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The solution procedure of the unsteady Euler equations by various combinations of Runge-Kutta (RK) methods
and compact difference (CD) schemes is investigated, Fourier analysis is performed on the fully discretized equation
to assess the numerical accuracy and stability. The results clearly show a significant improvement of numerical
characteristics by using the fourth-order CD scheme compared to the second-order one. Further increase of the
order of the spatial differencing, however, results in little improvement. For time marching, the fourth-order RK
scheme enlarges the time step for stable calculation as compared to a third-order one. Four numerical examples
are included: acoustic waves in a converging nozzle, shocked sound waves in a straight tube, a single vortex in
a uniform flow, and a vortex pairing. The fourth-order RK method combined with fourth- and sixth-order CD

schemes shows erisp resolution of unsteady flow structures.

Nomenclature
A = acoustic admiltance
a = cross-sectional area
é = speed of sound
¢* = speed of sound at a choked nozzle throat
E = inviscid flux
E; = inviscid fiux in i direction
F = CFL number
g = amplification factor
H = sopurce term vector of the flow equations
k = boundary condition vector
k = nondimensionalized wave number
M = Mach number
P = amplitude of pressure wave
p = pressure
p = pressure of base flow
p' = pressure fluctuation of a wave
0 = flow variable vector
R = inhomogeneous term in the RK scheme
r = radial coordinate
t = lime coordinate
U =amplitude of velocily wave
u = velocity in x direction
i =velocity of base flow in x direction
#" = velocity fluctuation in x direction
v = velocity of base flow in y direction
v = velocity fluctuation in y direction
x = streamwise coordinate
Z = Fourier symbol of the discretized convective term
z = nondimensionalized distance
« = artificial dispersion
@& = nondimensional artificial dispersion
B =normalized frequency
y = specific heat ratio
& = spatial difference operator
n = coefficient of added artificial damping
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= phase angle of the acoustic admittance
= prescribed value of boundary condition
= density

= nondimensionalized time
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I. Introduction

OR unsteady flows, the phase velocities and harmonic content

of numerical results are of concern. As a resull of the dis-
cretization procedure, however, the simulated waves propagate in
a dispersive and dissipative numerical medium. Consequently, the
numerical characteristics of the scheme employed. such as the dis-
persive relation and the associated artificial damping, may greatly
impact the numerical accuracy.

Recent development of lime-accurate solutions of flowfields re-
lated to aeroacoustics has rekindled the use of high-order compact
difference (CD) schemes. According to Colatz,' the CD scheme is
Hermite's generalization of Taylor’s series. As a contrast to the con-
ventional central difference schemes, the CD methods use less grid
nodes for high-order discretization, In the past, due to this unique ad-
vantage, many researchers used the CD schemes in solving various
flow problems. Hirsh® employed a fourth-order CD to solve bound-
ary layers and driven cavity flows. Agarwal® used the fourth-order
CD 1o solve the Navier-Stokes equations for driven cavity flows.
Harten and Tal-Ezer* studied the conservation property of the CD
scheme for shock capturing. Philips and Rose’ used various CD
methods to solve the shock tube problem. Ciment and Leventhal®
used the CD scheme for two-dimensional wave propagation.

Morerecently, Lele” applied the CD methods to simulate flowfield
related to aeroacoustics. In his paper, CD schemes up to the 10th or-
der were tabulated and Fourier analysis of a semidiscretized equation
was performed. Since the time derivative was kept in an analytical
form, Lele’s analysis showed only the difference of CD schemes.
Numerical characteristics of the Runge-Kutta (RK) time marching
methods combined with CD schemes are still largely unclear. As a
result, Lele solved the Navier—Stokes equations to simulate waves in
flows and resorted to physical viscous terms for numerical stability.
In addition, given a long list of CD schemes at high orders, it was
unclear which one should be adopted for reasonable simulations.

In the present paper, we solve the quasi-one-dimensional and two-
dimensional Euler equations by the RK methods for time marching
and CD schemes for the spatial discretization. Fourier analysis is per-
tormed on the fully discretized equation to assess the numerical char-
acteristics of various combinations of RK methods and CD schemes.
Specifically, third- and fourth-order RK methods are considered for
time marching. For spatial differencing, a conventional second-order
central differencing (CD2), a fourth-order Pade’s method (CD4),
and a sixth-order CD scheme (CD6) are considered. This work is
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intended to assess the overall performance of the RK-CD methods.
As a result, the Courant-Friedrichs-Lewy (CFL) number limit, the
numerical dispersion relation, and the required artificial damping
for a stable and accurate solution are provided. The findings from
the analysis are then supported by numerical examples.

