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In this work, we study the convergence behavior of a recently developed space-time conservation element
and solution element method for solving conservation laws. In particular, we apply the method to a one-
dimensional time-dependent convection-diffusion equation possibly with high Peclet number. We prove that
the scheme converges and we obtain an error bound. This method performs well even for strong convection
dominance over diffusion with good long-time accuracy. Numerical simulations are performed to verify the
results. c© 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 64–78, 2001
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I. INTRODUCTION

In this article, we study the convergent behavior of a recently developed numerical method: the
space-time conservation element and solution element method (the space-time CESE). This new
method is proposed in [1] for conservation laws and has substantial differences in both concept and
methodology from well-known methods for solving conservation laws, such as finite difference,
finite volume, and finite element methods.

Mathematically, conservation laws are represented by a set of integral equations. The differ-
ential form of these laws is obtained from the integral form with the assumption that the physical
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solution is smooth. But, for a physical solution in a region of rapid change, this smoothness as-
sumption may be difficult to realize. Thus, a method designed to obtain numerical solutions to
the differential form without enforcing flux conservation may be at a fundamental disadvantage
in modeling many physical phenomena, especially when obtaining accurate solutions for local
and long-time behaviors. By contrast, the space-time CESE method was developed to enforce
flux-conservation locally and globally in space and time. It always retains the basic physical
reality of flux conservation, even in a region involving discontinuities. In summary, the space-
time CESE method has the following major advantages. First, it enforces both local and global
flux conservation in space and time. Second, space and time are unified and are treated on the
same footing. Third, dependent variables and their derivatives are solved simultaneously with
comparable accuracy.

The goal of this article is to conduct convergence and error bound analysis for this method.
To our best knowledge, this work is the first approach in this direction. In order to provide
a clear description of the method and conduct our study without involving too many technical
difficulties, we carry out our study by applying the space-time CESE method to the following one-
dimensional time-dependent convection-diffusion equation with possible convection dominance
over diffusion:

∂u

∂t
+ a

∂u

∂x
− µ

∂2u

∂x2 = 0. (1.1)

As shown in the next section, the a−µ scheme thus obtained is explicit and has two independent
marching variables. It has the unusual property that its stability condition is independent of the
diffusion coefficient µ, and there are no more mesh requirements other than the stability condition
for convergence. We prove that this scheme is convergent, and that the global error for the solution
in L2 norm of space is of order ∆x.

Most related works can be found in [1] and [2]. In [1], the a − µ scheme is derived and
its stability is discussed. In both [1] and [2], the space-time CESE method is extended to other
equations, such as the 1D time-dependent Navier–Stokes equations of a perfect gas, and the 1D
convection-diffusion equation of nonconstant velocity and viscosity coefficients. There is not
much mathematical study to the method in [1] or [2]; that is what this article is for. The order
of the article is organized as following. In Section II, we describe the a − µ scheme. In Section
III, we prove its convergence and derive an error bound. Numerical simulations are performed in
Section IV.

II. A − µ SCHEME

In this section, we apply the space-time CESE method proposed in [1] to the following Cauchy
problem of one-dimensional convection-diffusion equation:

∂u

∂t
+ a

∂u

∂x
− µ

∂2u

∂x2 = 0, 0 < t < T, u(x, 0) = u0(x), (2.1)

where a is the convection velocity, µ > 0 is the diffusion coefficient, both are assumed to be
constants, and T is a positive constant representing the simulation ending time.

Let x1 = x, x2 = t be considered as the coordinates in the half-plane of a two-dimensional
Euclidean space R2

+ = {(x, t) : −∞ < x < ∞, 0 ≤ t < ∞}. Using the Gauss divergence
theorem in R2

+, Eq. (2.1) can be written as the differential form of the following conservation
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law: ∫
S(V )

~h · ~ds = 0. (2.2)

Here S(V ) is the boundary of an arbitrary space-time region V in R2
+,~h = (au − µ∂u

