required. Specia treatments have been categorized into three groups: (i)
The projection method, e.g., Brackbill and Barnes [5]: At each time step, the method
solves a Poisson equation to update the magnetic field to enforce N>B = 0. (ii) The eight-
wave formulation by Powell [6]: N>B is not treated as zero in deriving the MHD
eguations, leading to additional source/sink terms in equations for B. The CFD solver
employed would activate the sink/source terms to counter the unbalanced NB in
numerical solutions. (iii) The constrained-transport procedure, e.g., Evans and Hawley
[7], Dai and Woodward [8], Balsara and Spice [9], and Toth [12], based on the use of
staggered mesh to enforce the constraint at certain spots of the control volume. Various
versions of these three approaches have been developed to solve the MHD equations in
multiple spatial dimensions [4-13]. Recently, these methods have been assessed and

summarized by Toth [12].



In the present paper, we report the application of the Space-Time Conservation
Element and Solution Element (CESE) method [17-20] to solve the two-dimensional
MHD equations. Four approaches are employed: (i) the original CESE method without
any additional treatment for N>B = 0, (ii) a simple modification procedure to update the
spatial derivatives of B after each time marching step such that N>B = 0 is enforced at all
mesh nodes, (iii) an extended CESE method based on the constraint-transport procedure,
and (iv) the projection method coupled with the CESE method. The approach (i) istrivial.
Nevertheless, its results are comparable with other results by the three other approaches.
Approaches (ii) and (iii) are new schemes for N>B = 0. Approach (iv), the projection
method, is a conventional and reliable approach to impose NbB = 0. All results in the

present paper compare well with previously published data.

The rest of the paper is arranged as follows. Section 2 illustrates the governing
equations. Section 3 provides a brief review of the CESE method for two-spatial-
dimensional problems. Section 4 shows the new CESE schemes, i.e., approaches (ii) and
(i), for N>B = 0. Section 5 provides the results and discussions. We then offer

conclusions and provide cited references.

2 Governing Equations

The ideal MHD equations include the continuity, the momentum, the erergy, and the
magnetic induction equations. In two spatial dimensions, the dimensionless equations can

be cast into the following conservative form:

E+E+E:O, (2.1)
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In the above equations, r, p and e are density, pressure and specific total energy,
respectively; u, v, and w are velocity components and B, B, and B, are magnetic field

components in the X, y, and z directions, respectively. The total pressure and the specific

total energy are
p, = p+(BZ + B} +BZ)/2, (25)

e=re+r(u2+v2+w?)/2+(BZ+B2 +B2)/2. (2.6)



For calorically ideal gases, the specific internal energy e can be expressed as

Rt &7

where g is the specific heat ratio, T istemperature, and R is the gas constant. To proceed,

we apply the chain ruleto Eg. (2.1) and obtain

W, W, U _o (2.8)
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where J* and J¥ are Jacobian matrices of the spatial fluxes in the x and y directions,
respectively. The components of the matrices are listed in Appendix. The eigenvalues of
matrix J* are uxcy, utcy, utc), uand u, where c, ¢ and c} are the speeds of the

Alfvan wave, the slow shock wave, and the fast shock wave, respectively, and they are

defined as

e =[BJ/Vr . (2.9)

2
. e .2 2p 2 Ul
e B 2L
c?z%%%ﬁ2+8r>6+\/§ec2+8r>eg -4CrX Ely . (2.10)
1 & 4 U
11¢, B8 |m, BBE cZBZ‘:‘Py2
=t +2 2. (B2 + : .4 Ey : (2.11)
ng r r g r Ub

In Egs. (2.10-11),c=,/gp/r is the speed of sound. Similarly, the eigenvalues of matrix

JY aevtc),vtc!, vic!,vandv, where ¢!, ¢! and c! are defined as

¢ =[B,|/\r (2.12)
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3 TheCESE Method
The above MHD equations can be expressed as

ﬂum +ﬂfm +ﬂgm
mw X 9y

=0,m=12,...,8, (3.2)

whereu,,, f,and g, are the entries of the flow variable vector and the flux vectors in

the x and y directions, respectively, and m is the index for the equation. Let

X =X,X, =y and x; =t be the coordinates of a three-dimensional Euclidean space

E,, Eq. (3.1) becomes a divergence free condition:
N>, _=0,m=1,2...,8 (3.2

where h =(fm,gm,um) are the current density vector. By using Gauss divergence

theoremin E,, we have

c‘jilthdv:@(v)hm xds=0,m=1,2,...,8, (3.3)
\%

where (i) V) is the boundary of an arbitrary space-time region V in E;, and (ii)

ds=nds with ds and n, respectively, are the area and the unit outward normal of a



surface element on §V). The CESE method integrates Eq. (3.3) for the evolving flow

variables.

