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In this paper, we report the application of the
CE/SE method to unsteady, chemically react-

ing flows. As a contrast to the modern up-
wind schemes, Riemannn solver and teconstruc-
‘tion procedure are not the building blocks of
* the present method. Therefore, the logic of the
- method is conSiderany simpler. Due to chemical -
Teactions, stiff source terms exist in the 'SpeC1es

equations. - The source terms are treated by a
volumetric mtegratlon over space—txme regions.

mulation and’ Newton’s method is used to solve
the equation. We also assess the numerical reso-
lution of the contact dlscon‘tmnrty between flow
streams. with different chemical species. Three
examples are reported in the paper: (1) a planar

shock wave passes a straight fast-slow gaseous-
‘interface, (2) a planar shock wave passes one

and two circular fast-slow gaseous interfaces, and

3 supersomc combustlon i ruted by an ohhque;
g

shock.

l

Sm Chung Chang 1
NASA Lewis Research Center
.Clevela,nd,:OH;.

' c'onceptual\besis, i.e. a.uniﬁed‘tireat'ment*ofbﬂux.

conservation in space and - time. The method was
developed from fundamentals. It is not an in-

‘cremental 1mprovement of a prev:ously emstmg

method.”

Essentlally, the space—tlme domam, Where the
calculatlon is of interest, is divided into many
Conservation Elements (CEs). In partlcular the
lattic stencil is based on a staggermg spatial
mesh, ‘which zigzags as time evolves such that

ﬁow mformatmn at each interface separatmg ad-

] Jacent CEs can be eva.luated w1thout using a Rie-
The treatment results in a locally’ 1mphc1t for- -

mann solver. In51de each CE, the distribution
of the flow solutlon is not calculated through a

'reconstructlon procedure as that in the modern

upwind schemes. Instead, the gradients of flow
variables are treated as independent unknowns,

and they are not influenced by the flow prop-
erties in neighboring elements at the same time
“level. ' This is in"full compliance with the flow
~physics of the initial value problem. The resul-
‘tant s}éﬁemesis ezplicit in time-and involves only
. two time levels.- For flows in multiple spatial di-

" mensions, no- directional ‘splitting is “employed.

1 IAntroduction

Recently, Chang and coworkers [1- 4] reported a

new framework for the numencal solution of con-
servation laws, namely, the Method of Space—r
. Time Conservation ‘Element ‘and Solution Ele—

ment, or the CE/SE method for short." Thl_s
method is distinguished by the simplicity of its

*Seniot Bngmeer stvu@letc nasa.gov.
!Senior Scientist, vv acc@noboo lerc.nasa.gov.

" The two and three-dimensional spatial meshes
- employed by the CE/SE ‘method ‘are buxlt from

triangles and- tetrahedrons

- With the above construction of- the CE/SE

'method a fam_lly of schemes. have been devel-
- oped, namely; the a scheme for inviscid, isen-

tropic flows, ‘the a — - for: viscous flows;, and

“the a — ¢ scheme for inviscid flows with shocks.
- Chang [2,3] showed that for inviscid and isen-
‘tropic: flows, the a scheme is neutrally ‘stable



(non—(lissi'pative) for CI'L <1, and it can march
forward and backward in time. For solving the
Navier-Stokes equations, the a — /A scheme is
unconditionally stable for various pi’s, provided
CFL <1. :These features are 1mportant when
solving viscous flows because the physncal vis-
cosity will not be overwhelmed by the numerical
dissipation.

