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ABSTRACT 
In the present paper, we report numerical calculations 
of stable and unstable ZND detonation waves by the 
method of Space-Time Conservation Element and 
Solution Element. Due to the finite-rate chemistry 
employed in the ZND model, a source term exists in 
the species equation, which is solved in conjunction 
with the continuity, momentum, and energy equations. 
In the context of the space-time method, a treatment 
for the stiff source term based on a volumetric 
integration over a space-time region is developed. As a 
contrast to the modern upwind schemes, no modulated 
Riemann solver or splitting method is used, thus the 
logic of the present scheme is much simpler.  
Nevertheless, unstable detonation waves can be 
accurately captured by using only five mesh nodes per 
half reaction length. Numerical accuracy of the present 
method is assessed by detailed comparisons between 
the theoretical solutions and the numerical results for 
both stable and unstable ZND waves.  

 

1. INTRODUCTION 

1.1 Advanced Propulsion Concepts  

Recent interests in advanced propulsion concepts have 
remarkably rekindled the research activities in 
detonation waves. Over the past decades, air-breathing 
Pulse Detonation Engines (PDEs) as well as rocket 
based PDEs have received significant attention. In the 
combustion chamber of a PDE, detonation waves 

propagate through a premixed fuel/air mixture and 
produce large chamber pressures for propulsion. 
Because of traveling detonations, constant-volume 
combustion, i.e., the detonation branch of the Rankine-
Hugoniot curve, with high operational frequencies can 
be achieved. As a result, PDE could be a promising 
high-performance propulsion device.  

Furthermore, in the development of air-breathing 
hypersonic propulsion vehicles, oblique detonation 
waves have been proposed to be used to enhance 
mixing in the supersonic combustion inside scramjet 
engines. In such engines, combustion takes place in the 
lee of the overdriven oblique detonation waves, which 
are usually attached to a wedge-like surface. Therefore, 
the detailed characteristics of overdriven detonation 
waves are of concern for the performance of such 
combustors. 

 

1.2 ZND Detonations 

Research of detonation waves was pioneered by 
Zeldovich, von Neumann, and Doering, i.e., the ZND 
model, in which a steadily propagating detonation 
wave consisting of an ordinary compressible flow 
shock followed by a finite-rate reaction zone is 
postulated. This remarkable insight of the flow physics 
provided the preliminary knowledge of detonations. 
Further experimental evidence has shown that 
detonation waves are often unstable with transverse 
wave structure, and the pressure level of the von 
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Neumann spike is usually significantly higher than that 
predicted by the ZND model.  

The capability of accurate calculations of stable 
and unstable detonation waves is imperative for the 
further development of the above-mentioned advanced 
propulsion concepts. In developing new numerical 
methods for detonations, the ZND model is an ideal 
proving ground for assessing the accuracy and 
efficiency of the method employed.  

The numerical calculation of the ZND detonation 
model was pioneered by Fickett and Wood [1]. They 
solved the one-dimensional ZND model equations 
using the method of characteristics in conjunction with 
a shock fitting method. Longitudinal instability waves 
were simulated in detail.  

Bourlioux et al. [2,3] developed an advanced 
numerical method, composed of a high-order upwind 
scheme, a front tracking method, and an adaptive 
refinement algorithm, for direct calculations of 
detonations. They presented detailed comparisons 
between the theoretical solution and their numerical 
solution. Similar calculations were conducted by Quirk 
[4] using various upwind schemes and Papalexandris  
[5] using an unsplit upwind method.   

 

1.3 The Objectives of the Present Work 

The objective of the present work is to extend the 
Space-Time CE/SE method, originally developed by 
Chang and coworkers [6,7] to calculate the stable and 
unstable detonation waves.  In order to assess the 
numerical accuracy, we conducted detailed 
comparisons between the theoretical solution and the 
numerical results.  In particular, we want to identify the 
number of mesh nodes required for an accurate 
resolution of the reaction zone following the shock 
front.  