For completeness, we will briefly illustrate the CESE method based on the
following three parts: (i) The definition of SE and CE in the space-time domain. (ii) The
integration of Eq. (3.3) over a CE to form the algebraic equations for the flow variables at
a new time step. (iii) The re-weighting procedure with added artificial damping in
calculating the gradients of the flow variables. The discussion of the CESE method here
will be based on the modified CESE method for a quadrilateral mesh [19]. To be concise,

our discussion of the CESE method will be focused on a uniform quadrilateral mesh.

3.1 Definition of Solution Element and Conservation Element

In Fig. 1, the spatial domain is divided into non-overlapping quadrilaterals and any two
neighboring quadrilaterals share a common side. The centroid of each quadrilateral is
marked by either a hollow circle or a solid circle. Point G, the centroid of quadrilateral
ABCD, is marked by a solid circle, while the points N, E, Wand S are the centroids of the
four neighboring quadrilaterals, and are marked by hollow circles. Because of the
uniform mesh, G is also the centroid of polygon NAWBSCED, which coincides with
guadrilateral NWSE. Let j, k and n be the indices for X, y, and t, respectively. Shown in
Fig. 2, points A, B, C, D, N, E, W, Sand G are at the time level n-1/2; points A, B', C',
D,N,E,W,S andG areat thetimelevel n; and pointsA’ ,B" ,C’' ,D" ,N' ,E'" W',

S’ and G” areat thetimeleve n+1/2.

As shown in Fig. 2, the solution element SE(j, k, n) associated with point G’ is

defined as the union of three quadrilateral planes, NW SE', A" ACC’, B’BDD”, and



their immediate neighborhoods. Its spatial projection is shown in Fig. 1 as the dashed
lines. Similarly, associated with points N, E, W, and S, there are four solution elements:
SE(j, k+1/2, nn1/2), SE (j+1/2, k, n-1/2), SE (j-1/2, k, n-1/2), and SE (j, k-1/2, n-1/2). To
calculate the unknowns at G', the algebraic equations are derived based on space-time
flux conservation involved flow solutions at points G, N, E, W, and S referred to as the
solution points. Point G, located at t = t" is staggered with respect to points N, E, W, and
Sat=t""2

As shown in Fig. 2, a space-time cylinder can be formed with surfaces associated
with SE(j, k, n) and surfaces associated with one of the four SEs at the time level n-1/2.
For instance, cylinder N' A G'D’NAGD is formed by surfaces associated with SE(j, k, n)
and SE(j, k+1/2, n-1/2) . This cylinder is one of the Basic Conservation Elements (BCE)
of point G'. There are three other BCEs associated with point G, i.e.,, AW B G AWBG,
BSCGBSCG and CED GCEDG. The union of these four BCEs forms a
Compounded Conservation Element (CCE) N'W S E' NWSE with its top center at point
G.

3.2 The Space-Time Integration

Inside SE(j, k, n), the discretized variables and fluxes, denoted with a superscript *, are

assumed to belinear. For m=1, 2, ..., 8, let

u;(x,y,t; j'k’n): (um)?,k +(umx)?,k(x- Xj,k)+(umy)r;]k(y- yj,k)+(umt)?,k(t- tn)'

(3.4)

frr:(x’ Y.t j’k’n): (fm)?,k +(fmx)?,k(x' Xj,k)+(fmy)?,k(y' yj,k)+(fmt)?,k(t' tn)’

(3.5)
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Where (um)r;,k ’ (fm)l;k ’ (gm)Tk ’ (umx)l;,k ’ (umy)r;’k ’ (umt)r;,k ’ (fmx)r;,k ! (fmy)rj],k ! (fmt)rj],k !

