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Abstract 

We apply the Space-Time Conservation Element and Solution Element (CESE) method 

to solve the ideal MHD equations with special emphasis on satisfying the divergence free 

constraint of magnetic field, i.e., ∇⋅B = 0. In the setting of the CESE method, four 

approaches are employed: (i) the original CESE method without any additional treatment, 

(ii) a simple corrector procedure to update the spatial derivatives of magnetic field B after 

each time marching step to enforce ∇⋅B = 0 at all mesh nodes, (iii) an constraint-transport 

method by using a special staggered mesh to calculate magnetic field B, and (iv) the 

projection method by solving a Poisson solver after each time marching step. To 

demonstrate the capabilities of these methods, two benchmark MHD flows are calculated 

(i) a rotated one-dimensional MHD shock tube problem, and (ii) a MHD vortex problem. 

The results show no differences between different approaches and all results compare 

favorably with previously reported data.  
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1 Introduction 

While many Computational Fluid Dynamics (CFD) methods have been successfully 

developed for gas dynamics, extension of these methods for solving the Magneto-Hydro-

Dynamic (MHD) equations involves unique requirements and poses greater challenges 

[1-14]. In particular, for multi-dimensional MHD problems, it is critical to maintain the 

divergence-free constraint of magnetic field, i.e., ∇⋅B = 0, at all locations in the space-

time domain. Analytically, the constraint is ensured if it is satisfied in the initial condition. 

However, it has been difficult to maintain this constraint in calculating evolving MHD 

problems. Violating the constraint allows numerical errors to be accumulated over the 

computational time, leading to erroneous solutions and/or numerical instability.  

To satisfy ∇⋅B = 0, a special treatment directly incorporated into the CFD method 

employed is often required. Special treatments have been categorized into three groups: (i) 

The projection method, e.g., Brackbill and Barnes [5]: At each time step, the method 

solves a Poisson equation to update the magnetic field to enforce ∇⋅B = 0. (ii) The eight-

wave formulation by Powell [6]: ∇⋅B is not treated as zero in deriving the MHD 

equations, leading to additional source/sink terms in equations for B. The CFD solver 

employed would activate the sink/source terms to counter the unbalanced ∇⋅B in 

numerical solutions. (iii) The constrained-transport procedure, e.g., Evans and Hawley 

[7], Dai and Woodward [8], Balsara and Spice [9], and Toth [12], based on the use of 

staggered mesh to enforce the constraint at certain spots of the control volume. Various 

versions of these three approaches have been developed to solve the MHD equations in 

multiple spatial dimensions [4-13]. Recently, these methods have been assessed and 

summarized by Toth [12].   
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In the present paper, we report the application of the Space-Time Conservation 

Element and Solution Element (CESE) method [17-20] to solve the two-dimensional 

MHD equations.  Four approaches are employed:  (i) the original CESE method without 

any additional treatment for ∇⋅B = 0, (ii) a simple modification procedure to update the 

spatial derivatives of B after each time marching step such that ∇⋅B = 0 is enforced at all 

mesh nodes, (iii) an extended CESE method based on the constraint-transport procedure, 

and (iv) the projection method coupled with the CESE method. The approach (i) is trivial. 

Nevertheless, its results are comparable with other results by the three other approaches. 

Approaches (ii) and (iii) are new schemes for ∇⋅B = 0. Approach (iv), the projection 

method, is a conventional and reliable approach to impose ∇⋅B = 0. All results in the 

present paper compare well with previously published data.   

The rest of the paper is arranged as follows. Section 2 illustrates the governing 

equations. Section 3 provides a brief review of the CESE method for two-spatial-

dimensional problems. Section 4 shows the new CESE schemes, i.e., approaches (ii) and 

(iii), for ∇⋅B = 0. Section 5 provides the results and discussions. We then offer 

conclusions and provide cited references. 

 

2 Governing Equations  

The ideal MHD equations include the continuity, the momentum, the energy, and the 

magnetic induction equations. In two spatial dimensions, the dimensionless equations can 

be cast into the following conservative form:  

0=
∂
∂

+
∂
∂

+
∂
∂

yxt
GFU

,        (2.1) 
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where 
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In the above equations, ρ,  p and e are density, pressure and specific total energy, 

respectively; u, v, and w are velocity components and Bx, By and Bz are magnetic field 

components in the x, y, and z directions, respectively. The total pressure and the specific 

total energy are 

( ) 2222
0 zyx BBBpp +++= ,       (2.5) 

( ) ( ) 22 222222
zyx BBBwvue ++++++= ρρε .    (2.6) 
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For calorically ideal gases, the specific internal energy ε can be expressed as  