        The rest of this paper is organized as follows. In 
Section 2, a brief account of the CE/SE method will be 
provided. The numerical treatment for the stiff source 
terms associated with the finite-rate chemistry will be 
discussed. In Section 3, the theoretical model of the 
ZND detonations is presented. In Section 4, the 
numerical solutions by the CE/SE method for steady 
and unsteady ZND waves will be reported. We then 
offer some concluding remarks. 

 

2. THE SPACE-TIME CE/SE METHOD 

The details of the Space-Time CE/SE method have 
been extensively illustrated in the cited references. 
Here, only a brief discussion of the essential steps of 
the CE/SE method will be provided. We shall first 

discuss the conventional finite-volume methods, in 
which because space and time are not treated equally, 
the choice of the space-time geometry has been 
restricted. As discovered by Godunov, the classical 
Riemann problem was encountered in balancing the 
space-time flux. Thus a Riemann solver became an 
integral part of the modern upwind schemes. In the 
present space-time CE/SE method, however, due to an 
equal footing treatment of space and time, the resultant 
formula is flexible to allow a better choice of space-
time geometry to calculate flux conservation. In 
particular, a zigzagging strategy was developed such 
that the Riemann problem was avoided in balancing 
the space-time flux.  Moreover, the spatial gradients of 
the flow variables are also treated as the unknowns and 
they march in time hand in hand with the flow 
variables themselves.  As a result, no Riemann solver 
or reconstruction step is used as the building block. 
The logic of the present method is much simpler.   In 
the following subsections, we shall illustrate the basic 
concept of the space-time integration in the CE/SE 
method as a contrast to the conventional methods. We 
then illustrate the essential steps of the present method 
in calculating the detonations.  

 

2.1 Conventional Finite-Volume Methods 

The conventional finite-volume methods for solving 
conservation laws were formulated according to flux 
balance over a fixed spatial domain. The conservation 
laws state that the rate of change of the total amount of 
a substance contained in a fixed spatial domain V is 
equal to the flux of that substance across the boundary 
of V, i.e., S(V).  Let the density of the substance be u 
and its spatial flux be f, the convection equation can be 
written as   

∂u
∂t + ∂ f

∂x = τ(u )              (2.1)  

where τ(u) is the source term in the convection 
equation. According to the Reynolds transport theorem, 
the integral form of the above equation can be 
expressed as:   

 

∂
∂t udV

V
= – f ⋅

S(V)
ds + τ(u ) dV

V
     (2.2) 

 

The conventional finite-volume methods concentrated 
on calculating the surface flux, i.e., the first term on 
the right hand side. The time derivative term is usually 
treated by a finite difference method, e.g., the Runge-
Kutta method. Or, integration can be performed for 
temporal evolution:  
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 udV
V t1

t2

= – f ⋅ds
S(V )

+ τ(u ) dV
V

t1

t

dt         (2.3)  

Due to the fixed spatial domain, the shape of the 
space-time Conservation Elements (CEs) in one spatial 
dimension for Eq. (2.3) must be rectangular. Refer to 
Fig. 2.1(a).  The unknowns are usually placed at the 
center of the spatial mesh, i.e., on the boundary of the 
space-time CEs.  The CEs must stack up exactly on the 
top of each other in the temporal direction, i.e., no 
staggering of these elements in time is allowed. For 
equations in two space dimensions, as depicted in Fig. 
2.1(b), a conservation element is a uniform-cross-
section cylinder in the space-time domain, and again 
no staggering in time is allowed.  
 

   

t

x

x

y

t

(a)

(b)  
 

Fig. 2.1 Space-time integration for conventional finite-
volume methods in one and two spatial dimensions.  

 
This arrangement results in vertical interfaces extended 
in the direction of time evolution between adjacent 
space-time conservation elements.  Across these 
interfaces, flow information travels in both directions. 
Therefore, an upwind bias method (or a Riemann 
solver) must be employed to calculate the interfacial 
fluxes.  
 