∂x , u) is

a current density vector in R2
+, ~ds = dσ~n with dσ and ~n being, respectively, the area and the

outward unit normal of a surface element on S(V ).
We use ∆x to represent the space grid size, ∆t the time grid size, and (xj , t

n) a particular grid
point, where

xj = j∆x,−∞ < j < +∞, tn = n∆t, n ≥ 0, (2.3)

see Fig. 1. We denote by SE(j, n) the interior of a space-time region bounded by a dashed curve
and call it a solution element at grid point (xj , t

n); see Fig. 2(A). For our discussion, the exact size
of this region does not matter. For any (x, t) ∈ SE(j, n), we use U(x, t; j, n) and ~H(x, t; j, n)
to approximate u(x, t) and ~h(x, t):

U(x, t; j, n) = Un
j + (Ux)n

j (x − xj) + (Ut)n
j (t − tn), (x, t) ∈ SE(j, n), (2.4)

where Un
j , (Ux)n

j , and (Ut)n
j are independent constants in SE(j, n), which approximate u(xj , t

n),
ux(xj , t

n), and ut(xj , t
n), respectively. We require U(x, t; j, n) to satisfy (2.1) within SE(j, n),

this implies that

(Ut)n
j = −a(Ux)n

j . (2.5)

Therefore,

U(x, t; j, n) = Un
j + (Ux)n

j ((x − xj) − a(t − tn)), (x, t) ∈ SE(j, n). (2.6)

We also define

~H(x, t; j, n) = (aU(x, t; j, n) − µUx(x, t; j, n), U(x, t; j, n)). (2.7)

FIG. 1. Staggered grids at full and half steps.
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FIG. 2. Solution elements and conservation elements.

Let R2
+ be divided into nonoverlapping rectangular regions referred to as conservation elements

(CE). The CE with its top-right vertex being the mesh point (j, n) ∈ Ω is denoted by CE−(j, n);
see Fig. 2(B), and the CE whose top-left vertex is the mesh point (j, n) is denoted by CE+(j, n);
see Fig. 2(C). Similarly CE+(j −1/2, n+1/2) is illustrated in Fig. 2(D) and CE−(j +1/2, n+
1/2) is illustrated in Fig. 2(E). We approximate (2.2) by

F+(j, n) =
∫

S(CE+(j,n))

~H · ~ds = 0, F−(j, n) =
∫

S(CE−(j,n))

~H · ~ds = 0. (2.8)

Because each S(CE±(j, n)) is a simple closed curve in R2
+, the surface integral in (2.8) can be

converted to a line integral. Let

~G = (−U, aU − µUx), ~dr = (dx, dt). (2.9)

Then

~H · ~ds = ±~G · ~dr. (2.10)

Therefore,

F+(j, n) =
∫

S(CE+(j,n))

~G · ~dr, F−(j, n) =
∫

S(CE−(j,n))

~G · ~dr, (2.11)

with the understanding that the integral is evaluated in the counterclockwise direction. By evalu-
ating (2.11), we have that

4
(∆x)2

F±(j, n) = ±1
2
[(1 − τ2 + δ)(Ux)n

j + (1 − τ2 − δ)(Ux)n−1/2
j±1/2 ]

+
2(1 ± τ)

∆x
(Un

j − U
n−1/2
j±1/2 ), (2.12)

where

τ =
a∆t

∆x
, δ =

4µ∆t

∆x2 . (2.13)

If we define

~q(j, n) =
(

Un
j

∆x
4 (Ux)n

j

)
, (2.14)

then solving the two equations:

4
(∆x)2

F+(j, n) = 0,
4

(∆x)2
F−(j, n) = 0, (2.15)
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leads to the a − µ scheme:

~q(j, n) = Q2
+~q(j − 1, n − 1) + (Q+Q− + Q−Q+)~q(j, n − 1) + Q2

−~q(j + 1, n − 1), (2.16)

where

Q+ =
1
2

(
1 + τ 1 − τ2 − δ

−(1−τ2)
1−τ2+δ − (1−τ)(1−τ2−δ)

1−τ2+δ

)
, Q− =

1
2

(
1 − τ −(1 − τ2 − δ)
1−τ2

1−τ2+δ − (1+τ)(1−τ2−δ)
1−τ2+δ

)
. (2.17)

This scheme is explicit and has two independent marching variables Un
j and ∆x

4 (Ux)n
j . We take

the following initial data for (2.16):

U0
j = u0(xj), (Ux)0j =

∂u0(xj)
∂x

. (2.18)

III. CONVERGENCE AND ERROR BOUND ANALYSIS

In this section, we show that the a − µ scheme (2.16) converges and we derive its exact rate of
convergence (error bound). We first give the following stability result.