( ) ( )11 −
=

−
=

γργ
ε

RTp
,        (2.7) 

where γ is the specific heat ratio, T is temperature, and R is the gas constant. To proceed, 

we apply the chain rule to Eq. (2.1) and obtain  

0=
∂
∂

+
∂
∂

+
∂
∂

yxt
y U

J
U

J
U x ,       (2.8) 

where Jx and Jy are Jacobian matrices of the spatial fluxes in the x and y directions, 

respectively. The components of the matrices are listed in Appendix. The eigenvalues of 

matrix Jx are x
fcu ± , x

acu ± , x
scu ± , u and u, where x

ac , x
sc  and x

fc  are the speeds of the 

Alfvan wave, the slow shock wave, and the fast shock wave, respectively, and they are 

defined as 

ρx
x
a Bc = ,         (2.9) 
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In Eqs. (2.10-11), ργpc =  is the speed of sound. Similarly, the eigenvalues of matrix 

yJ  are y
fcv ± , y

acv ± , y
scv ± , v and v, where y

ac , y
sc  and y

fc  are defined as  

ρy
y

a Bc = ,         (2.12) 
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3  The CESE Method 

The above MHD equations can be expressed as 

0=
∂

∂
+

∂
∂

+
∂

∂
y

g
x
f

t
u mmm , m = 1, 2, …  , 8,     (3.1) 

where mu , mf and mg  are the entries of the flow variable vector and the flux vectors in 

the x and y directions, respectively, and m is the index for the equation. Let 

xx =1 , yx =2  and tx =3  be the coordinates of a three-dimensional Euclidean space 

3E , Eq. (3.1) becomes a divergence free condition:  

0=⋅∇ mh , m = 1, 2, …  , 8,       (3.2) 

where ( )mmmm ugf ,,=h  are the current density vector. By using Gauss’ divergence 

theorem in 3E , we have 

( )
0=⋅=⋅∇ ∫∫ VS m

V
m ddV shh , m = 1, 2, …  , 8,     (3.3) 

where (i) S(V) is the boundary of an arbitrary space-time region V in 3E , and (ii) 

σdd ns = with σd  and n, respectively, are the area and the unit outward normal of a 
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surface element on S(V). The CESE method integrates Eq. (3.3) for the evolving flow 

variables.   

For completeness, we will briefly illustrate the CESE method based on the 

following three parts: (i) The definition of SE and CE in the space-time domain. (ii) The 

integration of Eq. (3.3) over a CE to form the algebraic equations for the flow variables at 

a new time step. (iii) The re-weighting procedure with added artificial damping in 

calculating the gradients of the flow variables. The discussion of the CESE method here 

will be based on the modified CESE method for a quadrilateral mesh [19]. To be concise, 

our discussion of the CESE method will be focused on a uniform quadrilateral mesh.   

3.1 Definition of Solution Element and Conservation Element 

 
In Fig. 1, the spatial domain is divided into non-overlapping quadrilaterals and any two 

neighboring quadrilaterals share a common side. The centroid of each quadrilateral is 

marked by either a hollow circle or a solid circle. Point G, the centroid of quadrilateral 

ABCD, is marked by a solid circle, while the points N, E, W and S are the centroids of the 

four neighboring quadrilaterals, and are marked by hollow circles. Because of the 

uniform mesh, G is also the centroid of polygon NAWBSCED, which coincides with 

quadrilateral NWSE. Let j, k and n be the indices for x, y, and t, respectively. Shown in 

Fig. 2, points A, B, C, D, N, E, W, S and G are at the time level n-1/2; points A’, B’, C’, 

D’, N’, E’, W’, S’ and G’ are at the time level n; and points A”, B”, C”, D”, N”, E”, W”, 

S” and G” are at the time level n+1/2.  

As shown in Fig. 2, the solution element SE(j, k, n) associated with point G’ is 

defined as the union of three quadrilateral planes, N’W’S’E’, A”ACC”, B”BDD”, and 
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their immediate neighborhoods. Its spatial projection is shown in Fig. 1 as the dashed 

lines. Similarly, associated with points N, E, W, and S, there are four solution elements: 

SE(j, k+1/2, n-1/2), SE (j+1/2, k, n-1/2), SE (j-1/2, k, n-1/2), and SE (j, k-1/2, n-1/2). To 

calculate the unknowns at G’, the algebraic equations are derived based on space-time 

flux conservation involved flow solutions at points G’, N, E, W, and S, referred to as the 

solution points. Point G’, located at t = tn is staggered with respect to points N, E, W, and 

S at t = tn-1/2. 

As shown in Fig. 2, a space-time cylinder can be formed with surfaces associated 

with SE(j, k, n) and surfaces associated with one of the four SEs at the time level n-1/2. 

For instance, cylinder N’A’G’D’NAGD is formed by surfaces associated with SE(j, k, n) 

and SE(j, k+1/2, n-1/2) . This cylinder is one of the Basic Conservation Elements (BCE) 

of point G’. There are three other BCEs associated with point G’, i.e., A’W’B’G’AWBG, 

B’S’C’G’BSCG and C’E’D’G’CEDG. The union of these four BCEs forms a 

Compounded Conservation Element (CCE) N’W’S’E’NWSE with its top center at point 

G’. 