2.2 The Space-Time Integration  

Consider an initial-value problem involving the PDE,  
∂u
∂t + a∂u

∂x = τ(u )         (2.4)   

where a is a constant and τ(u) is a function of u. Let x1 
= x  and x2 =t, be the coordinates of a two-dimensional 
Euclidean space E2. Thus Eq. (2.4) becomes a 
divergence free condition,  

∇ ⋅ h = τ(u )                   (2.5) 

where the current density vector h = ( au, u).  By using 
Gauss’ divergence theorem in the space-time E2, it can 
be shown that Eq. (2.4) is the differential form of the 
integral conservation law: 

h⋅ds
S(R)

= τ(u ) dR
R

                       (2.6)   

Figure 2.2 is a schematic for Eq. (2.6).   

 

r+dr

r

dr

ds
R

S(R)

  r=(x,t)
dr=(dx,dt)t

x 

Fig. 2.2 A schematic of the space-time integral. 
 

Here S(R) is the boundary of an arbitrary space-time 
region R in E2, ds = dσ n with dσ  and n , respectively, 
being the area and the outward unit normal of a surface 
element on S(R), and dR is the volume of a space-time 
region inside S(R). Note that h ⋅ ds  is the space-time 
flux of h leaving the region R through the surface 
element ds , and all mathematical operations can be 
carried out since E2 was an ordinary two-dimensional 
Euclidean space. We remark that space and time are 
treated on an equal footing manner. Therefore, there is 
no restriction on the space-time geometry of the 
conservation elements over which the space-time flux 
is imposed.    

    Let Ω denote the set of all staggered space-time 
mesh nodes (j, n) in E2 (dots in Fig. 2.3(a)) with n 
being a half or whole integer, and (j - n) being a half 
integer. For each (j, n) ∈ Ω, let the solution element 
SE(j, n) be the interior of the space-time region 
bounded by a dashed curve depicted in Fig. 2.3(b). It  
includes a horizontal line segment, a vertical line 
segment, and their immediate neighborhood. For the 
discussions given in this paper, the exact size of this 
neighborhood does not matter.  

     For any (x, t) ∈ SE(j, n), let u(x, t) and h(x, t), 
respectively, be approximated by u*(x, t; j, n) and h*(x, 
t; j, n) which we shall define shortly.  
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                  Fig. 2.3 The space-time mesh of the CE/SE method.  
           
                  Let  

   u*(x, t; j, n ) = u j
n + (ux )j

n(x – x j ) + (ut )j
n(t – tn )    

      (2.7) 

where (i) u j
n , (ux )j

n  and (ut )j
n  are constants in SE(j, n), 

and (ii) (xj, tn) are the coordinates of the mesh point (j, 
n). As will be explained later, we shall assume that  

(ut )j
n = – a(ux )j

n                                          (2.8)  

Combining Eqs. (2.7) and (2.8), one has  
u*(x, t; j, n) = u j

n + (ux) j
n[(x – xj) – a (t – tn)],

(x, t) ∈ SE( j, n)
                

        (2.9)  

As a result, there are two independent marching 
variables u j

n  and (ux )j
n  associated with each (j, n) ∈ Ω. 

Furthermore, because h = (au, u), we define 

    h* (x, t; j, n) =(au*(x, t; j, n), u*(x, t; j, n))       (2.10)  

Let E2 be divided into non-overlapping rectangular 
regions referred to as conservation elements (CEs). As 
depicted  in Fig. 2.3(c), the CE with the midpoint of its 
top face being any mesh point (j, n) ∈ Ω is denoted by 
CE(j, n). The discrete approximation of Eq. (2.6) is  

h ⋅ ds = τ(u j
n) × ∆x∆t

2S(CE( j,n))
             (2.11)   

Here τ(u j
n )  is assumed to be the average value of τ(u) 

in CE(j, n). Because (∆x∆t)/2 is the volume of CE(j, n), 
Eq. (2.11) simply states that the total space-time flux 
of h* leaving the boundary of any CE is equal to the 
source  integral over the CE. Because the surface 
integration over any interface separating two 
neighboring CEs is evaluated using the information 
from a single SE, obviously the local conservation 
relation Eq. (2.11) leads to a global flux conservation 
relation, i.e., the total flux of h* leaving the boundary 
of any space-time region that is the union of any 
combination of CEs is equal to the source integral over 
the same space-time region.  