In Sec. 11, the numerical schemes of concern are presented in de-
tail. Since we are interested in time-accurate fiow solutions, the crite-
ria for three- and four-step RK methods to be third- and fourth-order
time accurate are briefly discussed. Section III illustrates Fourier
analysis of the numerical schemes. The results of the analysis serve
as a yard stick for calculating the four numerical examples presented
il Sec. TV. The first case is a quasi-one-dimensional calculation of
the acoustic admittance in a converging nozzle. The second case is a
one-dimensional simulation of 4 shocked sound wave. The third and
fourth cases involve two-dimensional vortices in auniform flow. The
calculated results are compared with available analytical solutions.

1I. Numerical Method

The Euler equations in Cartesian coordinates can be cast into a
veclor form as

0  OE;
it IR kel R - | 1
ar ox M

where @ is the unknown vector, E; the inviscid flux in the x; direc-
tion, and H the source term, Third- and fourth-order RK methods
are applied as the time marching method, and second-, fourth-. and
sixth-order CD schemes as the spatial discretization.

A. Runge-Kutta Method

An N-step RK method subdivides one time marching step into
N steps on the interval 1" < 1 < "1, and the object function is
integrated explicitly at each step, i.e.,

QI =4 Qfl "f'ﬁf(ﬂ"]lR“)
0* = Q"+ Aty R" +ankR')

0 =0"+ &f({.‘l’j:R” +anR' + “333:)

Q:H-I = Qn +ﬂf[€t‘,\"|R” +|1N1RI A vas +l’.¥,\,'NRN_l) (2)

where the superseriptsn, 1.2, ..., and 1+ | denote the steps on the
interval, i, " <4 <t < --- < 1y <" @ is the weighting
coefficient for step { and term j; @ 1s the object function to be in-
tegrated; and R", RY, R, ..., RV is the evaluation of the spatial
derivatives and the source term based on 0", @', 0?,.... 0"\
For convenience, we denote R as the inhomogeneous term. As
shown in Eg. (2). the incremeni of the object function at each in-
termediate step is a weighted average of the inhomogeneous terms
evaluated at the previous steps. As a result, there are N(1 + N)/2
weighting coefficients to be determined.

For nonlinear equations, to retain the preseribed order of accu-
racy, the RK scheme can be fitted into a Taylor's series to deduce a
constraint of the weighting coefficients. The constraint is in the form
of a set of algebraic equations in terms of weighting coefficients. In
general, there are less equations than unknowns. Consequently, var-
ious RK methods were developed by taking the liberty of choosing
the coefficients within the constraint.

For a three-step RK method, six coefficients are constrained by
four equations which are tabulated in Ref. 8. Here, we use Wray's
three-step method.”

Q' = 0" +ar(ER"
Q'?:Q”-.—Af
Q"' =g0"+ AI({R" + 1R?)

R"+ 5R') (&)

It can be shown that Wray’s weighting coefficients satisfy the con-
straint in Ref, 8 for the third-order accuracy.

A similar procedure can be applied to a four-step RK method for
the fourth-order time accuracy. There are seven equations for 10
coefficients. Here, we use Kutta's four-step RK method® which was
first employed by Jameson et al.'® for solving flow equations. The
algorithm can be expressed as

A
QI = Qn s TIRH
2 ey S50
0 =0"
(4)
Q= 0"+ AR
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One can show that Kutta's coefficients satisfy the fourth-order con-
straint.

There is another more popular and less complex four-step RK
scheme proposed by Jameson and Baker'" for flow calculations. As
a contrast to the present method in Eq. (4), the calculation of the
final step of this popular scheme'' involves only one inhomoge-
neous term evaluated at a previous step instead of all four steps as
that in Eq. (4). Therefore, the scheme is more efficient. However,
this scheme was designed to hasten the numerical convergence for
steady-state solutions. and the coefficients do not satisfy the fourth-
order consiraint.