3.2 The Space-Time Integration 

 
Inside SE(j, k, n), the discretized variables and fluxes, denoted with a superscript *, are 

assumed to be linear. For m = 1, 2, …  , 8, let 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nn
kjmtkj

n

kjmykj
n

kjmx
n

kjmm ttuyyuxxuunkjtyxu −+−+−+= ,,,,,,
* ,,;,, , 

           (3.4) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nn
kjmtkj

n

kjmykj
n

kjmx
n

kjmm ttfyyfxxffnkjtyxf −+−+−+= ,,,,,,
* ,,;,, , 

           (3.5) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )nn
kjmtkj

n

kjmykj
n

kjmx
n

kjmm ttgyygxxggnkjtyxg −+−+−+= ,,,,,,
* ,,;,, , 

           (3.6) 

where ( )n
kjmu , , ( )n

kjmf , , ( )n
kjmg , , ( )n

kjmxu , , ( )n

kjmyu
,

, ( )n
kjmtu , , ( )n

kjmxf , , ( )n

kjmyf
,

, ( )n
kjmtf , , 

( )n
kjmxg , , ( )n

kjmyg
,

,and ( )n
kjmtg , are flow variables, fluxes, and their first-order derivatives at 

point G’.  Aided by the chain rule we have 

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjlx

n

kjlm
n

kjmx uff , m = 1, 2, …  , 8,     (3.7) 

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjlx

n

kjlm
n

kjmx ugg , m = 1, 2, …  , 8     (3.8) 

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n

kjly
n

kjlm
n

kjmy uff , m = 1, 2, …  , 8     (3.9) 

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n

kjly
n

kjlm
n

kjmy ugg , m = 1, 2, …  , 8     (3.10) 

where ( )n

kjlmf
,, , ( )n

kjlmg
,,  are the (m, l)th entries of the Jacobian matrixes Jx and Jy in the x 

and y directions, respectively. To proceed, we assume that ( )nkjtyxum ,,;,,* , 

( )nkjtyxfm ,,;,,*  and ( )nkjtyxgm ,,;,,*  satisfy the original MHD equations, Eq. (3.1), at 

point, (j, k, n): 

( ) ( ) ( )n

kjmy
n

kjmx
n

kjmt gfu
,,, −−= , m = 1, 2, …  , 8.     (3.11) 

Aided by Eqs. (3.7) and (3.10), , Eq. (3.11) becomes  

( ) ( ) ( ) ( ) ( )∑∑
==

−−=
8

1
,,,

8

1
,,,,

l

n

kjly
n

kjlm
l

n
kjlx

n

kjlm
n

kjmt ugufu , m = 1, 2, …  , 8,  (3.12) 
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Similarly, for m = 1, 2, …  , 8, we have  

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjlt

n

kjlm
n

kjmt uff ( ) ( ) ( ) ( ) ( )[ ]∑ ∑
= =

+−=
8

1

8

1
,,,,,,,,

l r

n

kjry
n

kjrl
n

kjrx
n

kjrl
n

kjlm uguff , 

           (3.13) 

( ) ( ) ( )∑
=

=
8

1
,,,,

l

n
kjlt

n

kjlm
n

kjmt ugg ( ) ( ) ( ) ( ) ( )[ ]∑ ∑
= =

+−=
8

1

8

1
,,,,,,,,

l r

n

kjry
n

kjrl
n

kjrx
n

kjrl
n

kjlm ugufg . 

           (3.14) 

Therefore, a set of given values of ( )n
kjmu , , ( )n

kjmxu ,  and ( )n

kjmyu
,

completely determine the 

distribution of the flow variables and fluxes, i.e., Eqs., (3.4-6), inside SE(j, k, n). Thus the 

flow variables ( )n
kjmu ,  and their spatial gradients ( )n

kjmxu ,  and ( )n

kjmyu
,

are the unknowns to 

be solved in the CESE method. 

The time marching scheme to calculate ( )n
kjmu ,  is based on integrating Eq. (3.3) 

over the CCE associated with point G’. Recall that the CCE is a quadrilateral cylinder 

with surfaces associated with five different SEs. The top surface, quadrilateral N’W’S’E’ 

belongs to SE(j, k, n); quadrilaterals NAGD, N’A’AN  and N’D’DN belong to SE(j, k+1/2, 

n-1/2); quadrilaterals WAGB, W’A’AW and W’B’BW belong to SE(j-1/2, k, n-1/2); 

quadrilaterals SBGC, S’B’BS  and S’C’CS belong to SE(j, k-1/2, n-1/2); and quadrilaterals 

EDGC, E’C’CE and E’D’DE belong to SE(j+1/2, k, n-1/2).  

The flux leaving each planar surface of the CCE is equal to the inner product of the 

current density vector ( )**** ,, mmmm ugf=h , evaluated at the centroid of the surface, and the 

surface vector s = nS.  For example, the top surface of the CCE is quadrilateral N’W’S’E’ 

with an area Stop and the centroid is G’ (xj,k, yj,k, tn). At the centroid of the top surface of 
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the CCE, the current density vector ( ) ( ) ( )( )n

kjm

n

kjm

n

kjmm ugf ,,,
* ,,=h , and the surface vector 

is (0, 0, Stop). Thus the flux leaving the top surface of the CCE is  

(FLUXm)top = ( )n
kjmu , Stop, m = 1, 2, …  , 8.     (3.15) 

