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Abstract 
In this paper, we report a variation of the Space-Time 
Conservation Element and Solution Element (CE/SE) 
method, originally developed by Chang [1-5] for solving 
conservation laws. In the present method, a single 
conservation element at each grid point is employed for 
solving conservation laws no matter in one, two, and 
three spatial dimensions, instead of two in one-
dimensional, three in two-dimensional, and four in three-
dimensional problems, as proposed by Chang. As a 
contrast to Chang’s approach, the conservation element 
here is used to calculate flow variables only, whilst the 
gradients of flow variables are calculated by a central-
differencing reconstruction procedure. For equations in 
one spatial dimension, the present approach is a special 
case of Chang’s a-ε scheme. For equations in two and 
three spatial dimensions, the present method can be 
easily applied to a regular structured mesh. As such, the 
present method can be adopted as an alternative solver 
for time-accurate solutions in well-established CFD 
codes. Nevertheless, the present scheme inherits most of 
the advantageous features of the original CE/SE method, 
including efficient operational count, easiness of 
implementing non-reflective boundary condition, and 
high-fidelity resolution of wave motions. In particular, 
the Godunov type methods using Riemann solvers, i.e., 
the paradigm of modern upwind schemes, are not needed 
to capture shocks. Therefore, the computational logic is 
considerably simpler. To demonstrate the capability of 
the present method, numerical results of some 
benchmark problems are presented, including oblique 
shock reflection, supersonic flow over a wedge, and a 
three-dimensional detonating flow.  
 

1. Introduction 
The Space-Time Conservation Element and Solution 
Element Method, or the CE/SE Method, originally 
proposed by Chang [1-5], is a new numerical framework 
for conservation laws.  This method is not an incremental 
improvement of a previously existing CFD method, and 

it differs substantially from other well-established 
methods. The CE/SE method has many non-traditional 
features, including a unified treatment of space and time, 
the introduction of conservation element (CE) and 
solution element (SE), and a novel shock capturing 
strategy without using Rieman solvers. To date, 
numerous highly accurate solutions have been obtained 
[1-14, 17], including traveling and interacting shocks, 
acoustic waves, shedding vortices, detonation waves, 
shock/acoustic waves interaction, shock/vortex 
interaction, and cavitations. The design principles of the 
CE/SE method have been extensively illustrated in the 
cited references.  

The CE/SE method is a family of schemes, i.e., 
the a scheme, the a-ε scheme, and the a-α scheme. The a 
scheme determines the space-time geometry of the 
numerical mesh employed. The a-ε and the a-α schemes 
are extensions of the a scheme for nonlinear equations 
and for shock capturing.   

In the CE/SE method, the space-time domain of 
interest is first divided into many Solution Elements 
(SEs). In each SE, flow variables are assumed 
continuous. A first-order Taylor series is then used by 
Chang to discretize the flow variables. Thus the scheme 
is second-order accurate. Across the boundaries of 
neighboring SEs, flow discontinuities are allowed. Flow 
variables are calculated through a local space-time flux 
balance, which is enforced by integrating over the 
surfaces of a Conservation Element (CE). Unlike SEs, 
various CEs could be imposed for local and global space-
time flux balance.  

In original scheme, the number of the CEs 
employed marches the number of unknowns designated 
by the scheme. In addition to the flow variables, the 
spatial gradients of flow variables are also treated as 
unknowns. As a result, two CEs are used to solve a one-
dimensional conservation equation, because the variable 
u and its spatial derivative ux are the unknowns. 
Similarly, three CEs are used for two-dimensional 
equations, because u, ux, and uy are the unknowns, and 
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four CEs are used for the three-dimensional conservation 
equation. As shown by Chang, triangles and tetrahedrons 
are used as the basic mesh stencil to construct the 
necessary CEs for two- and three-dimensional equations. 
We remark that unlike the modern upwind schemes, flow 
variable distribution inside a SE is not calculated through 
a reconstruction procedure using its neighboring values 
at the same time level.  Instead, they are calculated as a 
part of local space-time flux conservation.  