B. Compact Difference Schemes

According to Colatz,' the CD4 and CD6 schemes were obtained
by using three and five grid nodes in the computational domain. The
gain in the accuracy is not based on the use of more points, as in the
conventional approach, but on implicitly solving the derivatives at
the grid nodes, i.e.,

Wiy + 4+ ui e, = B/Ax) iy — Wi—y) + Oaxty  (5)

Wy 430+ ey = (11282 (123 — 28054 — 28Uy — 1;-3)

+@(AXD) (6)

where the superscript prime represents the spatial derivatives. The
application of these CD schemes involves the inversion of a scalar
tridiagonal matrix that incurs little penalty in terms of CPU time,

When the CD4 is used in the interior nodes, a third-order biased
implicit scheme proposed by Adam'? is employed for grid nodes at
computational boundaries

2u) 4 4uy = (1/Ax)(—=5uy + 4z + us) + O(AX?)

| = (1 AxX) (Sumay — Miuay—1 — Mg =2)

. .
2, AU

+O(AxY) (N

When CD6 is used in the interior nodes. we nse CD4 at locations one
erid node away from the boundary and the third-order biased scheme
is used at the boundary. In addition, as will be shown in Sec. IV,
a method-of-characteristics-(MOC-) type nonreflecting boundary
condition is incorporated with the third-order biased difference at
the computational boundary, This treatment allow numerical waves
1o propagate out of the computational domain.

III. Fourier Analysis

The background for Fourier analysis on discretized equations can
be found in Ref. 13. Since the equations are discretized by a finite
difference scheme, the harmonic content is limited to the number of
orid nodes used in the computational domain. For a computational
domain L decomposed into K grid nodes (L = K Ax), the discrete
solution «] at a location () and time (1) is a linear combination of
K wave modes. The discrete Fourier expansion is performed on the
discretized equation to deduce the amplification factor g(k)

I‘En +1 (k )

k) = — 8
&(k) ) (8)
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where i is the Fourier coefficient of «. Since the analysis is local
for an infinite and periodic domain, the result of Fourier analysis is
presented on the interval [0, 7.

We employ a scalar, advective equation as the model equation,
i i
— A —=0 9
o1 " "ox &

where the phase velocity A is equivalent to the eigenvalues of the
Jacobian matrix in the one-dimensional Euler Equations, namely,

u — c.u+c,and u, where i is the velocity and ¢ is the speed of

sound, Following Jameson and Baker,'” the amplification factors
for the three- and four-step Runge—Kutta methods are

g=1+Z+1i22+ 177 (10)
g=1+Z+4i2°+ 12 +12" (11)

The variable Z is the Fourier symbol of the discretized convective
term. To obtain Z, we formulate the €D4 method in an operator
form which allows us 10 express (du/0x); explicitly as

A =
du . f 5_‘ Hipp — Uiy a4 5
(ax)l—(l_}_ 5) ( 2Ax )"’O(MJ (12)

where

8w = tipe — 20 4 iy (13)
Substitute Eq. (12) into the discretized model equation. Eq. (9), and
we obtain
2t _ _ 6F sin[k)i' (14)
4+ 2cos(k)

where the superscript (4) represents the CD4 method: £
AA?/Ax: and £ is the normalized wave number k = 2nk/K.
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Similarly, the CD6 scheme is represented in operator form as

du &\
a—x- =1+ g m(lt;.,.g = 2811‘,‘.,4 = 28!1,_[ — Hj—3)
+O(Ax°) (15)

and we obtain

76 _ _ Fi4 sin(ﬂ"} cos{ﬁjﬁ—l— 56 sin{_ﬂ}]i (16)
12[2 cos(k) +3]

Substituting Z* and Z'® into the amplification factors Egs. (10) and
{11), we obtain g(k) for various combinations of the RK methods
and CD schemes. In general, g _k) 15 a complex number and can be
expressed as

gk) = |g(k)[ete® (7

To present the result of Fourier analysis, we make the following
interpretations.

1) Numerical dissipation: The magnitude of the amplification
factor is the artificial dissipation. When |g| = 1. the scheme is
unstable. For the caleulations of unsteady fows, we want |g| to be
less than unity but as large as possible to ensure numerical stability
with minimum artificial dissipation. In the following section, we
plot |g| against & to illustrate the artificial dissipation.

2) Numerical dispersion. In Eq. (17), a(k) represents the artificial
dispersion. We plot & = &/ F against k to show phase velocities.
Notice that the model equation is dispersionless, and the phase ve-
locity is a constant. After being normalized by the CFL number, the
exact solution is a straight line with 45-deg angle on the plot of &
against k.