Similarly calculation for fluxes through other surfaces of the CCE can be performed. For 

surfaces associated with SE(j, k+1/2, n-1/2), the centriods of surfaces NAGD, NDD’N’ 

and NAA’N’ are denoted as ( )2/100 ,, −n
NN tyx , ( )4/111 ,, −n

NN tyx  and ( )4/122 ,, −n
NN tyx , 

respectively. Their surface vectors are (0, 0, -S1), ( )0,, 11 y
N

x
N λλ , and ( )0,, 22 y

N
x

N λλ , where S1 is 

the area of quadrilateral NAGD, and 

( ) 21 tyy DN
x

N ∆−=λ ,        (3.16) 

( ) 21 txx ND
y

N ∆−=λ ,        (3.17) 

( ) 22 tyy NA
x

N ∆−=λ ,        (3.18) 

( ) 22 txx AN
y

N ∆−=λ .        (3.19) 

The flux leaving each of the three surfaces can be calculated as the inner product of the 

corresponding flux vector and the surface vector at the surface centroid. By summing up 

the fluxes, for m = 1, 2, …  , 8, we have, 

( ) ( )
( ) ( )
( ) ( )2/14/122*1

1
2/14/122*2

2/14/111*12/14/111*1

2/12/100*
1

,21,;,,,21,;,,

,21,;,,,21,;,,

,21,;,,

−−−−

−−−−

−−

++++

++++

+−=

nn
NNm

ynn
NNm

x
N

nn
NNm

y
N

nn
NNm

x
N

nn
NNmNm

tkjtyxgtkjtyxf

tkjtyxgtkjtyxf

tkjtyxuSFLUX

λλ

λλ

           (3.20) 

Because the solution at the time step n-1/2 is known, the value of this flux can be readily 

calculated. Similarly, the fluxes leaving surfaces associated with SE(j-1/2, k, n-1/2), SE(j, 
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k-1/2, n-1/2), and SE(j+1/2, k, n-1/2) can be readily calculated. For conciseness, we 

simply name these fluxes as ( )WmFLUX , ( )SmFLUX  and ( )EmFLUX . As a result, the 

space-time flux conservation over the CCE is  

( ) ( )∑ =+
NEWS

l
lmtopm FLUXFLUX 0 , m = 1, 2, …  , 8.    (3.21) 

Note that only the first term in the above equation contains the unknowns to be solved at 

point G’. Aided by Eq. (3.15), the flow variables at the current time  step n can be 

calculated by 

( )
( )

top

NEWS

l
lm

n
kjm S

FLUX
u

∑
−=, , m = 1, 2, …  , 8.     (3.22) 

 

3.3 Solutions of Flow Variable Gradients 

To proceed, we calculate the spatial gradients of the flow variables ( ) ,

n
mx j k

u  and ( )
,

n

my j k
u . 

The calculation is divided into two steps: (i) Finite-differencing the flow variables um at 

point G’, N’, E’, W’, and S’, at t = tn to obtain four sets of mxu and myu . (ii) Apply a 

reweighing procedure to the above four sets of mxu  and myu  to determine ( ) ,

n
mx j k

u and 

( )
,

n

my j k
u  at G’. In what follows, these two calculation steps are illustrated.  

Flow variables mu  at point G’ are obtained from Eq. (3.22). The flow variables mu  

at four neighbor points N’, W’, S’ and E’ are obtained by using the Taylor series 

expansion along the time axis from the time level n-1/2, i.e., for m = 1, 2, …  , 8,  
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( ) ( ) ( )1/2 1 /2'

2
n n

m m mtl ll

t
u u u− −∆

= + ,      (3.23) 

where l =1, 2, 3, and 4 denoting point N’, E’, W’ and S’, respectively.  

The square plane N’E’S’W’ is divided into four triangles; N’W’G’, W’S’G’, S’E’G’, 

and E’N’G’. In each triangle, we finite-difference mu  at the three vertices to obtain the 

flow variable gradient ( ) ,

n
mx j k

u and ( )
,

n

my j k
u . Consider triangle ∆N’W’G’, the flow variable 

gradient at its centroid can be expressed as, 

( )( ) ∆∆= xGmxu '
1 ,         (3.24) 

( )( ) ∆∆= yGmyu
'

1 ,        (3.25) 

where  

( ) ( )
( ) ( ) GWGmWm

GNGmNm
x

yyuu

yyuu

−−

−−
=∆

''
'

''
'

,      (3.26) 

( ) ( )
( ) ( ) WGGmWm

NGGmNm
y

xxuu

xxuu

−−

−−
=∆

''
'

''
'

,      (3.27) 

GWGW

GNGN

yyxx
yyxx

−−
−−

=∆ ,       (3.28) 

and 

 ( ) ( )n
kjmGm uu ,' = .        (3.29) 
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For triangles ∆W’S’G’, ∆S’E’G’ and ∆E’N’G’, the flow variable gradients at their 

centroids, denoted by ( )( ) '
2

Gmxu , ( )( )
'

2
Gmyu , ( )( ) '

3
Gmxu , ( )( )

'
3

Gmyu , ( )( ) '
4

Gmxu  and ( )( )
'

4
Gmyu , can be 

obtained in a similar way.  