In this paper, the original CE/SE method is 
modified such that only one CE at each grid point is 
employed for equations in one, two and three spatial 
dimensions. As a contract to the original CE/SE method, 
the CE in the present method is used only to calculate the 
flow variables, while the spatial gradients of the flow 
variables are calculated by a central differencing method. 
For equations in two spatial dimensions, the present 
method allows the use of quadrilaterals and/or polygons 
in either structured or unstructured meshes.   For 
equations in three spatial dimensions, general 
polyhedrons can be used as basic mesh shapes. Thus, the 
present modified CE/SE method is applicable to general 
unstructured meshes with mixed elements of various 
shapes.  As such, it can serve as an alternative solver for 
time-accurate solutions in well-established CFD codes. 
The rest of the paper is organized as follows.  

In Sec. 2, we introduce the modified space-time 
CE/SE method for the Euler equations in two spatial 
dimensions. In Sec. 3, the modified CE/SE method is 
extended to three spatial dimensions.  In Sec. 4, 
numerical examples will be presented to demonstrate the 
capabilities of the present method. We then offer the 
concluding remarks and give cited references. 

 

2. The Modified CE/SE Method for 2D 
Euler Equations 

Consider the two-dimensional unsteady Euler equations 
of a perfect gas:  
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where m=1, 2, 3, and 4  indicates the four equations 
(u1=ρ, u2=ρu, u3=ρv, u4=Et). Following Chang’s 
treatment of space and time, we let x1= x, x2= y, and x3= 
t be the coordinates of a three-dimensional Euclidean 
space E3. As such, Eq. (2.1) is equivalent to the integral 
equation: 
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where S(V) is the boundary of an arbitrary space-time 
region V in E3, and the space-time current vector mh

�

= 

(fm, gm, um).  Equation (2.2) is enforced over a space-time 
region, named conservation element (CE), in which 
discontinuities of flow variables are allowed. The actual 
numerical calculation is carried out in a discrete sense by 
using solution elements (SEs), in which the flow 
variables are assumed smooth and can be approximated 
by a specified function.  

In the original CE/SE method, the number of 
CEs associated with each grid point must be identical to 
the number of the unknowns. In the present approach, 
however, only one CE associated with each grid point is 
used for solving the flow variables um in one, two, and 
three spatial dimensions. The calculations of spatial 
derivatives umx and umy will be based on a central 
difference reconstruction procedure.  

 

2.1 The Space-Time Geometry of the CE and SE 

To proceed, we define CEs and SEs in the modified 
CE/SE method.  First, the entire computational domain is 
divided into non-overlapping quadrilateral cells. Refer to 
Fig. 2.1 (a). The centroid of each cell is denoted by a 
square symbol, which is also the grid point in the 
modified CE/SE method, e.g., point Q in Fig. 2.1.  The 
set of these points is denoted as Ω. At each grid point, 
we construct one CE and one associated SE.  

The grid points Q, A1, A2, A3 and A4 are at time 
level t = tn, where new numerical solutions of flow 
variables are calculated.  Points Q′, A1′, A2′, A3′ and A4′ 
are the corresponding points at time level t = tn-1/2, and 
points Q′′ , A1′′ , A2′′ , A3′′  and A4′′  are at time level t = 
tn+1/2. Hereto forth, the above rule is applied to all mesh 
nodes for denoting the time level, i.e., the superscript ′ 
for t = tn-1/2, and the superscript ′′  for t = tn+1/2. 
Associated with point Q, the SE(Q) is defined as the 
union of the quadrilateral cylinder B1′B2′B3′B4′B1′′B2′′  
B3′′  B4′′  and a horizontal mid plane A1B1A2B2A3 B3A4B4. 
Refer to Fig. 2.1(b).   

The CE(Q) associated with the point Q is 
defined as the cylinder A1B1A2B2A3B3A4B4 A1′B1′A2′B2′ 
A3′B3′A4′B4′. Refer to Fig. 2.1(b).  The centroid of the 
top surface of this CE, i.e., the polygon A1B1A2B2A3B3 
A4B4, is used as the solution point, which is denoted by 
Q*. All flow variables and their spatial derivatives are 
solved and stored at point Q*. The set of the solution 
points is denoted as Ω*. In general, point Q* is different 
from point Q.  