Figure 1 shows the results of the Fourier analysis of the RK3
method combined with CD2, CD4, and CD6 schemes. The figures
show the dissipative as well as dispersive effects at CFL numbers

& 5
1.0
k
0.0 + 2.0 3.0
d) Dispersion of RK3-CD4
A
EI LI
1
. 2.4
1.4 ;._._ﬁ 5
04 — Lk
Q.0 1.0 2.0 3.0
€) Dl‘ﬁlpallon of RK3-CD2
2.0
& 15 .
1.0
k

f) Dispersion of RK3-CD2

Fig. 1 Dissipation and dispersion characteristics of the RK3 time stepping combined with various spatial discretization schemes,
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Fig. 2 Dissipation and dispersion characteristies of the RK4 time stepping combined with various spatial discretization schemes.

from 0.4 10 1.4 withan increment of 0.2 between neighboring curves.
According 1o Fig. la, the RK3-CD6 scheme is unstable for CFL
numbers greater than 0.8. As the order of CD method increases
{(compare Figs. la, lc. and le), the CFL limit for stable calculation
decreases.

According to Fig. 1b. the RK3-CD6 scheme retains correct phase
velocity wave numbers up to /2 at CFL = 0.4, That is, numerical
waves resolved by four and more than four grid nodes suffer little
dispersive error. Increasing the CFL number makes phase velocities
deviate from the 45-deg straight line at a smaller wave number. For
high wave numbers, i.e., & = 7, the waves propagate in the opposite
direction than they should. These waves were referred to as parasitic
waves. When using higher order CD schemes, these parasitic waves
do not go away for all CFL numbers and the combinations of the
schemes,

Comparing Figs. 1b, 1d, and If shows that increasing the order
of the CD method reduces the numerical dispersion at middle wave
numbers (1 < k < 2), Specifically, a significant improvement is
achieved by changing the spatial differencing from CD2 to CD4,
whereas only a limited gain is obtained by switching from CD4 to
CD6.

Figure 2 shows the resull of the RK4 method combined with
various CD schemes, Similar to the case of RK3, higher order CD
schemes introduce more artificial damping (see Figs. 2a. 2c. and 2e)
and, therefore, reduce the CFL number limit for stable calculation.
Again, the dispersive error at middle wave numbers decreases as the
order of the spatial differencing increases (see Figs. 2b, 2d, and 21).

In Figs. 1 and 2, the result of Fourier analysis are presented in
a continuous fashion. However, the numerical calculations are dic-
tated by discrete points distributed in these curves. The useful data
points in the wave number region of /2 < k < are very sparse.
For example. k=n represents waves resolved by two grid nodes,

k=2x /3 represents three-node waves, and k=n /2 1s four-nodes
waves, Numerically, the two-node waves represent even-odd decou-
pling, and they are parasitic. Similarly, a wave delineated by three
erid nodes is not very meaningful. Therefore, we want to concentrate
on the numerical resolution in the wave numberregion () < k<n 12,
i.e., for wavelengths larger than four grid nodes.

For the RK4-CD6 method at CFL-= (0.8 (see Fig. 2b) the solution
with wive numbers up to about /2 suffers from little dispersive
error. Similarly, the RK4-CD4 scheme (see Fig. 2d) suffers little
dispersive error for wave number up to about /2. Therefore, the
advantage of using the CD6 scheme instead of CD4 in terms of dis-
persive errors is limited, On the other hand. comparison of Figs. 2a
and 2¢ clearly shows that the CD6 scheme contains a little more ar-
tificial dissipation at the same CFL numbers for four- and five-node
waves as compared to the CD4 method. For a typical calculation of
unsteady flows, the minimum wave length resolved by both CD4
and CD6 methods is about four to six grid nodes. And the numer-
ical performance of the CD6 scheme is comparable to that of the
CD4 scheme. According to the foregoing discussion, there is little,
if any at all, advantage to use even higher order compact difference
schemes. The CD4 method is probably the most efficient and sta-
ble scheme with a reasonable numerical resolution for large-scale
caleulations.