To proceed, a re-weighting procedure is applied to the four sets of flow variable 

gradients to obtain the final flow variable gradient at G’, i.e., for m = 1, 2, …  , 8, 

( ) ( ) ( )( )[ ] ( )∑∑ ==
=

4

1

4

1 ', l
l

ml G
l

mx
l

m

n

kjmx WuWu
αα ,      (3.30) 

( ) ( ) ( )( )[ ] ( )∑∑ ==
=

4

1

4

1 ', l
l

ml G
l

my
l

m

n

kjmy WuWu
αα

,      (3.31) 

where 

∏ ≠=
=

4

,1 lqq

q
m

l
m WW ,  for l =1, 2, 3, 4,     (3.32) 

and 

( )( )[ ] ( )( )[ ]2

'

2

' G
q

myG
q

mx
q

m uuW += .       (3.33) 

For shock capturing, α = 1, or 2, is a prescribed constant. For flows without shock, we let 

α = 0. As such, Eqs. (3.30-31) reduce to the standard central-differencing method.  

 

4  Extended CESE Schemes for ∇⋅B = 0 

In this section, we illustrate two new CESE schemes for ∇⋅B = 0: Schemes I and 

Schemes II. Both schemes are built based on special features of the original CESE 

method. Scheme I takes advantage of the fact that the flow variable gradients ( ) ,

n
mx j k

u and 
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( )
,

n

my j k
u are directly used as the unknowns and they march in time hand-in-hand with the 

flow variables ( ) ,

n
m j k

u . Scheme I is a simple adjustment to the calculation of ( ) ,

n
mx j k

u  and 

( )
,

n

my j k
u such that ∇⋅B = 0 is satisfied at all mesh points after each time marching step.  

Scheme II takes advantage of staggered mesh arrangement in the original CESE method. 

By a simple adjustment of the mesh nodes employed in calculating the magnetic flux, we 

ensure the satisfaction of ∇⋅B = 0 at all solution points. In what follows, we report these 

two schemes.  

4.1 Scheme I 

 
As illustrated in the above section, the flow variables ( ) ,

n
m j k

u  are calculated by space-

time flux conservation i.e., Eq. (3.22), over a CCE with its top center at point (j, k, n), 

while the flow variable gradients ( ) ,

n
mx j k

u  and ( )
,

n

my j k
u  are calculated by a combination of 

a central differencing and a reweighing procedure. In Scheme I, we first follow the above 

CESE algorithm to calculate the flow variables and their spatial gradients. After each 

time marching step, a corrector step is applied to adjust the values of 
n

kj

x

x
B

,









∂
∂  and 

n

kj

y

y
B

,








∂

∂
.  The calculated results of all other unknowns remain intact.  Note that 

n

kj

x

x
B

,









∂
∂  and 

n

kj

y

y
B

,








∂

∂
are denoted as ( )n

kjxu ,5 and ( )n

kjxu ,6  in Eq. (2.2). The adjustments to 

these two terms are  
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( ) ( ) ( ) ( )[ ]n

kjy

n

kjx

n

kjx

new

kjx uuuu
,6,5,5,5 2

1
+−= ,      (4.1) 

( ) ( ) ( ) ( )[ ]n

kjy

n

kjx

n

kjy

new

kjy uuuu
,6,5,6,6 2

1
+−= ,      (4.2) 

where the updated gradient is denoted by the superscript new. By adding the two 

equations above, we yield 

( ) ( ) 0
,6,5 =+

new

kjy
new

kjx uu .        (4.3) 

That is, with the additional treatment for 
kj

x

x
B

,









∂
∂  and 

kj

y

y
B

,








∂

∂
by Eqs. (4.1-2), the 

constraint ( ) 0, =⋅∇ kjB  is satisfied at each mesh node in each time marching step.  

4.2 Scheme II 

 
Scheme II is based on a specially defined SE for solving the magnetic induction 

equations. As illustrated in Fig. 3, the Special Conservation Element (SCE) associated 

with point G’ is defined as quadrilateral P’Q’R’T’PQRT, which composes of six planes: 

P’Q’R’T’, P’Q’QP, Q’R’RQ, R’T’TR, T’P’PT and PQRT. The six planes are referred to 

as Special Solution Elements (SSE). The SSE and SCE are defined for solving magnetic 

field components Bx and By only. Shown in Fig. 3, the solution points N’, E’, W’, and S’ 

surrounding G’ are at the middle of line segments P’Q’, P’T’, Q’R’ and R’T’, 

respectively.  Thus the SCE here includes a space-time region larger than the original 

CCE.  