For flows with shocks, entropy increases across

the shock. An artificial damping is added to the
a scheme to satisfy the entropy increase condi-
‘tion, i.e., the a — € scheme. This is necessary
because, the a scheme. is neutrally stable, and
. does not allow any entropy increase. Within one
marching step, the added artificial damping con-
strains the gradients of flow properties, while the
flow properties themselves are calculated solely
based on the space-time flux conservation. In

partrcula.r, the a — ¢ scheme was desrgned such

that no priori knowledge of the flow distribu-
tion, such as monoton1c1ty a.nd Total Vana.txon
Diminishing (TVD), is requlred “As aresult, this

formulation can be stra.lghtforwardly apphed to.-

solve conservation laws W1th source terms. Note

that the flow solution is no longer monotonic (or-

TVD) when there is source term. In [5], we have

reported the extensmn ‘of the a — ¢ for solving .
conservation laws w1th stlﬂ' source terms in one.

spatial dlmenswn

In this paper, the treatment: for stlff ‘soufce
terms is extended to solve equations.in two spa-

tial dimensions. Due to the merit of the CE/SE
method, this extension is straightforward and we

shall only illustrate its basic principle. In addi-
tion, we include several benchmark tests of shock
induced mixing without chemical reaction: The

~ . purpose is to assess the the numerical resolution:

‘of the contact discontinuity between flow: streams
with different chemical species.:

_ The rest of the paper is f,_orga’nized as follows.
_ In Section 2, we discuss the space-time inte-
gration based on the conventional finite volume
method as well as the CE/SE method. The

roles of the source term in- these two different
approaches are clarified. In Section 3, we briefly
discuss the space-time discretization of the con-
servation laws with stiff source terms in one and

‘source term D,

two spatial dimensions. In Section 4, we present

the numerical examples. We then provide the

concluding remarks.

2 Space-Time ‘Inte'gration
2.1 The Flnlte-Volume Method

Conventlonally, the space-time ﬁux balance of
conservation laws is described by formulations
in both Lagrangian and Eulerian frames. These
two formulations can be bridged by Rey nold s
transport theorem:

‘ 'd “Ou : B,

v&ghef'e uis the density of a conserved property, V;
denotes the spatial volume of integration at time
t, S(V;) is the surface of V;, and d§ = do @ with
do and 7, respectively, being the area and the
outward unit normal vector of a surface element
on S(V;). The points inside V; move with veloc-
ity ¥, generating the motion of the volume. The

Vl‘eft hand side of Eq. (2.‘1) is based on the La-

grangian frame, and the right hand side is based
on the Eulerian fra.me Note that space and time
are treated in different manners.

Consider a scalar convectron equatlon with a
Ut +v.f= P, (22)

Where f = u? with & being the congection\veloc-
ity. The integré_.l counterpart to Eq. (2.2) is

d

E/ udVy,
" du .

A ot

=/ pdV;.
A

To solve Eq. (2.3), the conventional finite-volume
methods reformulate the equation based on @

+/ f-“ dga
S(V)
) - (23)

~fized spatial domain, i.e.,

| “2/ udV:-"/ f.d§+'/ pdV. (2.4)
otJv S(v) ' v



Alternatively, one could: integrate Iiq. (2.4) in
time from ¢, to £, i.e.,

‘t2 t
/udV .—./zdt ( / I ds+/pdl/)
Voo ooy t S(vy - on

(2.5)

- Equation (2.5) depicts a clearer picture of the

space-time flux balance as compared to Eq. (2.4).

As shown in Flg 2.1(a), due to the ﬁxed spatial

" domain, the shape of the space -time CEs in one
spatial dimension must be rectangular
elements’ must stack up e\actly on top of each
other in the time- dll‘eCthIl, i.e., no staggermg
of CEs in time is allowed In two spat1a1 di-
‘mrénsions, as shown in Fi ig. 2. 1(b), a conserva-
tion element is a uniform- cross-sectlon cylinder

in space—tlme and agam no staggermg n. tlme s

allowed

ThlS arrangement results in. vertlca.l inter-.

. faces extended in the.direction of time evolu-

tion between adJacent CEs. Across these inter-
faces, flow information travels in both directions.

.. Therefore, upwind bias (or a Riemann solver)}" 3
becomes necessary in calculating the interfacial

fux.