Figures le¢ and 2¢ can be compared to show the difference of
the dissipation effects between the RK3 and RK4 methods. For the
same CFL and wave numbers, the RK4 method introduces more ar-
tificial damping, and a larger CFL number could be used [or stable
calculations. On the other hand, Figs. 1d and 2d show that increas-
ing the order of the time marching scheme from RK3 to RK4 does
not improve the dispersive effect at high wave numbers. The disper-
sive effect is dominated by the spatial discretization. Therefore, one
should always use the RK4 method instead of the RK3 method.
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Fig. 3 Dissipation and dispersion characteristics of the RK4-CD6
method with various amounts of the sixth-order numerical damping,

As shown in Figs. 1 and 2, CD schemes have no dissipative ef-
fects at high wave numbers. Nevertheless, dispersive error causes
these waves 1o propagate in the erroneous direction, and they will
eventually destroy the solution. It is, therefore, appropriate to im-
pose a small amount of artificial damping to filter out these waves
and at the same time keep the resolution at low wave modes intact.
Figure 3 shows the dissipation and dispersion effects of the RK4-
CD6 method at CFL = 0.8 with various amounts of a sixth-order
artificial damping (AD), defined as

AD = (n/8)t;e3 + Wiy — 6142 + 1i—2)

+ 1503 + i -3) — 201;] (18)

Therange of 5 is from 0.01 to 0.05 with an increment of 0.01 between
the neighboring curves. Comparison between Fig. 3 and Figs. 2a
and 2b shows that no additional damping at low wave numbers is
introduced into the system by the imposed artificial viscosity for
n =< 0.03, whereas the undesirable high wave number waves are
dissipated.

IV. Numerical Examples
A, Acoustic Admittance of a Converging Nozzle
The first case is a forced oscillatory quasi-one-dimensional flow
in a converging nozzle. The governing equations are
a0 OE
== .- =H
it dx

(19)

where
z p 0
Q= | pu |a. E=| pi*+p |a, H P
X
; & le + plu 0

(20)

where p is density, p pressure, and e total energy defined as
e = p(C,T + Lu*) where C, is the constant volume specific heat.
The variable @ is the cross-sectional area and is prescribed as a
function of x. The theoretical solution of the acoustic admittance
of a choked nezzle was provided by Tsien™ under the assumption
that the velocity of the base flow is a linear function of axial loca-
tion. The nozzle shape can be inversely derived according to Tsien's
assumption, and we have

g e i A
0= — - M- (21}
M\y+1 y+1

where y is the specific heat ratio and M is the Mach number which
can be expressed as

_x jy+tl y-1fax 2 5
M_,s:'\/ % . 2 (1) 23)

The superscript asterisk denotes the property at the nozzle
throat. According to Tsien's derivation. the linearized quasi-one-
dimensional equations can be manipulated to the following form
under the isentropic condition:
Kl i ] e
N g 2(1 f i);dp _g ) g (33)
dz® 14y /) dz Ay +1)

dP
dz

(y+D =z — =y -1 +iPP+R+ifHU =0 (24

where
(P'lyp) = P(2)e’" -

(/) = U -
and i and p are the velocity and pressure of the base flow, £ is the
normalized frequency whichisdefinedas f = w(1—z)/(¢"—i), and
7 is the nondimensionalized time which is defined as v = ¢"1/x".
The independent variable z can be expressed in different forms due
to the linearity between the base flow velocity # and axial location
x, and we have
X _u _ (y + 1M 1 26)
e 24y —-DM-
With Eq. (26). it is clear that P and {/ are functions of the Mach
number M, Equation (23) is a hypergeometric equation'? that can be
solved by a power series expansion. U (z) can be easily solved with
P(z) known as shown in Eq. (24). Finally, the acoustic admittance
function defined as A(z) = U(z)/P(z) canbe obtained as a function
of the Mach number.