        To justify Eq. (2.8), we shall assume that the 
value of u on a macro scale (that is the value of u 
obtained from an averaging process involving a few 
neighboring CEs) will not vary significantly as a result 
of redistribution of τ over each CE, in which τ is held 
constant. Based on this assumption, we take the liberty 
to redistribute the source term such that there is no 
source present within each SE. Thus with the aid of Eq. 
(2.7), Eq. (2.8) is the result of substituting u = u*(x, t; j, 
n) into Eq. (2.6). 

        Because the boundary of CE(j, n) is a subset of 
the union of SE(j, n), SE(j-1/2, n-1/2) (refer to Fig. 
2.3(d)), Eqs. (2.9-11) imply that  

u j
n – ∆t

2 τ(u j
n ) = 1

2 [(1 – v) u j + 1 / 2
n – 1 / 2 – (1 – v2)(ux

+) j + 1 / 2
n – 1 / 2

+ (1 + v) u j – 1 / 2
n – 1 / 2 + (1 – v2)(ux

+) j – 1 / 2
n – 1 / 2 ]

 

       (2.12) 
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Here, (i) ν ≡ (a∆t ) / ∆x is the Courant number and (ii) 
(ux

+ )j
n ≡ (∆x / 4) (ux )j

n , (j, n) ∈ Ω, is the normalized 
form of (ux )j

n . Given the values of the marching 
variables at the (n - 1/2)th time level,  u j

n   is 
determined by solving Eq. (2.12) with the aid of 
Newton’s iteration method. Note that, in the solver of 
the ZND wave, the initial estimated solution for 
Newton’s iterations is calculated by assuming that the 
source term is zero. After  u j

n  is known, (ux
+ )j

n  is 
evaulated using a oscillation-suppressing procedure, 
which was described fully in [6,7]. Here, only a brief 
account si provided. Let (j, n) ∈ Ω. With the aid of Eq. 
(2.8), we have  

       
u′ j ± 1 / 2

n ≡ u j ± 1 / 2
n – 1 / 2 +

∆t
2 (ut )j ± 1 / 2

n – 1 / 2

≡ u j ± 1 / 2
n – 1 / 2 – 2v (ux

+ )j ± 1 / 2
n – 1 / 2        (2.13) 

  

According to Eq. (2.13), u ′ j ± 1 / 2
n can be interpreted as 

a first-order Taylor’s approximation of u at (j±1/2, n). 
Let  

(ux ±
+ ) j

n ≡ ± (u′ j ± 1 / 2
n – u j

n)

= ± ∆x
4

u′ j ± 1 / 2
n – u j

n

∆x / 2

               (2.14)  

 

where (u′x+
+ )j

n and (u′x–
+ )j

n , aside from a normalized 
factor ∆x/4, are two numerical analogues of ∂u/∂x at (j, 
n) with one being evaluated from the right and the 
other evaluated from the left. Let the function W be 
defined by (i) W(0, 0, α) = 0 and (ii)  

 

W(x–,x+;α)=|x+|αx–+|x–|
αx+

|x+|α+|x–|
α         (2.15)  

 

Then (ux
+ )j

n is calculated using  

 

(ux
+) j

n=W((ux+
+ ) j

n,(ux–
+ ) j

n,α)         (2.16)  

 

By using the procedures described in [6,7], the above 
scheme can be easily extended to become the solver of 
a nonlinear conservation equations with stiff source 
terms in either one-dimensional or multidimensional 
space. In addition to the present work, other CE/SE 
work related to the 1D and 2D problems with stiff 
source terms are presented in [8,9]. 