To proceed, the SSEs, P’Q’R’T’ and PQRT, are defined to be associated with the 

solution points G’ and G, respectively. Similarly, the SSEs, P’Q’QP, Q’R’RQ, R’T’TR 
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and T’P’PT are associated with the solution points N, W, S and E, respectively. Inside 

SSEs, the profiles of Bx and By follow the first-order Taylor series expansion. For 

example, we consider SSE P’Q’QP associated with the solution point N: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2121

21,21,
21

21,

21,
21

21,
21

21,
* 21,21,;,,

−−
++

−

+

+
−

+
−

+

−+−+

−+=−+
nn

kjmtkj
n

kjmy

kj
n

kjmx
n

kjmm

ttuyyu

xxuunkjtyxu
, (4.4) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2121

21,21,
21

21,

21,
21

21,
21

21,
* 21,21,;,,
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++

−

+

+
−

+
−

+

−+−+

−+=−+
nn
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2121

21,21,
21

21,

21,
21
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21

21,
* 21,21,;,,

−−
++

−

+

+
−

+
−

+

−+−+

−+=−+
nn

kjmtkj
n

kjmy

kj
n

kjmx
n

kjmm

ttgyyg

xxggnkjtyxg
, (4.6) 

where m = 6 and 7.  Similar discretization procedure is employed in the other SSEs.  

 To proceed, we perform numerical integration of the magnetic induction 

equations in x and y directions over the SCE based on the above discretization scheme for 

the SSEs. The magnetic induction equations can be reformulated as  

0=
∂
Ω∂

+
∂

∂
yt

Bx ,         (4.7) 

0=
∂
Ω∂

−
∂

∂

xt

B y ,         (4.8) 

where Ω = vBx –uBy . Integrating Eqs. (4.7-8) over the SCE, we have 

( )
( )

0,,0 =⋅Ω∫ VS x dB s ,        (4.9) 

( )
( )

0,0, =⋅Ω−∫ VS y dB s .        (4.10) 
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Consider Eq. (4.9), flux leaving plane P’Q’R’T’ is 

 ( )n
kjxTRQP ByxFLUX ,'''' ∆∆= .       (4.11) 

Flux leaving plane PQRT is 

 ( ) 21
,
−∆∆−= n
kjxPQRT ByxFLUX .       (4.12) 

Flux leaving plane P’Q’QP is 

 ( ) ( ) ( ) 41
21,

21
21,

21
21,'' 242

−
+

−
+

−
+ Ω

∆∆
=



 Ω

∆
+Ω

∆∆
= n

kj
n

kjt
n

kjQPQP

txttx
FLUX .  (4.13) 

Flux leaving plane R’T’TR is 

 ( ) ( ) ( ) 41
21,

21
21,

21
21,'' 242

−
−

−
−

−
− Ω

∆∆
−=



 Ω

∆
+Ω

∆∆
−= n

kj
n

kjt
n

kjTRTR

txttx
FLUX .  (4.14) 

Fluxes leaving planes Q’R’RQ and T’P’PT are zero,  

 0'' =RQRQFLUX ,        (4.15) 

 0'' =RTRTFLUX .        (4.16) 

The flux balance over SCE is  

0'''''''''''' =+++++ PTPTTRTRRQRQQPQPPQRTTRQP FLUXFLUXFLUXFLUXFLUXFLUX . 

           (4.17) 

Substituting Eqs. (4.11-16) into Eq. (4.17), we have 

( ) ( ) ( ) ( )[ ]41
21,

41
21,

21
,, 2

−
+

−
−

− Ω−Ω
∆
∆

+= n
kj

n
kj

n
kjx

n
kjx y

t
BB .    (4.18) 

Similarly, integration of Eq. (4.10) over SCE gives 
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( ) ( ) ( ) ( )[ ]41
,21

41
,21

21

,, 2
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−
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− Ω−Ω
∆
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+= n
kj

n
kj

n

kjy
n

kjy x
t

BB .    (4.19) 

For SCEs associated with points E’ and W’, we have 

( ) ( ) ( ) ( )[ ]41
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21,21
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For SCEs associated with points N’ and S’, we have 
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At point G’, we obtain ( )xB x ∂∂  and ( )yBy ∂∂  as  

( ) ( )
x

BB

x
B

n
kjx

n
kjx

n

kj
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∆
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Aided by Eqs. (4.20-23) we have 

( )
( ) ( ) ( ) ( )

( ) 21
,
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−−+−+ ⋅∇=
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∆
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kj y
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x
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That is, if ( ) 021
, =⋅∇ −n
kjB , ( ) 0, =⋅∇ n

kjB . 
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Based on the use of the above SSE and SCE, this extended CESE scheme is 

proposed to solve Bx, By, xBx ∂∂  and yB y ∂∂  at point G’. All other variables are 

calculated by using the original CESE scheme as illustrated in Section 3. 

 

5 Results and Discussions 

In this section, we report results obtained from the CESE schemes. Section 5.1 presents 

the two-dimensional results of a MHD shock tube problem. Section 5.2 shows the 

solution of a MHD vortex problem, which is a real two-dimensional problem. For the two 

problems, we employ the new CESE schemes for maintaining ∇⋅B = 0. Moreover, for the 

MHD vortex problem, we also employ the projection procedure, i.e., the Poisson solver, 

for maintaining ∇⋅B = 0. 