These-

of the flow properties. Applying this method to

flows with propagating discontinuities cannot be
justified. Here, the finite-volume methods con-
centrated on calculating the right hand side of -
Eq. (2.4). As such, the rate of change of u con-
tained in V is equal to the combination of (i)

the flux - facross S(V), and (ii) the integration
‘of the source term over V. As such, fractional-
‘step (or splitting) methods resort to strong mea-

sures of segregating the two effects and treating
them in a sequential fashion. Colella et al. (7]
and LeVeque and Yee [8] tried various fractional
step methods. Reasonable results were obtained
for non-stiff source terms. For stiff source terms,
transient flow solutions bifurcated or ‘moved in

wrong speeds.

*.Perhaps, the most interesting approach in re-

- -cent years is based on shooting for the equi-

librium state of the relaxation system [9]. In

‘this setting, Jin [10] incorporated the physical

asymptotics of the relaxation system into the

‘ "numencal scheme using a Runge—Kutta method
‘coupled w1th a stiff. ODE solver. Successful re-
,sults were obtalned for ﬂow equations with stiff

source terms. The method however, requires

N , 7 R B some knowledge of the asymptotlcs of the rela.x-
2.2 Treatments of St:iﬁ‘,Souréee»Terer ~

ﬂow ﬁeld 1s smooth

In calculating Eq. (2.5), we need to mtegrate

the spatial fluxes f at the cell boundaries be-
tween two time ‘steps. Usually, this calculation

is approximated by a Riemann solver. The exis-

2.3 The Space—Txme Integratlon of
the CE/SE Method ,

- tence of the source term, however, will 1nﬂuence"‘ i

the Riemann solutlon at cell boundarles There—:_
fore, Roe and Arora [6] developed a dispersive
‘Riemann solution following the characteristics,

which are attenuated by the source term. Un-
fortunately, this method cannct be extended to
multiple spatial dimensions. Note that direc-

tional splitting is commonly used in modern up- * N
wind scheme because there is no known analyti-

cal Riemann solution in multiple spatial dimen-
sions. Source terms, however, have no direction,
_and cannot be spllt accordmgly

Alternatlvely,

approach assumed a smooth temporal evolution

‘In the CE/SE method
treated in a umﬁed manner.

ﬁmte-dlﬁ‘erenmng the tlme‘f
marching term in Eq. (2.4) can be adopted. This:

space and . txme are
Consxder a set of
M coupled convection equatlons in one spatial

dimension:
Ui+F. =P, UeRM (2.6)

W'héfe U is the unknown vector, F is the spatial

flux vector, and P is the source term vector. As

shown in Fig. 2.2, let z; = z, and z; = t be

- the coordinates of a two-dimensional Euclidean
- w:gpace‘Fy, and all mathematical operations; such
‘as div, curl; and’ grad, can be carried out as if
‘E5 was an-ordinary two-dimensional Euclidean

space. Thus, Eq. (2.6) can be expresséd as M



%
scalar equations:

C Vhn=pe m=l2...M  (27)

 where B = (fm,tm), and frny Uy and pp

_are the mth components of F, U, and P, re:
spectlvel) Equation (2.7) is valid everywhere in. -
» For solutions -
with dlscontmultles, an mtegral counterpart.to:

Ez for continuous flow solutlons

- Eq. (2.7) must be employed

WM

hm dS—/pde m-12
S(R) ’

where:S(R) is the boundary of a: space»tlme Te-

. gion R, and d3 represents’a surface element of

‘5(R). Equation (2.8) is" obtamed by usmg Gauss
- divergence-theorem. -

Equatlon (2 8) states that the tota.l space-tlme ' colicide ‘with' a'-SE; or ‘take other shape

flux of hy, lea.vmg R through 1ts boundary is

' equa,l to the mtegratlon of the source. term Pm

over the’ space-txme regron R. As a contrast
~ to the finite-volume method, Eqs (24 5), the
'present formulatlon does not 1mpose any con-
straint on the sha.pe of the CEs in the space—tlme
domain. Thisis the cruc;a.l drfference that at the

conceptual level, separates the CE/SE method AR

from the finite-volume method.