Lemma 3.1. The a − µ scheme (2.16) is stable if and only if

1 − τ2 + δ 6= 0, τ2 < 1. (3.1)

Proof. The proof follows from a standard Von Neumann analysis. For details, please
see [1].

To provide the convergence and error bound results, we start by introducing some notations. If

W = (· · · , ~W−1, ~W0, ~W1, · · ·) = ( ~Wj)+∞
−∞, (3.2)

where each ~Wj is a vector, we define

‖W‖2
2 =

+∞∑
j=−∞

‖ ~Wj‖2
2∆x, (3.3)

where ‖ ~Wj‖2 represents the standard L2-norm for a vector. We define the local truncation error
of (2.16) as

εn == (~ε(j, n))j=+∞
j=−∞ =

(
ε1(j, n)
ε2(j, n)

)j=+∞

j=−∞
, n ≥ 0, (3.4)

where

ε1(j, n) = u(xj , t
n) −

[
Q2

+

(
u(xj−1, t

n)
∆x
4 ux(xj−1, t

n)

)
+ Q2

−1

(
u(xj+1, t

n)
∆x
4 ux(xj+1, t

n)

)

+ (Q+Q− + Q−Q+)
(

u(xj , t
n)

∆x
4 ux(xj , t

n)

)]
1
, (3.5)

ε2(j, n) =
∆x

4
ux(xj , t

n) −
[
Q2

+

(
u(xj−1, t

n)
∆x
4 ux(xj−1, t

n)

)
+ Q2

−

(
u(xj+1, t

n)
∆x
4 ux(xj+1, t

n)

)
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+ (Q+Q− + Q−Q+)
(

u(xj , t
n)

∆x
4 ux(xj , t

n)

)]
2
, (3.6)

[
ξ
ζ

]
1

= ξ,

[
ξ
ζ

]
2

= ζ, (3.7)

and u(x, t) is the exact solution of (2.1). We now have the following results.

Lemma 3.2. Let u(x, t) be the exact solution of (2.1), and we assume that u(x, t) is sufficiently
regular. Then for any n and j, we have

ε1(j, n) = ∆t

{
1
2

(uxx(xj , t
n) − a2utt(xj , t

n))∆t

+
a

6

[
uxxx(xj , t

n)∆x2 − 3
4
uxxxx(xj , t

n)
(1 − τ2 − δ)(∆x2 − a2∆t2)

1 − τ2 + δ
∆t

]

+ C1(∆t3 + ∆x4)
}

, (3.8)

ε2(j, n) =
4δ(1 − τ2)

(1 − τ2 + δ)2
∆x

{
(1 − τ2 + δ)2

16µ(1 − τ2)
∆x2uxt(xj , t

n)

− a(1 − τ2 − δ)2

16µ(1 − τ)2
∆x2uxxx(xj , t

n)

+
a(1 − τ2)

8µ
∆x2uxx(xj , t

n) +
(1 − τ2 + δ)2

4δ(1 − τ2)
∆t2

+ C1

(
1 +

τ

δ
(1 − τ2)

)(
1 +

1 − τ2 − δ

1 + τ

)
∆x2

+ C2

(
1 − τ

δ
(1 − τ2)

)(
1 +

1 − τ2 − δ

1 − τ

)
∆x2

}
, (3.9)

where C1, C2 are constants involving higher-order derivatives of u(x, t) evaluated at some point
near (xj , t

n), but independent of the grid size and coefficients.
Proof. (3.8) and (3.9) can be obtained by the standard Taylor expansion under the assumption

that u(x, t) is sufficiently smooth. The proof is quite tedious and technical, and thus is omitted
here.

Next, we derive an error bound. Define the error vector between the exact solutions and
approximate solutions at time level tn as

En = (· · · , ~E(−1, n), ~E(0, n), ~E(1, n), · · ·) = ( ~E(j, n))j=+∞
j=−∞, (3.10)

where

~E(j, n) =
(

u(xj , t
n) − Un

j
∆x
4 [ux(xj , t

n) − (Ux)n
j ]

)
. (3.11)



70 YANG, YU, AND ZHAO

By combining (2.16), (3.5), and (3.6), we get

~E(j, n) = Q2
+

~E(j − 1, n − 1) + Q2
− ~E(j + 1, n − 1)

+(Q+Q− + Q−Q+) ~E(j, n − 1) + ~ε(j, n). (3.12)

The following theorem gives the error bound result.