5.1 A Rotated Shock Tube Problem 

In a one-dimensional problem, ∇⋅B = 0 is automatically satisfied. A common practice to 

assess multi-dimensional solvers for ∇⋅B = 0 is to perform two-dimensional calculation 

of an inherently one-dimensional problems formulated in the rotated coordinates such 

that the one dimensionality of the flow is not aligned with the numerical mesh and ∇⋅B = 

0 may not be easily satisfied. As such, the degree of deficiency in satisfying ∇⋅B = 0 can 

be straightforwardly judged by direct comparison between the two-dimensional results 

with the corresponding one-dimensional result. As shown in Fig. 4, the computation is 

conducted in the rectangular domain OABC. The one-dimensional problem is defined 

along the ξ-direction. Through coordinate rotation, flow variables in the x-y coordinates 

can be transformed to be in the ξ-η coordinates, and vice versa.  
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The initial condition, defined along ξ-direction, consists of two distinct states: 

( ) ( )
( )




−
=

rightfor      45,45,1,0,10,1
leftfor       45,45,20,0,10,1

 , , , , ,
ππ
ππ

ρ η zBBpvu , 

with 35=γ , w = 0, and Bz =0. The flow condition and computational parameters are 

taken from Toth [12]. The computational domain is ( ) [ ] [ ]Nyx 2,01,0, ×∈ , where N is the 

grid point in x direction and set to N = 256. The rotated angle is set to tan-1 2 ≈ 63.430. A 

periodic condition is imposed in the η direction. The computation is up to t = 508.0 , 

and the computational domain is covered by a mesh of 256×2 grid points. 

Figure 5 shows results by the original CESE scheme, in which dots denote the 

present solution and solid lines represent one-dimensional solution in Toth [12]. The 

right-moving waves include a fast shock, a slow shock and a contact discontinuity. The 

left-moving waves include a fast shock and a slow rarefaction wave. Favorable 

comparison is found between our present two-dimensional results and the one-

dimensional results. We also employed the new schemes proposed in Section 4 for this 

problem. Figure 6 shows the comparison of the pressure and magnetic field component 

Bη profiles obtained by using (i) the original CESE scheme, (ii) the scheme I with a 

simple adjustment and (iii) the scheme II based on the constraint-transport procedure. For 

shock capturing, there is no obvious difference between the original CESE scheme and 

the new schemes.  

Analytically, Bξ is constant along the ξ direction. Figure 7 shows the Bξ profiles 

calculated by the three different CESE schemes. We observe oscillations around the 

moving shocks. The oscillations with the original scheme are smaller than that with 
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scheme I, and are comparable with that with scheme II. Away from shocks, the solutions 

are smooth. 

The same assessment was conducted by Toth [12] by using several special 

treatments for ∇⋅B = 0, including the 8-wave method, various versions of the constraint 

transport methods, and projection method. Refer to Fig. 11 in [12], oscillations of Bξ 

occur around shocks for all approaches employed. Comparing with the results shown by 

Toth [12], the magnitudes of Bξ oscillations near the moving shocks calculated by the 

present three CESE methods are much smaller. Moreover, as shown in Fig. 14 of Toth 

[12], spurious oscillations of other variable were also observed.  In our case, as shown in 

Fig. 6, no oscillation is observed in present results. Without using a special treatment for 

∇⋅B = 0, the calculated results compare favorably with one-dimensional data. With the 

use of special treatments for ∇⋅B = 0, i.e., Scheme I and II, illustrated in Section 4, no 

obvious improvement is observed. 

5.2 The MHD Vortex Problem 

In this subsection, we report the numerical solution of a MHD vortex problem by Orsazg 

and Tang [21]. The same problem has been employed by Jiang and Wu [4], Tang and Xu 

[11], and Toth [12] for assessing the numerical treatments for ∇⋅B = 0. In particular, 

Jiang and Wu [4] reported numerical instability if the projection procedure was not used. 

The initial conditions of the flow field are 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) 00,,,2sin0,,,sin0,,
00,,,sin0,,,sin0,,

0,,,0,, 2

==−=
==−=

==

yxBxyxByyxB
yxwxyxvyyxu

yxpyx

zyx

γγρ
, 
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where the specific heat ratio 35=γ . The computational domain is [ ] [ ]ππ 2,02,0 × . 

Periodic boundary condition is imposed on boundaries in both x- and y-directions. We 

use a uniform mesh of 193×193 grid nodes. The same mesh was used by Jiang and Wu [4] 

and Tang and Xu [11].  

Figs. 8 shows the pressure contours of the present CESE results at t = 0.5, 2, and 3, 

respectively. The results here are calculated by using the original CESE method. 

Although not shown, the results calculated by using Schemes I and II are virtually the 

same in these contour plots.  To assess the accuracy of the present results, the employed 

contour levels are exactly the same as that used by Jiang and Wu [4], i.e., 12 equally 

spaced contour levels ranging from 1.0 to 5.8 for t = 0.5, from 0.14 to 6.9 for t = 2, and 

from 0.36 to 6.3 for t = 3. Although not shown in the present paper, side-by-side 

comparisons between the present results and Jiang and Wu’s results showed no obvious 

difference.  

For quantitative details of the calculated results, Fig. 9 shows the pressure profiles 

along the line of y = 0.625π at time t = 0.5, 2 and 3, calculated by using the three CESE 

schemes: the original scheme and the extended schemes I and II. For t = 0.5, there is no 

difference between the results by the three schemes. At t = 2, result by Scheme II showed 

a more pronounced gradient near x = 5.5. For t = 3, small differences could be discerned 

on the left end of the plot. In Fig. 9c, result reported by Tang and Xu [11] is also plotted.  