In what follows, the procedure of the CFD calculation for com-
parison with Tsien’s solution is illustrated. First. the base Rowfield
is obtained by solving the quasi-one-dimensional equations, Egs,
(19) and (20), using the RK4-CD2 method with the nozzle area ra-
tio prescribed by Egs. (21) and (22). The results are checked by the
classical area Mach number relation'® and the solution is accurate
up to five decimal digits. The perturbation at the inlet is obtained
by specifying sinusoidal pressure fluctuations in terms of magni-
tude and frequency. With the prescribed pressure and isentropic
correlation, the temperature fluctuation is also determined. Numer-
jcally, these boundary conditions are enforced by defining a vector
k = k(@) at the upstream boundary, such as

P §
k=T |=|4& 27
0 0
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Table 1  Errors of the acoustic admittance calculation

Numerical schemes Error of |A] Error of @
RK4-CD6 0.45% 3.6%
RK4-CD4 0.52% 3.3%
REK4-CD2 1.65% 4.1%

where & and & are the specified values of p and T. To proceed,
Eq. (27) is linearized to become a function of AQ, such as

+1 _ gn ok

=k 4 90 AQ (28)
where k" is equal to the specified pressure and temperature at the
time step n+ L and 8k /80 is a3 x 3 matrix. To close the system, the
null entry in the vector k may be filled by the out-running charac-
teristic relation deduced from the flow equations. Numerically, the
similarity transformation is applied to the discretized flow equations
[see Eq. (2)], and we get

LM Q' — Q") = LM~ At kaR"‘l (29)
k=]

wherei = 1, ..., N represents the N-step RK method. Here, M—!,
is the eigenvector matrix of Jacobian matrix A = 3E/3Q, and L
is & selection matrix with zeros and ones on the diagonal in such a
fashion that the proper out-running characteristics are selected. By
combining the imposed conditions, Eq. (28), with the out-running
characteristic relations, Eq. (29), we form the complete equation at
the boundary point as

dk

=
(LM v

)(Q" - Q" =LM At Zaf,-i.R""’ I SE.
k= (30)

For the supersonic out-flow condition, Eq. (29) is used with the se-
lection matrix L equal to an identity matrix. The out-running char-
acteristic equations are solved with one-sided difference as shown
in Eq. (7). In other words, the characteristic boundary conditions
are always discretized by an upwinding scheme which is physically
sound, and the numerical stability is enhanced. These boundary
conditions are applied at each intermediate step of the Runge—Kutta
method.

The acoustic admittance is a complex number and can be written
as A = |Ale™. In the present paper, a small pressure perturbation of
119 (p" = 0.011 p) is imposed at the nozzle inlet, The length of the
converging part of the nozzle is 0.9L" and the inlet Mach number is
about 0.09. The frequency of the perturbation is setat § = 6, which
corresponds to about 2000 Hz,

Figure 4 shows the comparisons between the CFD results of the
RK4-CD6 method and the theoretical solution of the acoustic ad-
mittance in terms of the magnitude |A| and the phase angle @ in a
converging nozzle. Both the magnitude and the phase angle of the
acoustic admittance decrease as the flow speeds up. As shown in
the figure, perfect agreement is obtained for the comparison of |A|,
whereas the predicted phase angle is slightly off due to the resolution
of the numerical grid for the phase angle. In this case, the harmonic
content of the solution is limited to one frequency with a wave length
comparable to the computational domain which is resolved by 61
grid nodes. Therefore, all numerical schemes of concern provide
accurate solutions. The numerical errors of |A| and @ are tabulated
in Table 1. There is a slight advantage in using the higher order
schemes for the prediction of |A|; however. no obvious advantage
of using the higher order scheme for the phase angle calculation is
observed.

B. Shocked Sound Waves

The second case is the propagation of shocked sound waves in a
tube with a periodic boundary condition. The governing equations
are the same as in the first case, namely, Eqs. (19) and (20), with
cross-sectional area a equal to a constant. This case is interesting
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Fig.4 Acoustic admittance caleulation using the RK4-CD6 method for
the inlet perturbation as 3 = 6,p’ /p = 0.011; solid line Tsien’s theorem,
triangles CFD results: a) magnitude and b) phase angle.

for its complex harmonic content compared to the first case, In ad-
dition, the capability of the high-order compact difference schemes
for shock capturing can also be studied. At time equal to zero, a
sinusoidal pressure distribution is given. Because of the periodic
boundary condition, only one cycle resolved by 61 grid nodes is
imposed in the computational domain. According to the isentropic
condition, the distributions of temperature, density, and speed of
sound are also determined. The velocity profile is determined by
the simple wave correlation,'” such that
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ulx) :f i el
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et f’—.[p{x)—’zr —p““—v] 31)
r=1Y pp

where the average flow properties are denoted by a bar, With the
simple wave correlation, the wave forms of all ow properties are
in phase, and the initial condition of the present CFD computation
matches the theoretical analysis provided by Morse and Ingard.'® It
is interesting to note that the simple wave correlation is an extension
of a linear, plane, acoustic wave. For a variation of pressure less than
5%, the plane wave relations could be adopted, such that