Theorem 3.1. Let T be a fixed time, and u(x, t) be the exact solution of (2.1), which is assumed
to be sufficiently regular. Then for any tn ≤ T, the a−µ scheme (2.16) is convergent, if the stability
condition (3.1) is satisfied, and

‖En‖2 =


 +∞∑

j=−∞
‖ ~E(xj , t

n)‖2
2∆x




1/2

=


 +∞∑

j=−∞

[
(u(xj , t

n) − Un
j )2 +

(
∆x

4
(ux(xj , t

n) − (Ux)n
j )
)2
]

∆x




1/2

≤ C∗T max(τ, aτ, )∆x, (3.13)

where

C∗2 = ‖g(x, 0)‖L1(R1) + ∆x‖gx(x, 0)‖L1(R1) + ∆x‖gxt(x, t)‖L1(R1×(0,T ))

+ ‖gt(x, t)‖L1(R1×(0,T )), (3.14)

and

g(x, t) =
K∑

k=1

∑
0≤αk≤K

Cαk

(
∂ku(x, t)

∂xαk∂tk−αk

)2

, (3.15)

where Cαk
represents bounded positive constant independent of τ, δ, and K is a fixed positive

integer. Since u(x, t) is assumed to be sufficiently regular, C∗ is a bounded, positive constant.

Proof. We first define a Fourier transform Ên(θ) of En. For θ ∈ (−π, π], we define

Ên(θ) =
1√
2π

+∞∑
j=−∞

e−ijθ ~E(j, n)

=

(
Ên

1 (θ)

Ên
2 (θ)

)

=

(
1√
2π

∑+∞
j=−∞ e−ijθ(u(xj , t

n) − Un
j )

1√
2π

∑+∞
j=−∞ e−ijθ ∆x

4 (ux(xj , t
n) − (Ux)n

j )

)
, (3.16)

where i =
√−1. Then

Ên(θ) =
1√
2π

+∞∑
j=−∞

e−ijθ(Q2
+

~E(j − 1, n − 1)

+ Q2
− ~E(j + 1, n − 1) + (Q+Q− + Q−Q+) ~E(j, n − 1) + ~ε(j, n))
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= Q(θ)2Ên−1(θ) +
1√
2π

+∞∑
j=−∞

e−ijθ~ε(j, n)

= Q(θ)2Ên−1(θ) + ε̂n(θ), (3.17)

where

Q(θ) = e−i(θ/2)Q+ + ei(θ/2)Q−

=

(
cos θ

2 − iτ sin θ
2 −i(1 − τ2 − δ) sin θ

2

i (1−τ2) sin θ
2

1−τ2+θ − 1−τ2+δ
1−τ2+δ

(
cos θ

2 + iτ sin θ
2

)
)

(3.18)

and

ε̂n(θ) =
1√
2π

+∞∑
j=−∞

e−ijθ~ε(j, n)

=

(
ε̂n
1 (θ)

ε̂n
2 (θ)

)
=

(
1√
2π

∑+∞
j=−∞ e−ijθε1(j, n)

1√
2π

∑+∞
j=−∞ e−ijθε2(j, n)

)
. (3.19)

From (3.17), we have that

Ên(θ) = Q(θ)2Ên−1(θ) + ε̂n(θ)
= Q(θ)4Ên−2(θ) + Q(θ)2ε̂n−1(θ) + ε̂n(θ)
= · · ·
= (Q(θ))2nÊ0(θ) +

n∑
l=1

(Q(θ))n−lε̂l(θ). (3.20)

Clearly,

Ê0(θ) = ~0. (3.21)

Thus, we have that

Ên(θ) =
n∑

l=1

(Q(θ)2)n−lε̂l(θ). (3.22)

It is proved in [1] that, as long as the stability condition (3.1) is satisfied, then

‖Q(θ)‖2 ≤ 1.