The flow variables are assumed smooth inside 
the SE, and the structure of the flow solution can be 
descretized by a prescribed function. Following Chang’s 
approach, we discretize the flow variables by the first 
order Taylor series expansion. That is, for any (x, y, t) ∈  
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SE(Q), um(x, y, t), fm(x, y, t) and gm(x, y, t) are 
approximated by: 
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Fig. 2.1:  The space-time geometry of the modified 
CE/SE method: (a) representative grid points in an x-y 
plane, (b) the definitions of CE and SE, and (c) the 
parallel translation of the quadrilateral A1

*A2
*A3

*A4
*. 
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Where w can be function u, f, g or q, and xQ*, yQ*, and tn 
are the space-time coordinates of Q*. Variables wm, wmx, 
wmy and wmt on the left hand side of (2.3) are the 
discretized variables. If all these values are known, the 
flow solution structure inside the SE is fully specified. 
However, the above twelve variables are not totally 
independent. First, by employing Eq. (2.1), we have  

*** )()()( QmyQmxQmt gfu −−=           (2.4a) 

Second, by applying the chain rule, the spatial and 
temporal derivatives can be calculated by the 
corresponding Jacobian matrices multiplied by (umx)Q*  , 
(umy)Q*, or (umt)Q*. For example, 

*** )()()( QnxQmnQmx uAf =                     (2.4b) 

*** )()()( QnxQmnQmx uBg =        (2.4c) 
where n, m = 1, 2, 3, 4, and (Anm)Q* and (Bnm)Q* are the 
elements of the Jacobian matrices of fm and gm calculated 
at Q*. It is similar for (fmy)Q*, (gmy)Q*, (fmt)Q*, and (gmt)Q*,. 
As a result, the only independent discrete variables in 
each SE are (um)Q*, (umx)Q*,  and (umy)Q*.  Once these 
three variables are calculated, the flow solution structure 
inside the SE is completely determined.  
 

2.2 The Calculation of um  

To proceed, the discretized space-time current flux 
vector  

)),,(),,,(),,,((),,( **** tyxutyxgtyxftyxh mmmm =
�

     (2.5) 

Thus, the space-time flux conservation, Eq. (2.2), can be 
approximated by its discrete counterpart:  
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Substituting Eqs. (2.3), (2.4), and (2.5) into Eq. (2.6), we 
obtain the algebraic equation,  
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for l=1, 2, 3, and 4, indicating the spatial flux 
contribution from the four neighboring points, and 
m=1,2,3 and 4, indicating the four flow equations. 
Equation (2.7) will be used to calculate the numerical 
solution of um at point Q*. In what follows, we illustrate 
the geometrical treatments in Eqs. (2.7) and (2.8). Refer 
to Fig. 2.1.   

1. The spatial coordinates of the four neighboring 
solution points, i.e., points Al

*, are denoted 
by ),( **

ll AA yx  for l = 1,2,3, and 4.  

2.  ),( )()( l
q

l
q yx  for l=1, 2, 3, and 4, are the spatial 

coordinates of centroids of four quadrilaterals 
A1B1QB4, A2B2QB1, A3B3QB2, and A4B4QB3, 
respectively.  

3. Sq
(l) for l =1, 2, 3, and 4 are surface areas of the 

four quadrilaterals defined in 2. 

4. )0,,( )()()( l
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 for l = 1, 2, 3, and 4, and  
k = 1, 2, represent the eight surface vectors of the 
following eight lateral planes: A1′B4′A1B4, 
A1′B1′A1B1, A2′B1′A2B1, A2′B2′A2B2, A3′B2′A3B2, 
A3′B3′A3B3, A4′B3′A4B3, and A4′B4′A4 B4, 
respectively. Note that the surface vector is 
defined as the unit outward normal vector 
(outward from the interior of the CE) multiplied by 
its area.   

5. ),,( 4/1)()( −nl
k

l
k tyx  for l = 1, 2, 3, and 4, and  k 

= 1, 2, are the space-time coordinates of centroids 
of the eight lateral planes defined in 4.  