T(x) = T(l et m)
y

p

p(x) = ﬁ(l + p(‘f}) 32)
yp
ulx) =c(x) P (f)

where p'(x) is the prescribed pressure fluctuation. As shown in
Egs. (31) and (32), the wave speeds u—+c, u —e, and u vary as aresult
of the flow property distribution. The distortion of the wave form is
a cumulative effect resulting from the wave speed distribution. For
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Fig. 5 Time history of the pressure fluctuations of the N-wave caleu-
lation at one end of the periodic domain by various numerical schemes.

simple waves, i.e., all flow properties are in phase. the wave crest
will quickly overtake the trough and form a shock.

Figure § shows the time history of the pressure fluctuation at
one end of the computational demain for various finite difference
schemes. According to Morse and Tngard, the first shock appears
after about two cycles for the case of a 10% pressure perturba-
tion (p'/p = 0.1) (Ref. 18). All schemes of concern predict the
wave sleepening rate correctly, After the wave is shocked, the flow
evolution is no longer isentropic, and the kinetic energy is gradu-
ally converted to thermal energy due 1o the existence of the shock
wave. As aresult, the strength of the shock wave diminishes as time
passes,

The shock front is a combination of many wave modes traveling at
the same speed. The dispersion error introduced by the finite differ-
ence schemes will cause the high waye number waves to travel with
erroneous speeds. As shown in Fig. 5, the methods of RK4-CD6 and
RK4-CD4 with a small amount of the sixth-order artificial damp-
ing (5 = 0.02) crisply resolve the shock except for the overshoots.
These overshoots are caused by Gibbs phenomenon and can be fixed
only by TVD-type shock-capturing schemes. Almost no difference
can be observed between the results of the CD4 and CD6 methods.
On the other hand, the method of RK4-CD6 without background fil-
tering shows that significant high wave number waves lag behind the
shock front because the compact difference scheme introduces no
dissipative but high dispersive effects on the highest wave number
waves. As shown in the figure, these oscillations eventually contam-
inate the whole solution. For the conventional RK4-CD2 method,
results show significant oscillations of moderate wave numbers be-
hind the shock front because of dispersion errors.
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a) RK4-CD6

b) RK4-CD4

¢) RK4-CD2

Fig. 6 Vorticity contours of the vortex after traveling about 60 core
radii predicted by various numerical schemes.

C. Vortex Propagation in a Uniform Flow

A vortex translating in a uniform flow is chosen as a two-
dimensional numerical example. The initial condition of the vortex
is formulated analytically similar to that of Liuetal.'” The vortex can
be characterized by the circulation I' and the core radius a. The az-
imuthal velocity iy at a distance r from the vortex center is given as,

Hg = L% (33)
2n r~+a*

The fiow near the vortex center i$ a rigid-body rotation (us & r).
The flow far outside the core is irrotational (up oc 1/r) with wy
decreasing as r increases. Equation (33) is a continuous function
to connect the two extremes. With the prescribed velocity field, the
pressure and density distributions of the vortex can be determined
by the momentum and the energy equations,

a &
b P (34)
ar P
; 1w
A . S (35)
y—1p 2

where /g is the total enthalpy and is set to be a constant such that
Iy = yp/ly — 1)1p with the freestream condition denoted by a
bar. To proceed. substitute Egs. (33) and (35) into Eq. (34) and in-
tegrate the equation over r. As a result, the pressure distribution
is obtained. Consequently, the density distribution and the whole
flowfield is determined. The solutions of this stationary vortex can
be superimposed to any uniform flow with arbitrary speed. Physi-
cally. this process may be interpreted as a stalionary vortex being
observed from a moving coordinate system with constant velocity.
Thus, the vortex in a uniform flow can be constructed as

w=i+u', p=1+v (36)

where the velocities of the background flow are denoted by a bar
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Fig.7 Vortex pressure profiles at the centerline at various instances predicted by different numerical schemes.

Fig. 8 Vorticity contours of the vortex pairing.
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and the superscript prime denotes the vortex velocities specified by
Eq. (33). The pressure and density distribution of the moving vortex
is the same as that of the stationary vortex and may be obtained from
the solutions of Eqgs. (34) and (35).