‖Q(θ)‖2 represents the matrix-2 norm ofQ(θ). By using the fact that‖En‖2 = ‖Ên(θ)‖L2(−π,+π)
(see [3]), we have that

‖En‖2 = ‖Ên(θ)‖L2(−π,π) =

∥∥∥∥∥
n∑

l=1

(Q(θ)2)n−lε̂l(θ)

∥∥∥∥∥
L2(−π,π)

≤
n∑

l=1

‖Q(θ)2(n−l)‖2‖ε̂l(θ)‖L2(−π,π) =
n∑

l=1

‖Q(θ)‖2(n−l)
2 ‖ε̂l(θ)‖L2(−π,π)

=
n∑

l=1

‖εl‖2∆x1/2
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=
n∑

l=1


 +∞∑

j=−∞
|ε1(j, l)|2 + |ε2(j, l)|2∆x




1/2

.

[by using the results of (3.8) and (3.9)]

≤
(

a∆t2 + a∆x2∆t + a2∆t2 +
δ

µ
∆x3 +

aδ

µ
∆x3 +

δ

µ
∆x3 + ∆x∆t

)

×
n∑

l=1


 +∞∑

j=−∞

K∑
k=1

∑
0≤αk≤k

Cαk

(
∂uk

∂xαk∂tk−αk
(x′

j , t
n′

)
)2

∆x




1/2

, (3.23)

where
+∞∑

j=−∞

K∑
k=1

∑
0≤αk≤k

Cαk

(
∂uk

∂xαk∂tk−αk
(x′

j , t
n′

)
)2

∆x =
+∞∑

j=−∞
g(x′

j , t
n′

)∆x. (3.24)

In Appendix A, we prove that

+∞∑
j=−∞

g(x′
j , t

n′
)∆x ≤ C∗2. (3.25)

So, we get from (3.23) that

‖En‖2 ≤ C∗n
(

a∆t2 + a∆x2∆t + a2∆t2 +
δ

µ
∆x3 + ∆x∆t

)

≤ C∗T
1

∆t

(
a∆t2 + a∆x2∆t + a2∆t2 +

δ

µ
∆x3 + ∆x∆t

)
. (3.26)

If we use the definition

τ =
a∆t

∆x
, δ =

4µ∆t

∆x2 ,

and plug them into (3.26), then (3.13) follows.

Remark 3.1. As described in Lemma 3.1, the a−µ scheme is not sensitive to µ. Our numerical
results confirm this.

Remark 3.2. Theorem 3.2 shows several unusual features regarding the convergent behavior
of a − µ scheme:

I) Other than the stability condition for ∆x,∆t, there are no further requirements for ∆x or
∆t regarding the convergence of a − µ scheme.

II) The error bound or convergence rate does not depend on µ. This is confirmed by our
numerical experiments.

III) The error bound depends on T. But unlike standard schemes for time-dependent cases,
which involve a factor of eT , the dependence is linear.

IV) As required by the stability result, τ satisfies 0 < τ < 1, so the factor max(τ, aτ) in (3.13)
is really bounded by max(a, 1), which is a fixed constant.

Remark 3.3. Theorem 3.2 indicates that the global convergence rate for the solution in the L2

space norm is of order ∆x, but we cannot conclude any global convergence rate for its derivative.
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TABLE I. Relative errors between exact solution and numerical solution for Example 4.1 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 1.5.

µ = 1 µ = 10−2 µ = 10−4

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 4.92e-05 3.37e-05 4.15e-05 2.62e-04 4.33e-05 2.58e-04
0.02 1.21e-05 8.17e-06 1.03e-05 5.64e-05 1.07e-05 6.06e-05
0.01 3.02e-06 2.03e-06 2.57e-06 1.40e-05 2.68e-06 1.51e-05
0.005 7.51e-07 5.05e-07 6.41e-07 3.39e-06 6.68e-07 3.65e-06

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments are conducted to support our results in previous sections.
In particular, we want to show numerically that the method performs well for small and large
Peclet numbers and for short and long simulation time as mentioned in Remark 3.2.