 

3. THEORETICAL MODEL 

The classical ZND model of the one-dimensional 
detonation waves can be formulated by the Euler 
equations coupled with a species equation:  

    ∂Q
∂t + ∂E

∂x = S            (3.1) 

where Q is the unknown vector, E is the flux vector, 
and S is the source term:  

Q=

ρ
ρ u
ρ E
ρ Y

, E=

ρ u
ρ u2+p

(E+p) u
ρ u Y

, S=
o
o
o
ω

   (3.2) 

The four equations here are respectively the continuity, 
moment, energy, and species equations. In the equation 
set, ρ is density, u is velocity, p is pressure, Y is the 
mass fraction of the reactant, and E= e + Yq + u2/2 is 
the total energy with e as the internal energy and q as 
the heat release. In species equation, a source term 
exists due to a one-step, irreversible chemical reaction, 
modeled by finite-rate kinetics. The source term can be 
expressed as  

 ω = – K exp(�E+/ RT ) ρY            (3.3) 

where K is the pre-exponential factor of the Arrhenius 
kinetics, E+ is the activation energy, and R is the 
universal gas constant.   

To proceed, the above equations are non-
dimensionalized based on the density and the velocity 
of unperturbed reactants, i.e., ρo, uo . The total energy, 
the internal energy, and the specific kinetic energy are 
non-dimensionalized by using Eo,, eo, and uo, 
respectivelly.  In order to keep the equation system 
consistent, we specify that Eo = eo = uo

2 = RTo .  In 
addition, the steady half-reaction zone length is chosen 
as the characteristic length scale l0 , and the time scale 
τ o = lo/uo, where uo is the characteristic velocity of the 
flow field.  

 

4. RESULTS AND DISCUSSIONS 

Figure 4.1 is a schematic of detonation waves. A 
piston supported detonation is traveling from left to 
right and the flow field is composed of:  (i) the 
quiescent state of the reactant before the shock, (ii) a 
von Neumann spike with finite rate reaction, and (iii) 
the equilibrium state between the piston and the spike. 
Two types of detonation calculations are of concern: (1) 
the piston problems, in which the detonation waves are 
initialized by a moving piston into the reactant, and (2) 
the instability problems, in which a steady state ZND 
analytical solution is used as the initial condition with 
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the chosen flow parameters such that the flow field is 
unstable. In both cases, detailed comparisons between 
the analytical solutions and numerical solutions are 
conducted to assess the numerical accuracy of the 
space-time CE/SE method. 

    

 

shock front
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reactants
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reaction 
zoneburned
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Fig. 4.1 A schematic of the ZND detonation wave. 

 

4.1 The Piston Problems  

The initial condition of the present calculation is a long 
tube filled with reactant with a piston on one end 
moving at a constant speed into the quiescent reactant. 
Here, we use the piston face as the origin of the 
coordinate system. According to this coordinate frame, 
reactant is charged into a closed-end tube at a constant 
speed. Thus, a shock wave is reflected on the closed 
end to ignite the reactant.  

The parameters of the flow field in the present 
calculation are set as q = 50, E+ = 50, γ = 1.2, and the 
over drive coefficient equal to 1.8.  According to the 
classical theory for detonation instability, a transient 
but stable detonation wave should be obtained with 
these parameters. In this calculation, 10 mesh nodes 
are used in the half reaction zone. Figure 4.2 shows the 
density distribution at t = 100. The numerical result 
shows a correct shock location as compared to the 
analytical solution 
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Fig. 4.2 Simulated shock propagation as compared to 
the analytical solution.    

          

       For the same calculation, Fig. 4.3 shows detailed 
comparisons of pressure, density, and reactant mass 
fraction profiles of the von Neumann spike. Excellent 
agreement is obtained between the analytical solution 
and the numerical solution by the CE/SE method.   
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Fig. 4.3 Detailed of the von Neumann spike. 



 7

 
0.0 0.2 0.4 0.6 0.8 1.0

Normalized specific volume

N
or

m
al

iz
ed

 p
re

ss
ur

e

=1.2

q=50q=0

CJ

Rayleigh line(f=1.8)

0

20

40

60

80

100

P-v diagram

Hugoniot curve

CE/SE results

shock path

 
Fig. 4.4 The P-V diagram of a steady detonation.  