6. S is the area of the polygon 
A1B1A2B2A3B3A4B4, which is also the top surface 
of the present CE.  

We remark that Eqs. (2.7) and (2.8) represent the space-
time flux balance over the CE associated with point Q. 
The first term at the right hand side of Eq.(2.8) is the 
space-time flux through the bottom of the CE, 
contributed by the four neighboring cells at the time level 
n-1/2. The remainder four terms, at the right-hand-side of 
Eq.(2.8), are the space-time fluxes through the eight 
lateral plans of the present CE, and they are calculated by 
a inner product between the space-time vector (fm, gm, um) 
and the surface vector )0,,( )()()( l

ky
l

kx
l

k nnn =�

. The fluxes, 
calculated by the right hand side of (2.8), are balanced by 
the space-time flux through the top surface (with the area 
S) of the CE. Since linear distribution of the flow 
variables is assumed, the flux through the top surface is 
straightforwardly represented by (um)n at central point Q* 

multiplied by its area S. Because all flow conditions at 
the n-1/2 time level are known, Eqs. (2.7) and (2.8) are 
the explicit method for calculating of (um)n at point Q*.  
 

2.3 Calculations of umx and umy  

A central difference type reconstruction approach is 
employed to calculate (umx)Q* and (umy)Q*. First, we 
perform a parallel translation of the quadrilateral 
A1

*A2
*A3

*A4
*, so that the centroid of the new 

quadrilateral A1
oA2

oA3
oA4

o coincides with the solution 
point Q*.  Refer to Fig. 2.1(c). The centroid of the 
quadrilateral A1

*A2
*A3

*A4
* is denoted as Q°. Let 
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where l=1, 2, 3, and 4, denoting the four corners of the 
quadrilateral. According to the definition of SEs, we 

calculate um at points o
lA  (for l = 1, 2, 3, and 4) by the 

following Taylor series,  
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where an expansion in time is also included.  
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Similarly, by using solutions at oA2 , oA3 and Q*, we can 

get )2(
mxu and )2(

myu . By using solutions at oA3 , oA4 and Q*, 



 

 5

we get )3(
mxu and )3(

myu . By using solutions at oA4 , oA1 and 

Q*, we get )4(
mxu  and )4(

myu . Finally, we calculate umx and 
umy at Q* by a simple average: 
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For flows with steep gradients or discontinuities, Eq. 
(2.13) is modified by a re-weighting procedure: 
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where l = 1, 2, 3, and 4, and m=1, 2, 3, and 4. In Eq. 
(2.14), α is an adjustable constant. Usually α = 1 or 2.  
The above re-weighting function is simple and effective 
to suppress spurious oscillations near shocks.  This 
concludes the formulation of the CE/SE method for the 
Euler equations in two spatial dimensions. We remark 
that  

1. The present modified CE/SE method is an 
explicit scheme, which is suitable for parallel 
computations. 

2. For uniform mesh, the grid point Q coincides 
with the solution point Q*, and the translated point 
Q°. In this case, the above scheme can be greatly 
simplified. 

3. The present scheme is a general framework for 
both structured and unstructured quadrilateral meshes. 
For structured meshes, the set of all grid points (Ω) 
can be divided into two subsets Ω+ and Ω−. If a point 
Q belongs to Ω+ (or Ω−)its neighbors A1, A2, A3 and 
A4 belong to Ω− (or Ω+). The flow solutions at mesh 
points in Ω+ leapfrog the solutions at mesh points in 
Ω− in time marching. Therefore, only half of the grid 
points are needed for each time marching calculation 
for a half time level, i.e., staggering mesh in time.  

4. In general, the above formulation can be easily 
extended for any polygon shape meshes. Therefore, a 
calculation method using mixed cells can be 
developed.  For example, one could use triangles to 

fill a complex spatial domain, while quadrilaterals 
could be conveniently used in the near wall regions.  

5. For one-dimensional uniform mesh case, the 
present scheme is a special case of Chang’s a-ε 
scheme for ε=0.5. According to Chang’s analysis, the 
present scheme is second-order, and the stability 
constraint is CFL ≤1. Interested readers are referred to 
[1-2] for details of the stability and consistence 
analyses of the scheme. 