(gmx)Jk (me),k and (gmt) are flow variables, fluxes, and their first-order derivatives at

point G'. Aided by the chain rule we have
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where (f ) (gm,) are the (m, I)th entries of the Jacobian matrixes J* and J* in the x
and y directions, respectively. To proceed, we assume that u:n(x,y,t;j,k,n) ,

f (% y,t;j,k,n) and g, (x y.t; j,k,n) satisfy the originl MHD equations, Eq. (3.1), at

point, (j, k, n):
Un)s == (F)i- (O )}, m=1,2, .., 8. (3.11)

Aided by Egs. (3.7) and (3.10), , Eg. (3.11) becomes

8 8
(umt)r;,k =- é (fm,l )r;yk(ulx) é (gml )J k( |y)r;k m=12 ...,8, (3.12)
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Similarly, form=1, 2, ... , 8, we have

8 8 8
(fmt )Tk = |a:.1 (fm,l )T’k(ult )Tk =- |é:.1 (fm,l )Tk a:.l [( fI,r )Tk (urx)rj],k + (gl,r )Tk (ury )rj]'k],
(3.13)
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Therefore, a set of given values of (um) Iy (umx) i and (umy)rj‘yk completely determine the

distribution of the flow variables and fluxes, i.e., Egs., (3.4-6), inside SE(j, k, n). Thus the

n

flow variables (um)”].‘k and their spatial gradients (Umx),-,k and (umy)’j‘kare the unknowns to

be solved in the CESE method.

The time marching scheme to calculate (um)rj"k is based on integrating Eq. (3.3)

over the CCE associated with point G'. Recall that the CCE is a quadrilateral cylinder
with surfaces associated with five different SEs. The top surface, quadrilateral NW S E’
belongs to SE(j, k, n); quadrilaterals NAGD, N'A'AN and N' D’ DN belong to SE(j, k+1/2,
n-1/2); quadrilateras WAGB, W A AW and W B'BW belong to SE(j-1/2, k, n-1/2);
guadrilaterals SBGC, S B'BS and S C CSbelong to SE(j, k-1/2, n-1/2); and quadrilaterals

EDGC, E'C CE and E' D’ DE belong to SE(j+1/2, k, n-1/2).

The flux leaving each planar surface of the CCE is equal to the inner product of the
current density vectorh_ = (fmgmum) evaluated at the centroid of the surface, and the

surface vector s = nS. For example, the top surface of the CCE is quadrilateral NW S E’

with an area S and the centroid is G' (Xk, Yjx t'). At the centroid of the top surface of

11



the CCE, the current density vector h;, = ((fm)n (9] o (un) ) and the surface vector

i.k? jk?

is (0, 0, Sep). Thusthe flux leaving the top surface of the CCE is
(FLUXr)top = (Up)'  Sop M=1,2, ..., 8. (3.15)

Similarly calculation for fluxes through other surfaces of the CCE can be performed. For

surfaces associated with SE(j, k+1/2, n-1/2), the centriods of surfaces NAGD, NDD’N’
and NAAN are denoted as (xf,,yﬁ,,t”'”z) , (xi,,yﬁ,,t”‘”“) and (xﬁ,yﬁ‘,t”'l"‘) ,
respectively. Their surface vectors are (0, 0, -S)), (I vy ,O), and (I el ,0), where Sy is

the area of quadrilateral NAGD, and

1=y - Yo)t/2, (3.16)
1 =(x, - % )JDt/2, (3.17)
13 =(ya- ya)ot/2, (3.18)
12V = (x, - x,)Dt/2. (3.19)

The flux leaving each of the three surfaces can be calculated as the inner product of the
corresponding flux vector and the surface vector at the surface centroid. By summing up
thefluxes, form=1, 2, ... , 8, we have,
(FLUX,,), =- Slu:n(xﬂ, Yotk +]/2,t“'1’2)
+] ]l.\ffnf](xll\.j , y],\.l’tn—l/4; j’ k+]/2’tn—1/2)+ | ]l.\lygr;(xll\.l’ yJN ’tn—1/4; ],k +]/2,tn—1/2)

+ ZNXfr;(Xri , yi“tn-lm; j,k+]/2,t”'1/2)+| 1yg:n(xi, y2 ,t”'1/4;j,k+]/2,t”'1’2)
(3.20)

Because the solution at the time step n-1/2 is known, the value of this flux can be readily

calculated. Similarly, the fluxes leaving surfaces associated with SE(j-1/2, k, n-1/2), SE(j,



k-1/2, n1/2), and SE(j+1/2, k, n1/2) can be readily calculated. For conciseness, we

smply name these fluxes as (FLUX, ), , (FLUX)s and (FLUX,).. As a result, the
space-time flux conservation over the CCE is