To further investigate the accuracy of the CE/SE 
method, we shows the comparison between the 
numerical solution and the theoretical solution in the 
classical P-V diagram.  The initial condition is p = v 
=1 at the lower right corner of the plot.  Note that the x 
axis and y axis are in different scales. Across the shock, 
the flow solution jumps to the intersection of the 
Hugoniot curve (q=0) and the Rayleigh line. In the 
figure, the theoretical shock path (denoted by small 
circular symbols) is calculated by the formula provided 
by White [10]. We remark that the intermediate flow 
solution inside the shock is controlled by the artificial 
damping added to the numerical scheme. Nevertheless, 
the numerical solution of p and v by the space-time 
CE/SE method are quite close to the theoretical shock 
path.  In the reaction zone following the shock front, 
the numerical solution coincides with the Rayleigh line. 
In the equilibrium region, where the reaction is 
complete, the numerical solution converges to 
intersection of the Rayleigh line and the Hugoniot 
curve (q=50). Because of the overdriven factor (f=1.8), 
the p–v values in the reaction zone is much higher than 
the C-J point, which is denoted by a square symbol in 
Fig. 4.4. This figure demonstrates that the quality of 
the numerical result is comparable to that of the 
analytical solution.  

        If we lower the overdriven factor to 1.6, the 
detonation wave became unstable and a longitudinal 
wave bouncing between the piston and the shock front 
could be observed. In this calculation, only 5 mesh 
nodes are used in the each half-reaction zone. In Fig. 
4.5, we show the temporal evolution of the pressure 
level at the shock front. The first pressure jump in the  
figure is caused by the start-up process of the pushing 
piston. After the first pressure jump, the flow field 

settles down and the instability waves gradually built 
up. After t ≥ 30, a remarkable instability wave occurs.  
In about 50 time unit, there are about 8 pressure peaks. 
This numerical solution is in excellent agreement with 
the results reported by Fickett and Wood [1].    
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Fig. 4.5 The instability of the shock front of a piston 
problem.  

 

4.2 The Instability Problems 

In addition to the piston problems, we also conducted a 
mesh refinement study for the numerical resolution of 
the longitudinal instabilities of the detonation waves. 
To avoid the complexity of the start-up process of the 
pushing piston, the analytical solution of a stationary 
ZND detonation is used as the initial condition. In this 
case, the spatial coordinate is chosen such that the x 
coordinate of the shock front is zero. The parameters 
of the flow field in the present calculation are set as q 
= 50, E+ = 50, γ = 1.2, and the over drive coefficient 
equal to 1.6.  Figures 4.6 (a), (b), and (c) show the 
temporal evolution of the pressure level of the shock 
front using 5, 10, and 20 grid nodes per half reaction 
zone, respectively.     
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Fig. 4.6 Mesh refinement study. 
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       The wave length of the oscillating pressure of the 
unstable shock front computed using the CE/SE 
method agrees very well with that obtained by 
Bourlioux [2]. Figure 4.7 shows the peak pressures 
obtained by various upwind schemes and the present 
method. In this figure, a relative mesh spacing of w 
corresponds to 10/w points per half-reaction zone.    
Fickett and Wood established that for the above 
mentioned flow parameters the peak pressure is about 
98.6. When fine meshes are used, all methods 
considered converge to that value.  
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Fig. 4.7 Varaition of peak pressure predicted by  
different numerical methods with various mesh 
spacing. 

5. CONCLUDING REMARKS 

The space-time CE/SE method was conceived from a 
global CFD perspective and designed to avoid the 
limitations of the traditional methods. It was built from 
ground zero and with a foundation, which is solid in 
physics and yet mathematically simple enough that one 
can built from it a coherent, robust, and accurate CFD 
numerical framework.  

         In the present paper, the space-time CE/SE 
method has been extended and applied to solve the 
stable and unstable detonation waves. Detailed 
comparison between the analytical solution and the 
numerical solution has been conducted to assess the 
accuracy of the CE/SE method. Excellent numerical 
solution for unstable detonations can be obtained by 
using only 5 mesh nodes per half reaction zone.   
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