We remark that the conventlonal spaCe-tlme“" PR B

integration Eq. (2.5)1s a special case of Eq. (2. 8)

For flows in one spatial dimension using a fized
V ’spatzal domain for CEs, the left hand side of'(,
" Eq. (2. 8) can be converted 1nto a hne mtegra-; B

“tion; i.el,

vi‘(R)

h,, ds_f (fm t—umdrc),
ISRy
m = 11"2’“"’M~ B

wherecc in{di_c'a‘res thét the 'li‘ne integretion is
“result, Eq. (3 2) can be written as-
. ,Obvrously, Eq. (2.8) is eqmvalent to Eq (2 5)“

. carried -out in the counterclockwise - direction.

‘under this condition..

e ,_.‘(2.9);*‘

'3 The Space-Tlme Dlscretlza-
tion ‘

3.1 One Spatlal Dlmensmn

+ Based on Eq. (g\S), we are ready to construct the

space-time discretization for' conservation laws
with source terms. In Fig. 3.1, we show the
nodal locatxons where the unknowns are stored.
The. space and time intervals between neighbor-
_ing nodes are denoted by Az/2 and At/2. The
Solution Element (SE) associated with each node

: (7, ) is rhombic. Refer to Flg; 3.2, Inside a SE,
~ the flow properties are assumed contmuous and
_is discretized by a ﬁrst order Taylor -expansion of

(28) A

z and ¢ with respect to the mesh node (z;,t").
Between SEs, discontinuities are a.]lowed The
union of all SEs covers the whole space-time do-
‘main. -The CEs, on the other hand, are space-

* time Tegions; over which the space-time flux bal-

-ance ‘will ‘be enforced. In'general, a CE could
The
flow: solutron msrde a CE does not have to be
smooth: :

First, we specify a CE that coincides W1th the
SE(j,n) and i impose the space- txme ﬂux balance
-over the rhomblc region,

}( B d_s_/ - prdR,
sy T Jorgm T
M,

1=1,2,... - (B1)

: where h"‘ ‘is the discretized space -time ﬂux vec-
“tor. Refer to Egs. (2. 7-8) Apply Gauss diver-

gence theorem and we get

/CE(;,n) [(f’“)J (“mt)a Pm] dR 0.

- (3.2)
,Let; ; : L
,,pmj 5 / o o R/<> ) ,.17(3.3)
"‘With S T
o <>=/ dR . (34)
CE(],n) o

belng the space—tlme ‘volume of CF(],n) As a

 [Umel + ume - G 0 =0, (39)

4 RN



- vergence.

or.

a2+ () = ()7 _]o;

Wrth the aid of Eq (3. 6), (um t) can be de-

termined in_ terms of (um)} and’ (fm, ,)
m = 1,2,.
of flow propertres inside SE(7, n) are determined.
by U", and (U, )}. Note that. U", and (Uz)
are the mdependent variables to be calculated in
the CE/SE method

time ﬂux conservation over two square CEs, de-
noted by CE-(j,n) and CE+(], n), ie.,

}{S(CE_) m .45

+@n)), @)

n—-1/2

((Pm)J..l//Q

h* .d5s

fS(cEn R
O,\ ‘ N
= ((pm),+:,’§ + (pm),) (3.8)

‘Note that CE (J,n) is the union . of AA’C'B’i
and AABC, and CE+(J,n) is the union of
AA”D”C’” and AACD

Equatzon (3 7) leads to M relatrons mvolvmg
the independent unknowns U (Uz) ur-y2

and (Um);t 11//22,

M relatrons mvolvmg u? (Ux)],

(U")J+1/2 Since U"” 1/2 (UI)"—1/2 ur-12

j=1/2? i=1/27 Tj+1/2?
and (Uz)"ﬂ1 /2 are known, the 2M components

~of U% and (Ux) ‘are’determined by Egs. (3.7-

and Eq (3 8) leads to the other,

n—1/2
Ry and

8). Furthermore, (Pm)} in ‘Eqgs. (3.7-8) is a fune- -

tion of (um)?. Therefore, Egs. (3.7-8) are im-

plicit equatrons of U? and (UI)J To solve them; .