N%\NS
(FLUX,), + & (FLUX ) =0,m=1,2, ..., 8. (3.21)

Note that only the first term in the above equation contains the unknowns to be solved at
point G'. Aided by Eqg. (3.15), the flow variables at the current time step n can be

calculated by

(u,) =- ————,m=1,2..,8 (3.22)

3.3 Solutions of Flow Variable Gradients

To proceed, we calculate the spatial gradients of the flow variables (um,()';k and (uw)rfk.
! I

The calculation is divided into two steps: (i) Finite-differencing the flow variables u,, at

point G, N', E, W,and S, a t = {' to obtain four sets of u_ and Uy - (i1) Apply a

reweighing procedure to the above four sets of u,, and u,, to determine (u,, ) and

(umy)ﬁ ) at G'. Inwhat follows, these two calculation steps areillustrated.
I

Flow variables u,, a point G are obtained from Eq. (3.22). The flow variables u,,

at four neighbor points N', W, S and E are obtained by using the Taylor series

expansion aong the time axisfrom thetime level n-1/2,i.e,,form=1, 2, ... , 8,



(1), = )+ 2 () @29

wherel =1, 2, 3, and 4 denoting point N', E’', W and S, respectively.
The square plane N'E'S W isdivided into four triangles; NW G, WSG,SE G,
and EN'G'. In each triangle, we finite-difference u,, at the three vertices to obtain the

flow variable gradient (uy, )], and (u,, )’ - Consider triangle DN'W G', the flow variable

J

gradient at its centroid can be expressed as,

(w¥).. =b,/D, (3249
(u8), =, /D, (329

where
(uEn)N. () e Ve (3.26)

Dy — (umi:l/ - (um)G Xs - Xy (327)
Unhy = (U)o %6 = X
D= Xn- X Yn- Yo ’ (3.28)
Xw - X Yw - Yo
and
(Un)e = (U, ). (3.29)

14



For triangles DWS G, DSE'G and DE'N' G, the flow variable gradients at their

u?). and (U?) ., can be
( G my /G

centrids, denoted by (42);., (42), . (U2 (), . (9
obtained in asimilar way.

To proceed, a re-weighting procedure is applied to the four sets of flow variable

gradients to obtain the final flow variable gradientat G, i.e,,form=1, 2, ... , 8,

(e =& Y () &) (3:30)

(uy ), =& AT W)V a L LY (3:31)
where

W, = (”);‘zlvqllw,g . forl=1,23,4, (3.32)
and

we = @) +[u), - (3.33)

For shock capturing, a = 1, or 2, isa prescribed constant. For flows without shock, we let

a = 0. Assuch, Egs. (3.30-31) reduce to the standard central-differencing method.

4 Extended CESE Schemesfor N>8 =0

In this section, we illustrate two new CESE schemes for N>B = 0: Schemes | and

Schemes Il. Both schemes are built based on specia features of the original CESE

method. Scheme | takes advantage of the fact that the flow varizble gradients (u,, )|, and



(urw)r_1 ae directly used as the unknowns and they march in time hand-in-hand with the
I

flow variables (u,,)”, . Scheme | is asimple adjustment to the calculation of (u,, )], and

(uw)?ksuch that N>B = 0 is satisfied at all mesh points after each time marching step.

Scheme |1 takes advantage of staggered mesh arrangement in the original CESE method.
By a simple adjustment of the mesh nodes employed in calculating the magnetic flux, we
ensure the satisfaction of N>B = 0 at all solution points. In what follows, we report these

two schemes.

41 Schemel

As illustrated in the above section, the flow variables (u,,)’, are calculated by space-
time flux conservation i.e., Eq. (3.22), over a CCE with its top center at point (j, k, n),

while the flow variable gradients (u,, )", and (u,, )’ _ are calculated by acombination of
’ K

acentral differencing and a reweighing procedure. In Scheme |, we first follow the above

CESE algorithm to calculate the flow variables and their spatial gradients. After each

n

time marching step, a corrector step is applied to adjust the values of 8&&9‘ and

e Tx D k

ﬂﬂByg The calculated results of all other unknowns remain intact. Note that
Y g

A’ B 5 n noo. i
#B.0 ang il v2 are denoted as (USX)J. ,and (u6X )j « In Eq. (2.2). The adjustments to
e ﬂX D x ﬂy éj,k Y Y
thesetwo terms are