In the following experiments, we show relative errors between the exact solution and numerical
solution in the L∞(0, T ;L2[b, d]) norm:

solution error =
max0≤tn≤T

(∫ d

b
|u(tn, x) − Un(x)|2dx

)1/2

max0≤tn≤T

(∫ d

b
|u(tn, x)|2dx

)1/2 , (4.1)

derivative error =
max0≤tn≤T

(∫ d

b

∣∣∣∂u(tn,x)
∂x − Un

x (x)
∣∣∣2 dx

)1/2

max0≤tn≤T

(∫ d

b

∣∣∣∂u(tn,x)
∂x

∣∣∣2 dx

)1/2 , (4.2)

where the integration in space is evaluated by the composite trapezoidal rule, and Un, Un
x are,

respectively, the approximate solution and its derivative at tn.

Example 4.1. Find u satisfying

∂u

∂t
+ a

∂u

∂x
− µ

∂u2

∂x2 = f(x, t), (x, t) ∈ (b, d) × (0, T ], (4.3)

u(b, t) = g0,
∂u

∂x
(d, t) = g1, t ∈ [0, T ], (4.4)

TABLE II. Relative errors between exact solution and numerical solution for Example 4.1 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 1.5.

µ = 10−6 µ = 10−10 µ = 10−15

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 4.34e-05 1.25e-04 4.34e-05 1.25e-04 4.34e-05 1.25e-04
0.02 1.07e-05 3.08e-05 1.07e-05 3.05e-05 1.07e-05 3.05e-05
0.01 2.68e-06 8.85e-06 2.68e-06 7.60e-06 2.68e-06 7.60e-06
0.005 6.68e-07 3.11e-06 6.68e-07 1.89e-06 6.68e-07 1.89e-06
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TABLE III. Relative errors between exact solution and numerical solution for Example 4.1 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 1.5.

µ = 10−20 µ = 10−50 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 4.34e-05 1.25e-04 4.34e-05 1.25e-04 4.34e-05 1.25e-04
0.02 1.07e-05 3.05e-05 1.07e-05 3.05e-05 1.07e-05 3.05e-05
0.01 2.68e-06 7.60e-06 2.68e-06 7.60e-06 2.68e-06 7.60e-06
0.005 6.68e-07 1.89e-06 6.68e-07 1.89e-06 6.68e-07 1.89e-06

TABLE IV. Relative errors between exact solution and numerical solution for Example 4.1 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 6.0.

µ = 1 µ = 10−6 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 4.83e-05 4.02e-05 6.59e-05 1.08e-04 6.59e-05 1.08e-04
0.02 1.20e-05 1.00e-05 1.64e-05 2.70e-05 1.64e-05 2.68e-05
0.01 3.00e-06 2.50e-06 4.11e-06 1.00e-05 4.11e-06 6.70e-06
0.005 7.50e-07 6.26e-07 1.03e-06 4.14e-06 1.03e-06 1.67e-06

u(x, 0) = u0(x), x ∈ [b, d], (4.5)

where [b, d] = [0, 1], a = 1, and the source function f(x, t) and boundary values g0 and g1 are
chosen such that the exact solution is u(x, t) = sin(x+ t). Many values for the ending simulation
time T and for the diffusion coefficient µ are given in the numerical results.

Tables I–III and IV–VI show the errors in the solution and its derivative for various simulation
ending times, T = 1.5, T = 6.0, T = 12.0, and T = 24.0 for Example 4.1. Note that the orders
of convergence are consistent with our theorem. We do not observe any indication from the results
that the accuracy deteriorates with the Peclet number and time; this is also consistent with our
results.

When the convergence condition is violated, for example, when a∆t/∆x = 1, the convergence
can be unpredictable, see Tables VII and VIII. The conclusion is, when the convergence condition
is violated, the accuracy can still be good for convection-equal-to-diffusion problems, but can be
arbitrarily bad for convection-dominated-diffusion problems.

TABLE V. Relative errors between exact solution and numerical solution for Example 4.1 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 12.0.

µ = 1 µ = 10−6 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 4.80e-05 4.01e-05 6.58e-05 1.08e-04 6.58e-05 1.08e-04
0.02 1.20e-05 1.00e-05 1.64e-05 2.70e-05 1.64e-05 2.68e-05
0.01 3.00e-06 2.50e-06 4.11e-06 9.96e-06 4.11e-06 6.69e-06
0.005 7.50e-07 6.26e-07 1.03e-06 4.14e-06 1.03e-06 1.67e-06
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TABLE VI. Relative errors between exact solution and numerical solution for Example 4.1 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 24.0.