No obvious difference can be observed between their results and the present results by 

the original CESE scheme and Scheme I. 
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We remark that in scheme II, there is no damping treatment for discontinuity in 

calculating the first-order derivatives xBx ∂∂  and yB y ∂∂ . Moreover, the mesh stencil 

for calculating xB , yB , xBx ∂∂ , and yB y ∂∂  are larger than that the one (the original 

CESE method) used for the rest of unknowns due to the use of SSE and SCE.  Figure 10 

shows time history of the magnetic energy of the whole flow field. Solid line is the result 

from the original CESE method, and dots are Tang and Xu’s results in [11].  

To further investigate the capability of the CESE method for ∇⋅B = 0, we adopt the 

projection method and solve the Possion equation at every time step,  

∇2φ + ∇⋅B = 0,          (5.1) 

where B is obtained from the CESE method described in Section 3. According to the 

mesh arrangement shown in Fig. 1, Eqn. (5.1) is discritized as, 

( ) ( )
( ) kj

kjkjkjkjkjkj

yx ,2
21,,21,

2
,21,,21

2

2

2

2
B⋅∇−=

∆

+−
+

∆

+− −+−+ φφφφφφ
.   (5.2) 

An implicit solver is employed to solve the above equation, and the magnetic field B is 

updated by, 

φ∇+= BB c .         (5.3) 

The updated Bc is then used to march the flow solution to the next time step. Fig. 11 

shows pressure profiles along y = 0.625π at t = 3 with and without the projection 

procedure. We observe no obvious improvement by employing the projection procedure.  
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6. Conclusions 

In this paper, we report the extension of the CESE method for solving the ideal MHD 

equations in two-spatial dimensions with emphasis on satisfying the ∇⋅B = 0 constraint. 

Three numerical treatments are developed (i) a simple algebraic adjustment of 
n

kj

x

x
B

,









∂
∂  

and 
n

kj

y

y
B

,








∂

∂
after each time marching step to satisfy ∇⋅B = 0, (ii) an extended CESE 

method based on the constraint-transport method to calculate the magnetic field, and (iii) 

a projection method by coupling a Poisson solver with the original CESE method. To 

demonstrate the capabilities of the CESE methods, two benchmark problems are 

calculated and compared with the previously published results, including a rotated MHD 

shock tube problem and a MHD vortex problem. All present results produced by the new 

CESE schemes compare favorably with the previous results. Moreover, we demonstrate 

that the original CESE method could be directly used to calculate the MHD equations 

without any difficulty. For the benchmark problems, the results are as accurate as that 

produced by using sophisticated special treatments.   
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Appendix: Jacobian Matrixes 
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and 

( ) zx uBwBA γ−+−= 28 .        (A.2h) 
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( ) yx uBvBB −−= γ26 ,        (A.4f) 

( )zxy wBuBvBB +−−= γ7 ,        (A.4g) 

and 

( ) zy vBwBB γ−+−= 28 .        (A.4h) 
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List of Figure Captions 

Fig. 1: Definition of space-time mesh for a two-dimensional problem. 

Fig. 2: Grid arrangement in space-time domain. 

Fig. 3: Definition of Special SE and CE for a inherent constrained-transport scheme. 

Fig. 4: Relation between x-y coordinates and ξ-η coordinates. Rectangle OABC is the 

computational domain. 
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Fig. 1: Definition of space-time mesh for a two-dimensional problem. 
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Fig. 2: Grid arrangement in space-time domain. 
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Fig. 3: Definition of Special SE and CE for a inherent constrained-transport scheme. 
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Fig. 4: Relation between x-y coordinates and ξ-η coordinates. Rectangle OABC is the 

computational domain. 
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5a. Pressure. 

 

 
5b. Density. 
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5c. Velocity component Uξ. 

 
5d. Velocity component Uη. 



 41

 
5e. Magnetic field component Bη. 

 
Fig. 5: Solution to shock tube B. Solid lines stand for one-dimensional results by Toth 

[12], dots for present results. 
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6b. Profiles of P 

 
6b. Profiles of Bη 

 
Fig. 6: Comparison between different CESE schemes for a MHD shock tube problem. 
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Fig. 7: Profiles of Bξ for a MHD shock tube problem with different CESE schemes. 
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8a. Pressure contours t = 0.5. 

 

 
8b. Pressure contours t = 2. 
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8c. Pressure contours t = 3. 

. 
 

Fig.8: Pressure contours of a MHD vortex problem by the original CESE scheme.  
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9a. Pressure profile at t = 0.5.  
 

 
9b. Pressure profile t = 2.  
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9c. Pressure profile t = 3.  

 
Fig. 9: Pressure profile of a MHD vortex problem along line y = 0.625π. 
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Fig. 10: Evolution of magnetic energy of a MHD vortex problem. 
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Fig. 11: Comparison between CESE method with and without a projection procedure for 

maintaining ∇⋅B = 0. 

 
 
 