1€



(u5x )TT(N = (u5x )r;k - %[(USX )r;k + (u6y)r;yk] ' (41)

(u6y )r;e:l = (u6y)r;,k - %[(USX )r;k + (u6y )Tk]' (42)

where the updated gradient is denoted by the superscript new. By adding the two

eguations above, weyield

(s )72+ (ug, )3 =0, (4.3)
That s, with the additional treatment for Ex0  and &2 by Egs (4.1-2), the
e X g, g fy @

constraint (N>B),, =0 is satisfied at each mesh node in each time marching step.
4.2 Schemell

Scheme Il is based on a specialy defined SE for solving the magnetic induction
eguations. As illustrated in Fig. 3, the Special Conservation Element (SCE) associated
with point G’ is defined as quadrilateral P’ Q'R T' PQRT, which composes of six planes:
PQRT,PQQP, QRRQ, RTTR, TP PT and PQRT. The six planes are referred to
as Specia Solution Elements (SSE). The SSE and SCE are defined for solving magnetic
field components B, and B, only. Shown in Fig. 3, the solution points N', E', W, and S
surrounding G are at the middle of line segments PQ, PT, QR and RT,
respectively. Thus the SCE here includes a space-time region larger than the original

CCE.

To proceed, the SSEs, PQ R T and PQRT, are defined to be associated with the

solution points G and G, respectively. Similarly, the SSEs, PQ QP, QRRQ, RTTR



and T'P'PT are associated with the solution points N, W, S and E, respectively. Inside
SSEs, the profiles of B, and B, follow the first-order Taylor series expansion. For
example, we consider SSE P’ Q" QP associated with the solution point N:

Uy (X: .t j,k+1/2,n- ]/2) = (um)rj]:k]{j/z + (umx)Tk]{j/z(X } Xj,k+]/2)

o N Y (4.9)
+ (umy )j,klﬁjz (y - yj,k+]/2)+ (Umt)j’k]ﬁ/z (t -t ]/2)

f,;(x, Y.t j,k+1/2,n- ]/2): (fm)rj‘,—klﬁ/z + (fmx)r;,_klﬁ/z (X' Xj,k+]/2)

" - v (49)
+(fmy)j,k]{j/2(y- ijk+]/2)+(fmt)jvkl-/+32/2(t_t 1/2)

gl:’] (X! y!t! J!k +:I/2!n - ]/2) = (gm)r;k]-/j/z + (gmx)Tk]{j/Z (X - Xj ,k+]/2)

- . o (48)
+ (gmy)jyk]{j/z (y' yj’k+]/2)+ (gmt)j,k]{j/z (t -t 3/2)

wherem= 6and 7. Similar discretization procedure is employed in the other SSEs.

To proceed, we perform numerical integration of the magnetic induction
equationsin x and y directions over the SCE based on the above discretization scheme for

the SSEs. The magnetic induction equations can be reformulated as

—2X+—=0, 4.7
Ty at
E-ﬂvzo, (4.8)
m X

where W= vB,—UB, . Integrating Egs. (4.7-8) over the SCE, we have

§),,(0W.B,)xds=0, (4.9)
@(V)(- W0,B, )xds=0. (4.10)
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Consider Eq. (4.9), flux leaving planeP QR T is
FLUX porr = DXDY(B, )], . (4.11)
Flux leaving plane PQRT is

FLUX poer = - DXDy(B, )7Y*. (4.12)

Flux leaving plane P’ Q' QP is

DxDt n- Dt u_ DxDx n-
FLUX e = gw)j,k]{rlz/z +Z(VV( ), k]-/j/ZH > (W)j,k]{r?/Z' (4.13)
Flux leaving plane R T TRis
u DxDt n
FLUX g7g = - gvv it W)= - 5 W (4.14)

Fluxesleaving planes Q R RQ and T' P’ PT are zero,

FLUX g o =0, (4.15)

FLUX e =0. (4.16)
The flux balance over SCE is
FLUX porr + FLUX porr + FLUX oo + FLUX g + FLUX g + FLUX ey =0.
(4.17)