µ = 1 µ = 10−6 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 4.80e-05 4.01e-05 6.58e-05 1.08e-04 6.58e-05 1.08e-04
0.02 1.20e-05 1.00e-05 1.64e-05 2.70e-05 1.64e-05 2.68e-05
0.01 3.00e-06 2.50e-06 4.11e-06 9.96e-06 4.11e-06 6.69e-06
0.005 7.50e-07 6.26e-07 1.03e-06 4.13e-06 1.03e-06 1.67e-06

TABLE VII. Relative errors between exact solution and numerical solution for Example 4.1 with different
diffusion coefficients. The temporal grid size ∆t = ∆x, which violates the convergence condition and leads
to unpredictable results for the derivative. Simulation ends at T = 1.5.

µ = 1 µ = 10−4 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 5.86e-05 4.07e-05 1.72e+16 5.64e+19 1.35e-05 7.60e+12
0.02 1.43e-05 9.83e-06 9.18e-06 5.71e-02 1.60e-05 3.46e+12
0.01 3.58e-06 2.44e-06 2.29e-06 1.42e-02 7.78e-07 7.09e+11
0.005 8.95e-07 6.10e-07 5.74e-07 3.54e-03 3.73e-06 7.32e+12

Example 4.2. Find u satisfying

∂u

∂t
+ a

∂u

∂x
− µ

∂u2

∂x2 = f(x, t), (x, t) ∈ (b, d) × (0, T ], (4.6)

u(b, t) = g0,
∂u

∂x
(d, t) = g1, t ∈ [0, T ], (4.7)

u(x, 0) = u0(x), x ∈ [b, d], (4.8)

where [b, d] = [0, 1], a = 1, and the source function f(x, t) and boundary values g0 and g1 are
chosen such that the exact solution is u(x, t) = ex+t. Many values for the ending simulation time
T and for the diffusion coefficient µ are given in the numerical results.

Numerical results for Example 4.2 are shown in Tables IX–XII for simulation ending times
at T = 1, T = 10, T = 100, and T = 300, and Peclet numbers 1, 106, and 10100, respectively.
Clearly the accuracy does not show any deterioration with respect to time. It seems that there

TABLE VIII. Relative errors between exact solution and numerical solution for Example 4.1 with different
diffusion coefficients. The temporal grid size ∆t = 1.5∆x, which violates the convergence condition and
leads to unpredictable results. Simulation ends at T = 5.0.

µ = 1 µ = 10−4 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 1.32e-04 1.36e-04 9.77e+61 8.82e+63 1.56e+61 1.38e+63
0.02 3.31e-05 3.41e-05 9.39e+132 1.72e+135 4.84e+129 8.60e+131
0.01 3.02e-05 3.57e-05 Infinity Infinity Infinity Infinity
0.005 7.55e-06 8.92e-06 Infinity Infinity Infinity Infinity
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TABLE IX. Relative errors between exact solution and numerical solution for Example 4.2 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 1.0.

µ = 1 µ = 10−6 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 2.04e-05 1.29e-05 4.42e-05 5.63e-05 4.42e-05 4.56e-05
0.02 5.10e-06 3.14e-06 1.09e-05 1.77e-05 1.09e-05 1.12e-05
0.01 1.27e-06 7.77e-07 2.69e-06 7.27e-06 2.69e-06 2.78e-06
0.005 3.18e-07 1.94e-07 6.73e-07 3.27e-06 6.73e-07 6.94e-07

TABLE X. Relative errors between exact solution and numerical solution for Example 4.2 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 10.0.

µ = 1 µ = 10−6 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 1.85e-05 1.29e-05 4.32e-05 2.26e-05 4.32e-05 1.59e-05
0.02 4.63e-06 3.22e-06 1.08e-05 1.02e-05 1.08e-05 3.96e-06
0.01 1.16e-06 8.06e-07 2.69e-06 6.10e-06 2.69e-06 9.90e-07
0.005 2.89e-07 2.01e-07 6.73e-07 3.14e-06 6.73e-07 2.48e-07

is a slight deterioration in accuracy when the diffusion coefficient is decreased from 1 to 10−6.
However, when the diffusion coefficient is further decreased from 10−6 to 10−100, the accuracy
remains the same. Besides, the solution and its derivative are approximated at the same time
with about the same accuracy. As for Example 4.1, the accuracy remains the same when the
simulation ending time T is increased. This implies good long-time behavior of the numerical
solution obtained by the space-time CESE scheme.