~ Newton’s method is used Usually, two or three
Newton’s steps are needed for a satisfactory con-

Unfortupately, when the'source terms are stnﬁ'

ences between (um) _l//2 and (um)"+:/: will be:-

‘amplified and result' in huge dlfferences between

' 142 ns=1f2%
(pm);21jz and (pm)7iifa

n 1/2

~in turn ca,uses blgrdrﬂ'eren,ce between (um,g)j_l/;l 8

and ()
* the numerical (‘alculahon for (um)" and (um )"

| (3. 6)‘ \

mesh node (z,,t") at the new time level.
B ~ shown in Frg 3.4, the new SEs take the shape of
Ne‘ct a5 shown in Flg 3 3, we 1mpose speee- :"”a ‘rectangular area with a line segment stxcl\mg

“out on the top of the rectantrle In this new con-
~struction, we 1mpose the space- -tife ﬁux balance
" over the’ same CE.. and CE;. However the cal-
) \cula,tron is drﬁerent in the folIowmg two aspects:

k (1) the calculatlon of (um t) i1 /2 is 51mply by us-

J /25 .

That drﬂ'erence will sions, three unknowns are to be determined at

;L+ll//22 Refer to Eq. (3.6). As a result,

J
by Egs. (3.7- 8) is contaminated by the round-off

errors, and the iterative procedure in Newton s

for O method farls to converge

S M. Therefore the dlstrlbutrons‘_,

The remedy is to avoid the amplification ef-

fect by re-distributing the space-time region of

SE such that all source-term effects hinge on the
As

mg Lo c el
—-1/2 - .
(um t);;;,/z + (fm);;:,’j 0. (3.9
Here, 1o source term eﬁ'ect is mcluded In the

nomenclature of computatronal reactive flows, a

~frozen model is used. (ii) the integration of the
‘source ‘term aver the space—txrne ‘regions - is cal-

culated totally based on'the flow properties at
(zj,t"), i.e.,

hx -
ﬁ(c‘E,) .

f B .ds=
S(CE+)

Aa:At(pm)J (3. 10)

AzAt

ds =

(Pm)7- (3.11)

P

-Similar to that in the prei/ious construction, we

have 2M equations for 2M unknowns, and flow
solution at the new time step can be determined.

3.2 rTwo'{Spatial ~Dimensions

The space-trme drscretrzatron of Eq (2 8) based

- on the CE/SE method in two spatial dimensions
s a direct extension of that in one spatial dimen-
-sioni. “Details of the CE/SE method for conser-
~ the-above method fails. ESSentxally, small differ-

vation laws without source:term in two spatial
dlmensmns are-available in [2]

“For conservatron laws in two spatral dnmen-

each mesh point for each ‘consérvation equation:

[ab1 ]



%, Uz, U, where u is the density of a con-
served property. Therefore, three sets of space-
time conservahon condmons are reqmred at each
mesh point. Figure 3.5 shows a two- dlmensmnal

spatial domain formed by congruent tnangles“‘
with each triangle marked by either a filled or

‘an open circle. "The filled and the open circles

- steps.

The three-dlmensmnal SE in space tlme do-

. represent mesh pomts at two consecut1ve txme

main tal\es a screw-drrver shape as shown in-

Fig. 3. 6.
smoot_h‘and are dlscretrzed by the first-order
‘Taylor s"series eXpansion Across SES, discon-
tmulty of flow property is allowed First, we im-
pose the space- -time ﬂux balance over SE(1, 7,n),
where flow - propertles and their gradlents at
mesh point (z,y;,t,) are te be determined.