The boundary condition of the present case is an extension of
the MOC-type treatment discussed in case 1. Essentially, only one-
dimensional characteristics normal to the computational bound-
ary are considered. For the imposed inflow condition, Giles's
formulation® is employed.

The prescribed vortex flowfield contains a broadband of frequen-
cies due to the distribution of the azimuthal velocity, Theoretically,
all wave modes travel at the same speed to ensure the integrity of
the vortex structure. For numerical methods with dispersive error,
the shape of the vortex could deform, even break up in the later stage
of the time marching procedure. In addition, the dissipation effect
of finite difference schemes can be evaluated by the conservation of
the sharp pressure dip at the center of the vortex,

In the present calculations, the Mach number of the background
How is 0.4. The grid size is 301 % 91 in the streamwise and transverse
directions. The numerical mesh is uniform in the axial directionand
stretched in the transverse direction near the outside boundary. The
CFL number calculated based on the background flow is about 0.7
for all calculations. A small amount of background filtering. i.e..
1= 0.021n Eq. (18), is applied for all calculations. The core radius
a is about | em and is resolved by about 4 grid nodes.

Figure 6 shows the vorticity contours after the eddy propagates
about 60 core radii downstream as simulated by various numerical
schemes. Clearly. the structure of the eddy is retained by the compact
difference schemes (CD4 and CD6). In contrast, the eddy predicted
by the CD2 method is shattered due to the excessive dispersive error,

Figure 7 shows pressure distributions of the eddy at various in-
stances. The x axis is the streamwise locations nondimensionalized
by the core radius of the vortex, and the y axis is the pressure.
For both CD4 and CD6 methods, the pressure at the voriex center
increases about 1% through the process,

In comparison, the result of the CD2 scheme shows pressure
increase about 3%. In addition, the pressure fluctuation shown in
Fig. 7c is due to the deviation of the vortex path predicted by the
CD2 method. Therefore, the dispersion error of the CD2 scheme is
more severe than the dissipation error.

D. Vortex Pairing

The caleulation of the single vortex is extended to a vortex pairing.
The vortex pairing is the controlling mechanism for the growth of a
mixing layer, and it occurs when the distance between two vortices is
less than a threshold value. Although not shown, similarto the single
eddy case. the results of the CD4 and CD6 are almost identical. In
the present paper, the result of the RK4-CD6 method is presented,

The initial condition is specified by two identical vortices placed
5 core radii apart in a quiescent gas. The core radius is | cm. and the
circulationis 15 m?/s. At the center of each vortex, there is a pressure
deficitabout 15% compared to the ambient gas. The grid size 15201 x
201. The mesh is uniform at the center of the computational domain
and slightly stretched near boundary. Figure 8 shows the contours of
the vorticity magnitude at various stages of the vortex interaction.
The whole sequence is about one-and-one-hall revolutions.

V. Concluding Remarks

The quasi-one-dimensional and two-dimensional Euler solvers
using various combinations of RK methods and CD schemes
were analyzed for simulating unsteady flows. The accuracy of the
employed schemes is assessed by Fourier analysis on the fully dis-
cretized equation. The numerical characteristics of various combina-
tions of the RK and CD schemes are reported, including dissipation,
dispersion, CFL limit, and amount of required artificial damping.

The dispersive characteristic is significantly improved by using
the CD4 scheme instead of the conventional CD2 method. Further
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increasing the order of the CD method, however, results in the little
improvement. For both the CD4 and CD6 methods, the smallest
wavelength which can be accurately resolved is about four to six
grid nodes. On the other hand, the increase of the order of the time
stepping scheme enlarges the CFL limit for stable computations, As
a result, among all combinations of RKs and CDs considered. we
recommend the RK4-CD4 method for simulating unsteady lows.

For practical purposes. the implementation of the nonreflective
boundary condition to the present numerical scheme is illustrated.
In addition, the initial conditions of the simple wave, plane acous-
tic wave, and a vortex were also provided. Finally, as illustrated
in the numerical examples, for flows of simple harmonic content,
e.g., one frequency in case 1, the conventional second-order central
difference scheme is adequate provided enough grid nodes are used
to resolve the wave mode. On the other hand, for flows of complex
harmonic content, the use of the RK4-CD4 and RK4-CD6 methods
shows crisp resolution of unsteady flows.
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