TABLE XI. Relative errors between exact solution and numerical solution for Example 4.2 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 100.0.

µ = 1 µ = 10−6 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 1.85e-05 1.29e-05 4.31e-05 2.23e-05 4.31e-05 1.58e-05
0.02 4.63e-06 3.22e-06 1.08e-05 1.01e-05 1.08e-05 3.96e-06
0.01 1.16e-06 8.05e-07 2.69e-06 6.09e-06 2.69e-06 9.90e-07
0.005 2.89e-07 2.01e-07 6.73e-07 3.13e-06 6.73e-07 2.47e-07

TABLE XII. Relative errors between exact solution and numerical solution for Example 4.2 with different
diffusion coefficients. The temporal grid size ∆t = 0.9∆x. Simulation ends at T = 300.0.

µ = 1 µ = 10−6 µ = 10−100

∆x Solution Derivative Solution Derivative Solution Derivative

0.04 1.85e-05 1.29e-05 4.31e-05 2.22e-05 4.31e-05 1.58e-05
0.02 4.63e-06 3.22e-06 1.08e-05 1.01e-05 1.08e-05 3.96e-06
0.01 1.16e-06 8.05e-07 2.69e-06 6.09e-06 2.69e-06 9.90e-07
0.005 2.89e-07 2.01e-07 6.73e-07 3.13e-06 6.73e-07 2.47e-07
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APPENDIX A

In this appendix, we prove Eq. (3.25), which is

+∞∑
j=−∞

g(x′
j , t

n′
)∆x ≤ C∗, (A1)

where x′
j is some point in (xj−1, xj ], tn

′
is some point in (tn−1, tn]. C∗ is a positive constant

defined in (3.14). Notice that g(x, t) is a sufficiently regular and positive function.
Proof. We start with

+∞∑
j=−∞

g(x′
j , t

n′
)∆x −

∫ +∞

−∞
g(x, 0) dx = I + II, (A2)

where

I =
+∞∑

j=−∞
g(x′

j , t
n′

) ∆x −
+∞∑

j=−∞
g(x′

j , 0)∆x; (A3)

II =
+∞∑

j=−∞
g(x′

j , 0)∆x −
∫ +∞

−∞
g(x, 0) dx

=
+∞∑

j=−∞

∫ xj+1

xj

(g(x′
j , 0) − g(x, 0)) dx. (A4)

Then

I =
+∞∑

j=−∞

∫ tn′

0
gt(x′

j , t) dt ∆x

=
+∞∑

j=−∞

∫ xj+1

xj

∫ tn′

0
(gt(x′

j , t) − gt(x, t)) dt dx +
+∞∑

j=−∞

∫ xj+1

xj

∫ tn′

0
gt(x, t) dxdt

=
+∞∑

j=−∞

∫ xj+1

xj

∫ tn′

0

∫ x′
j

x

gxt(w, t) dw dx dt +
+∞∑

j=−∞

∫ xj+1

xj

∫ tn′

0
gt(x, t) dx dt. (A5)

So

|I| ≤ ∆x

+∞∑
j=−∞

∫ xj+1

xj

∫ T

0
|gxt(x, t)| dx dt +

+∞∑
j=−∞

∫ xj+1

xj

∫ T

0
|gt(x, t)| dx dt

= ∆x‖gxt‖L1(R1×[0,T ]) + ‖gt‖L1(R1×[0,T ]). (A6)

We now estimate II:

|II| =

∣∣∣∣∣∣
+∞∑

j=−∞

∫ xj+1

xj

∫ x′
j

x

gx(w, 0) dw dx

∣∣∣∣∣∣
≤ ∆x

+∞∑
j=−∞

∫ xj+1

xj

|gx(w, 0)| dw = ∆x‖gx(x, 0)‖L1(R). (A7)
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Equation (3.25) follows from (A.6) and (A.7).
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