}{ o H;; d5 = / o
S(CEGiim) JeE(Gimn)
m=12.,M,

* dR,

m

‘"(3 12)

fwhere hZ, .’_ (¢ f,:';) ( fy) U m) is the: dlscretlzed,
. space-time flux vector.. Apply Gauss’ drvergence{ ,
. theorem to Eq. (3.12), and we get. '

/CE(i,j,n) ‘ E

U+ G + oy -]

dR = 0. (3.13)
Let :
o= prdRIV, (3.14
| Fmid. '/S.E(";J',n) Pndft] 31
V= dR (315)
CE(j3,n) Lo

being the space-time volume of SE(z Jyn). As:a =

result, Eq (3 13) can be written as

(fx,z),,,+(fy,,,> +<um,t> ~(p;,;>- 0.
o (3.16)

| Usmg Eq.(3. 16), (um t)" can be deterrnnned in

terms of (um )Ly (f,2)0js and (f4 ), for m =
1,2,.
propertles msnde SE(z 7 n) are determmed

Recall the the amplrﬁcatlon efl'ect caused by

‘the stiff source term. as discussed in the- last

Within the SE, flow propertles are

section.

in the three neighboring nodes.
Eq.(3.16), this results in huge differences of uz,,
“between the three neighboring ‘nodes.
‘quently, the discretized space-time flux conser-
‘ vatron w1ll be contammated by the round-off er-
rors.

When the source term is stiff, small
differences between the flow properties in the
three ‘neighboring nodes will be amplified and
cause huge differences between source terms pj,
According to

Conse-

The remedy is to avmd the amphﬁcatlon effect
by re—dlstrrbutlng the space—tlme regions such

“that all source—term effects hrnO'e on the mesh

node at the new time level. ‘As shown in Fig. 3.7,
the new SEs take the shape of a hexagonal cylin-
der with three surfaces sticking out on the top
of the cylinder. As such, the calculation of u,;

~_in each SE is simply by

,"~’“m,t + (f;,z)* +(fL, ) =0 (3.17)

Here, no source-term effect is 1ncluded, 1e a

- frozen: model is used. ’

We then impose three space -time ﬂux balance
conditions over three CEs as shown in Fig. 3.8.

vEach CE takes the:shape of a-parallelepiped.

., M. Therefore,. the distributions of flow -

6

Here, the integration of the source term over the
space-tlme regions is calculated totally based on

the flow propertres at the new time step. Here,
- we take thenode (z;, ¥;,t") at the new tlme step,

where: unknowns ‘are to be solved

8 fgwm
CR ds_—-(pm)”, (319)
SCE) "

- h} :ds= -;(pm);‘j.' : (3.20)
S(CEs) - 3 e

é’:

(Pm) 6" (3.18)

“95

Equations (3.18-20) are. 3M correlatlons for M
unknowns, and flow properties and their gradi-
ents at (a:,,;yj,t ) can be determmed In addi-
tion, (pm)?; in Egs.. (3 18-20) is a function of
(um)” As a result, Eqs. (3.18- 20) are implicit
relations of (um)J, (um,)], and (2my)}. New-
ton’s method is used to solve the'equation set.



4 Numerical Examples

4.1 A Planar Shock Wave Passes A
Straight Gaseous Interface

. terfaces: 44°. 38° and TT7°.
9 1

~.is the slow gas and He is. the fast gas.

In our

calculations, the mesh size is 180 x 120.

When a planar shock wave crosses a gaseous in- -

terface of different species, shock-wave refrac-
tion, reflection, and transmission take place. The.

complex interaction between the shock wave and

Figure 4.1 shows density contours of the flow
fields with three different angles -of gaseous in-
The incident shock
moves from left to right with Mach number equal
to 1.4. When the shock hits theigaseous inter-

“face, a reflected shock and a transmitted shock

“are form. Across-the interface, the primary shock

the ‘gaseous interface usually causes significant.

roll-up of the gaseous interface. This flow phe-.

nomenon was-identified ‘as a favorable mecha-

Jis refracted.. The reflected shock propagates to

~the left of the interface in a circular fashion, and

msm to enhance ml\mg in SLlpeI‘SOIIlC combus-.