Subgtituting Egs. (4.11-16) into Eqg. (4.17), we have

n n- Dt n- n-
(B.)7= (B + o (WG - (] (4.8

Similarly, integration of Eq. (4.10) over SCE gives



(B0, =)+l - (e

For SCEs associated with points E' and W , we have

. Lt [/, an- -
(Bx )r;+]/2,k = (Bx )n i (V\/)T+z‘21.k y2 ~ (\A/)r;+z£21,k+:l/2 .

j+y2k + 2Dy

n . Dt [/ .- o
(Bx)j-]/z,k :(Bx) Je+ ( j-ﬁk-yz' (W)j-zg,k+y2 -

i-Y2k ﬁ

For SCEs associated with pointsN' and S, we have

B, )= B, 4 W - (W]

jk+y2 2Dx

B,), = B), Wk, .- (WE L]

Yz 2Dx

Atpoint G, weobtain (1B, /1x) and (1B, /1) as

QA-IBX 9“ - (Bx )?+]/2k - (Bx)r;-]/gk
e TX g« Dx ’

B, D _ (By)?,kﬂ/z } (By)r;,k-yz
£ qy 3k Dy |

Aided by Egs. (4.20-23) we have

O

(N ><B)n _ (Bx)r;+]/2,k B (Bx)?-]/z,k i (By)?,k+yz ) (By)r;,k-yz A
ik T

Dx Dy

Thatis, if (\>8)"Y* =0, (\>8)], =0.
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Based on the use of the above SSE and SCE, this extended CESE scheme is

proposed to solve By, By, B,/Tx and B, /fy a point G'. All other variables are

calculated by using the original CESE scheme asillustrated in Section 3.

5 Results and Discussions

In this section, we report results obtained from the CESE schemes. Section 5.1 presents
the two-dimensional results of a MHD shock tube problem. Section 5.2 shows the
solution of a MHD vortex problem, which isareal two-dimensional problem. For the two
problems, we employ the new CESE schemes for maintaining N>B = 0. Moreover, for the
MHD vortex problem, we also employ the projection procedure, i.e., the Poisson solver,
for maintaining N>B = 0.

5.1 A Rotated Shock Tube Problem

In a one-dimensional problem, N>B = 0 is automatically satisfied. A common practice to
assess multi-dimensional solvers for NXB = 0 is to perform two-dimensional calculation
of an inherently one-dimensional problems formulated in the rotated coordinates such
that the one dimensionality of the flow is not aligned with the numerical mesh and N>B =
0 may not be easily satisfied. As such, the degree of deficiency in satisfying N>B = 0 can
be straightforwardly judged by direct comparison between the two-dimensional results
with the corresponding one-dimensional result. As shown in Fig. 4, the computation is
conducted in the rectangular domain OABC. The one-dimensional problem is defined
along the x-direction. Through coordinate rotation, flow variables in the x-y coordinates

can be transformed to be in the x-h coordinates, and vice versa.
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Theinitia condition, defined aong x-direction, consists of two distinct states:

i (1 10,0, 20,5//4p ,5//4p | for left

s

|
(r,u,v, p’B’"BZ)_}(l-lo, 0, 1,5/\4p ,5/4p | forright’

with g =5/3, w =0, and B, =0. The flow condition and computational parameters are
taken from Toth [12]. The computational domain is (x,y)T [0,1]" [0,2/N], where N isthe

grid point in x direction and set to N = 256. The rotated angle is set to tan™ 2 » 63.43% A
periodic condition is imposed in the h direction. The computation is up to t =0.08/ A5,

and the computational domain is covered by amesh of 256" 2 grid points.

Figure 5 shows results by the original CESE scheme, in which dots denote the
present solution and solid lines represent one-dimensional solution in Toth [12]. The
right-moving waves include a fast shock, a slow shock and a contact discontinuity. The
left-moving waves include a fast shock and a slow rarefaction wave. Favorable
comparison is found between our present two-dimensional results and the one-
dimensional results. We also employed the new schemes proposed in Section 4 for this
problem. Figure 6 shows the comparison of the pressure and magnetic field component
By, profiles obtained by using (i) the original CESE scheme, (ii) the scheme | with a
simple adjustment and (iii) the scheme |1 based on the constraint-transport procedure. For
shock capturing, there is no obvious difference between the original CESE scheme and

the new schemes.

Analyticaly, By is constant along the x direction. Figure 7 shows the B, profiles
calculated by the three different CESE schemes. We observe oscillations around the

moving shocks. The oscillations with the origina scheme are smaller than that with



scheme I, and are comparable with that with scheme 1. Away from shocks, the solutions

are smooth.

The same assessment was conducted by Toth [12] by using severa specia
treatments for N>B = 0, including the 8-wave method, various versions of the constraint
transport methods, and projection method. Refer to Fig. 11 in [12], oscillations of By
occur around shocks for all approaches employed. Comparing with the results shown by
Toth [12], the magnitudes of By oscillations near the moving shocks calculated by the
present three CESE methods are much smaller. Moreover, as shown in Fig. 14 of Toth
[12], spurious oscillations of other variable were also observed. In our case, as shown in
Fig. 6, no oscillation is observed in present results. Without using a special treatment for
N>B = 0, the calculated results compare favorably with one-dimensional data. With the
use of special treatments for NXB = 0, i.e., Scheme | and Il, illustrated in Section 4, no

obvious improvement is observed.

5.2 TheMHD Vortex Problem

In this subsection, we report the numerical solution of a MHD vortex problem by Orsazg
and Tang [21]. The same problem has been employed by Jiang and Wu [4], Tang and Xu
[11], and Toth [12] for assessing the numerical trestments for N>B = 0. In particular,
Jiang and Wu [4] reported numerical instability if the projection procedure was not used.
Theinitial conditions of the flow field are

r(xy0)=9° p(xy0)=g

u(x, y,O) =-siny, v(x, y,O) = sinx, vv(x, y,O) =0 ,
B, (x, y,O) =-siny, By(x, y,O) =sin2x, B, (x, y,0)=0



where the specific heat ratio g = 5/3. The computational domain is[0, 2p]” [0, 2p].
Periodic boundary condition is imposed on boundaries in both x- and y-directions. We
use a uniform mesh of 193" 193 grid nodes. The same mesh was used by Jiang and Wu [4]

and Tang and Xu [11].

Figs. 8 shows the pressure contours of the present CESE resultsat t = 0.5, 2, and 3,
respectively. The results here are calculated by using the original CESE method.
Although not shown, the results calculated by using Schemes | and Il are virtualy the
same in these contour plots. To assess the accuracy of the present results, the employed
contour levels are exactly the same as that used by Jiang and Wu [4], i.e, 12 equaly
gpaced contour levels ranging from 1.0 to 5.8 for t = 0.5, from 0.14 to 6.9 for t = 2, and
from 0.36 to 6.3 for t = 3. Although not shown in the present paper, side-by-side
comparisons between the present results and Jiang and WU’ s results showed no obvious

difference.

For guantitative details of the calculated results, Fig. 9 shows the pressure profiles
along theline of y = 0.625p at time t = 0.5, 2 and 3, calculated by using the three CESE
schemes: the original scheme and the extended schemes | and I1. For t = 0.5, there is no
difference between the results by the three schemes. At t = 2, result by Scheme Il showed
a more pronounced gradient near x = 5.5. For t = 3, small differences could be discerned
on the left end of the plot. In Fig. 9c, result reported by Tang and Xu [11] is also plotted.
No obvious difference can be observed between their results and the present results by

the original CESE scheme and Schemell.
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We remark that in scheme Il, there is no damping treatment for discontinuity in
calculating the first-order derivatives 1B, /fx and 1B, /fy. Moreover, the mesh stencil
for caculating B,, B,, 1B, /fx, and 1B, /fy are larger than that the one (the original

CESE method) used for the rest of unknowns due to the use of SSE and SCE. Figure 10
shows time history of the magnetic energy of the whole flow field. Solid line is the result

from the origina CESE method, and dots are Tang and Xu’' sresultsin [11].

To further investigate the capability of the CESE method for N>B = 0, we adopt the

projection method and solve the Possion equation at every time step,
N% +NsB =0, (5.1)

where B is obtained from the CESE method described in Section 3. According to the

mesh arrangement shown in Fig. 1, Eqn. (5.1) isdiscritized as,

fj+:|/2k_2fjk+fj—:l/2k+fjk+:l/2-2fjk+fjk—:l/2 (~
: : e (=) (5.2)
(Dx/2) (Dy/2)

An implicit solver is employed to solve the above equation, and the magnetic field B is
updated by,

B°=B+Nf . (5.3)

The updated B° is then used to march the flow solution to the next time step. Fig. 11
shows pressure profiles along y = 0.625p a t = 3 with and without the projection

procedure. We observe no obvious improvement by employing the projection procedure.