~tion. The flow pheniomenon was illustrated as.

shock induced Rayleigh-Taylor instability or the .
Richtmyer-Meshkov instability.. The theory of
wave impedance was also employed to study the.

’ ‘ﬂo,w‘physics. .More recently, Picone and Boris
(11] showed that misalignment of the pressure
and density gradients leads to a source of vortic-
ity: s ’

+wv V=W vv+vpp VP.

dt

In this paper, we apply the CE/SE method
to simulate this complex flow phenomeron.
When solving the flow equations of two different
species, -a species equation is added to the Eu-
ler equations.
_species can be determined by the mass conserva-
~ tion equatlon In thls case, the perfect gas law
is used, and pressure is given by

P = (r-1) [pé - E-,(u’ + vz)] . (4.2)

the transmitted shock propagates to the right of

‘the interface. When the incident angle « is less
‘than a critical value, three shocks intersect one

another at one point on the interface. When o
is larger than the critical value, the transmitted

shock tends to run away from the intersection

_point, and a free precursive wave shows up in

(a1

The transportation of the other -

where the specxﬁc heat ratlo of the ga.s mlxture )

P
Mﬂ‘n 15 Mei‘vz—li

, (4-3)
Mx(*n-l)+ MroesT)

Where M is the molecular weight for species 1.
The flow conditions are taken from the exper-

- . imental .and computational results reported by

Zeng and Takayama [12]. An air/He interface is

considered. The molecular weight of He is lighter:

~than that of air. For the same temperature, the
speed of sound. inside He is-faster. Therefore, air

“ample.
* two-dimensional unsteady flow is an analogy to

front of the incident shock.. For a shock with
Mach number 1.4 interacting an air/He interface,
the critical « is approxxmately 25" '

Another spec1a1 feature of the ﬂow ﬁeld is the
crater near the bottom surface. At the muzzle of
the crater, pressure drops and flow is accelerated
as:if there is an air jet charging into He. As
a result, a vortex ring is form and tremendous
mixing occurs between air and He. The results
compared well with the experimental and CFD

results reported-in [12].

4.2 Planar Shock Wave Passes Circu-
- lar Gaseous Interface

The last numerical example is extended to a pla-
nar shock interacting with circular’ Alr/He in-
terfaces.” The basic features of this flow field
are similar to that in the last numerical ex-
As reported by Yang et al. [13], this

“‘the three- dlmensmnal steady ﬂow produced by

an oblique shock impinging on a light gas jet.

~‘The light gas jet is-immersed in a coflowing, su-

personic air stream. - This flow mechanism can

greatly enhance the mixing of the light and heavy

gases: Essentially, the generated: vorticity can

stretch the gaseous interface such that the den-

-1



sity and species gradients across the interface are-

intensified. As-a result, the diffusive effect be-
comes important.

I'igure 4.2 shows the densl'ry rontours of the
evolving flow fields. The Mach number of the
incident shock is 1.2." The ‘mesh size is 480 x
120.

‘solution of the 900 K case.

- Figure 4.4 shows the flow
The higher temper-

~ature and pressure: behind the ramp shock ig-

nite the premixed gas.. Behind .the shock, the
heat release due to the chemical reaction results

-in_a continual pressure increase, which in turn

- the incident shock and the gaseous intetface is

.. shock, -and the transmitted shock intersect one

~another on .the interface. : Since the interface

is circular, the incident angle increases as time

evolves. ‘When t: >’ 0.4, the flow: becomes su-

~in Fig.4.3. During 2.01 <t < 2:55, the normal

shock propagates smoothly out of the c:omput’a.-lE
. :"‘rtlons of T and P are ‘obtained from y =
7 ¢m above the bottom wall: Three eatlier tests

tional domain.:

Flgure 4 3 shows the temporal evolutlon of two
He bubbles interacting with a planar shock. Ini-
 tially, two identical bubbles are placed one radius

Initially (¢ < 0.25), the angle be pween > CAUSES the ramp shock.to bend upward. Note

that in all previous calculations, the shape of the

“very small, and the incident shock; the reflected - ‘upward-bending ramp shock was a smooth curve.