0. Conclusions

In this paper, we report the extension of the CESE method for solving the ideal MHD

equations in two-spatial dimensions with emphasis on satisfying the N>B = 0 constraint.

Three numerical treatments are developed (i) a simple algebraic adjustment of gé[ﬂBx 9
e X 9 k
and aéTﬂByg after each time marching step to satisfy N>B = 0, (ii) an extended CESE
Y @,

method based on the constraint-transport method to calculate the magnetic field, and (iii)
a projection method by coupling a Poisson solver with the original CESE method. To
demonstrate the capabilities of the CESE methods, two benchmark problems are
calculated and compared with the previously published results, including a rotated MHD
shock tube problem and a MHD vortex problem. All present results produced by the new
CESE schemes compare favorably with the previous results. Moreover, we demonstrate
that the original CESE method could be directly used to calculate the MHD equations
without any difficulty. For the benchmark problems, the results are as accurate as that

produced by using sophisticated special treatments.
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Appendix: Jacobian Matrixes

JX:E:

u
¢ . 0 1 o 0 0 0
ng u2+97(v2+vv2) (3-gu (t-gv (L-gw g-1 -B (2-
é . -
& uv v u 0 0 B,
é - uw w 0 u 0 -8B,
é
& A A A A A A
é 0 0 0 0 0 O
é uB - Vi
é _M 5 _i 0 0 -V
& r r r
¢ _uB-wh L o -2 o .w
& r r r
where

ue g-2 Bi+B} g B?

=-g—+(g- Du(u?® +v> +w?) + Y +2y—=

A =-g——+(9- Du(u”+v )+ U i
vB, +wB,
+B——~

X

r

2 B} +B; gB2
il 290w g -
A =07 2( g)u’ (v )- . >

A =(1- guv- 22

A=,

AS :-QJBX- (VBy +VVBZ)’
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(A.1)

(A.29)

(A.2b)

(A.2¢)

(A.2d)
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(A.2f)

(A.29)
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A =-wB, +(2- g)uB,.

Matrix
JY E:

U
é 0 1 0 0 0
é
& uv v u 0 0 - B,
SL;VZ +%1(u2 +w?) @-glu (B-gh @-gw g-1 (2-g)B,
2 - VW 0 w \Y; 0 0
é Bl BZ BS B4 BS BG
é uB, - vB B
é ! . - Bc 0 0 v
é r r r
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_ 2 2 B2
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r 2 r

B, =- g+ (g - DV(U + V7 + w) +
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(A.49)

(A.4h)



List of Figure Captions

Fig. 1. Definition of space-time mesh for atwo-dimensional problem.
Fig. 2: Grid arrangement in space-time domain.
Fig. 3: Definition of Specia SE and CE for ainherent constrained-transport scheme.
Fig. 4. Relation between x-y coordinates and x-h coordinates. Rectangle OABC is the
computationa domain.
Fig. 5: Solution to a shock tube, Solid lines stand for one-dimensiona results by Toth
[12], dots for present results.
5a Dengity.
5b. Pressure.
5¢. Veocity component U,.
5d. Velocity component Uy,.
5e. Magnetic field component B,.
Fig. 6: Comparison between different CESE schemes for aMHD shock tube problem.
6a. Profiles of P
6b. Profiles of B,,.
Fig. 7: Profiles of B, for aMHD shock tube problem from different CESE schemes.
Fig. 8: Pressure contours of a MHD vortex problem by the original CESE scheme.
8a. Pressure contourst = 0.5.
8b. Pressure contourst = 2.
8c. Pressure contourst = 3.

Fig. 9: Pressure profile of aMHD vortex problem along liney = 0.625p.



9a. Pressure profileat t = 0.5.
9b. Pressure profilet = 2.
9c. Pressure profilet = 3.
Fig. 10: Evolution of magnetic energy of aMHD vortex problem.
Fig. 11. Comparison between CESE method with and without a projection procedure for

maintaining N>B = 0.

34



— k+1/2

AY/2

AY/2

X | axs27|T Ax/27

j-1/2 J

J#1/2

g2

Fig. 1: Definition of space-time mesh for atwo-dimensional problem.



Fig. 2: Grid arrangement in space-time domain.
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8c. Pressure contourst = 3.

Fig.8: Pressure contours of a MHD vortex problem by the original CESE scheme.
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