In our, calculations, however, we observe a dis-
tinct change of the shock angle. In addition, we

-observe.fine ripples travel back and forth along

apart. During 1.78 <.t < 3.28, the transmitted

shocks and’ the: precursive ‘waves: interact with

one another and creats:a weaker precursive wave: *©°

(t = 1.78), which, later on; is caught up by !;he

- primary incident shock (2.78 < ¢t < 3.28). ‘At
" the later stage of the vortex roll:up; due to the

low-pressure region behind the bubble;-the left:

He bubble is sucked into the muzzle of the other - T “tifs ‘paiper, N apply the CE /SE metho d to

highly stretched bubble.

‘4.3 Shock Igﬁited Combustion

In thlS case, we cons1der the combustxon of a su-
~ personic, premlxed H,-air flow in a ramped duct.

Similar calculatlons were reported in several pre-

vious works [15 16 17] In the present ca,lcu}’a-\ :

tlons, we adopt a global finite-rate chemlstry

model for H2 -air reaction, orlgmally developed:

by Taki and Fujlwara [14]

«,5 Concludmg Remarks

50,

the detonation front. Similar instability was re-

percritical, i.e., the transmitted shock runs away :/portef‘m([ﬁg. 16] I;Iowevelr p:iwous calculations
“to the:right and a precursive wave:is created. :ﬂ'\&{ereAF o0 diffusive to resolve the waves..
~Note that full-computational domain is ‘plotted =

~-and temperature between the present calcula-

‘Figﬁr‘e 4."5’"shmi\fsfthe'conip‘arison of pressure

The distribu-
0.13

tions” and the- previous results.

with different numerical schemes were ‘consid-
ered, including an LU [15], a PNS [16], and a
TVD [17] schemes. Although different chemical
models were used in these calculations, the com-
parison was reasonable.

solve chemical ° reactmg flows.” By an "unified
treatment of space ‘and” tlme, source terms are
included as a volumetric integral over space-time

* conservation elements:-Moreover, for stiff source

terms, the amplification effect must be elimi-

nated: And-a re-distribution- of the space-time

Two inlet temperatures are consndereda 900 K
and 1200 K, which are below the ignition thresh-"

old. The pressure of the free stream is about 1
atm; and ‘the Mach number is 4. The mixture
- ratio of ‘the Hj/air is stochiometric. - The angle

region was adopted such that the source-term ef-

fects hinge solely on ‘the mesh nodes at new time
level. As-a‘tesult, the method is robust and sta-
ble for solving the conservation laws with under-

“resolved stiff source terms.” This\new method is
1 used to solve shock ignited combustion , and the

results compare favorably with previously pub-

lished data. In -addition, in order to assess the

numerical resolution of the contact discontinuity

-of different: specnes numencal tests of a planar
‘ghock wave passes ga.seous interfaces were con-



ducted. The results compared well with previous
experimental and computational results.
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(b) 58 degree.

(c) 77 degree. . -

Fig. 4.1 A planar shock interacts with
a straight gaseous interface .

h



[

Fig. 42 A planar shock interacts with a circular gaseous interface . -
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Fig. 4. 4 Shock 1gmted supersonrc combustlon with free stream Mach number = 4
temperature 900 K over a 10 degree ramp. . : ,
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Fig. 4.5 The companson of temperature

pressure between the present calculatxons

-and the prevrous results mcludmg an LU [15], aPNS [16] anda TVD [ 17] schemes.
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