 
3. The Modified Space-Time CE/SE Method for 3D 

Euler Equations 
 

Consider the following three-dimensional Euler 
equations of a perfect gas:  
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where m = 1, 2, 3, 4, and 5. Let x1 = x, x2 = y, x3 = z, and 
x4 = t be the coordinates of a four-dimensional Euclidean 
space E4. The corresponding integral equations of Eq. 
(3.1) are: 

0
)(

=⋅∫ VS m sdh �
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where mh
�

=(fm, gm, qm, um) with m=1, 2, 3, 4, and 5. S(V) 
is the boundary of an space-time region V in E4. In the 
following, the scheme is illustrated in the following three 
subsections: (1) definitions of CE and SE, (2) the 
calculation of um, and (3) calculations of umx, umy, and 
umz. 
 

3.1 Definitions of CE and SE 

First, the whole computational domain is divided into 
non-overlapping hexahedrons, in a structured or 
unstructured mesh. The centroid of each hexahedron is 
the grid point, which is denoted by a square symbol, e.g., 
point Q in Fig. 3.1(a). The set of all these mesh points is 
denoted as Ω. In Fig. 3.1(a), one such hexahedron is 
plotted, i.e., B1B2B3B4B5B6B7B8.  Obviously, six 
neighboring hexahedrons and their grid points are 
connected with this hexahedron. For convenience, only 
one such neighboring point A1 is shown in Fig. 3.1(a). 
The six neighboring grid points connected to Q are 
denoted as A1, A2, A3, A4, A5 and A6. These neighboring 
hexahedrons share the following common surfaces with 
the central hexahedron: B1B4B8B5, B1B2B6B5, B2B3B7B6, 
B3B7B8B4, B1B2B3B4 and B5B6B7B8. 

Note that the grid points Q, A1, A2, A3, A4, A5 
and A6 are at time level t = tn, where the numerical 
solutions are calculated. Their corresponding points at 
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time level t = tn-1/2 are Q′, A1′, A2′, A3′, A4′, A5′ and A6′; 
and points Q′′ , A1′′ , A2′′ , A3′′ , A4′′ , A5′′  and A6′′  are at 
time level t = tn+1/2.  
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Fig. 3.1: The representative grid points in x-y-z plane 
and the definitions of CE and SE (a), and the 
parallel tanslation (b). 

Refer to Fig. 3.1(a).  The SE associated with 
point Q is defined as the union of the following space-
time volumes: (1) a four-dimensional space-time 
cylinder B1′B2′B3′B4′B5′B6′B7′B8′B1′′B2′′B3′′B4′′B5′′B6′′  
B7′′B8′′ , (2) a spatial volume of the present hexahedron 
B1B2B3B4B5B6B7B8, and (3) six spatial pyramids: 
A1B1B4B8B5, A2B2B6B5B1, A3B3B7B6B2, A4B4B3B7B8, 
A5B1B2B3B4, and A6B5B6B7B8. Note that the 
combination of the spatial volumes defined in (2) and (3) 
is a spatial polyhedron A1B1B5A2B2B6A3 B3B7A4B4 
B8A5A6.  Hereto forth, this particular polyhedron is 
denoted as CES(Q).  

The CE is defined as a space-time cylinder 
generated by translating CES(Q) from t = tn-1/2 to t = tn, 

or the space-time volume A1B1B5A2B2B6A3B3B7A4B4 

B8A5A6A1′B1′B5′A2′B2′B6′A3′B3′B7′A4′B4′B8′A5′A6′. 
Thus CES(Q) is the projection of the CE into the space at 
t = tn. The centroid of CES(Q) is defined as the solution 
point and is denoted by a Q*. In general, Q* does not 
coincide with Q.  Flow variables and their spatial 
derivatives are solved and stored at Q*. The set of the 
solution points is denoted as Ω*.  

Inside a SE, the flow solutions are assumed 
smooth, and we use the first order Taylor series 
expansion to discretize um(x, y, z, t), fm(x, y, z, t),  gm(x, y, 
z, t) and qm(x, y, z, t).  That is, for any space-time 
location inside SE(Q), we use the following function to 
approximate them: 

 )()()(),,,( ***
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QQmxQmm xxwwtzyxw −+=  
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 )()( *
n

Qmt ttw −+              (3.3) 
 
Here w can be function u, f, g or q. Thus if all flow 
solutions, the spatial flux functions, and their spatial and 
temporal derivatives at Q* are known, the entire solution 
inside the SE is determined.  By employing Eq. (3.1), 
one gets 

**** )()()()( QmzQmyQmxQmt qgfu −−−=             (3.4) 

Similar to that in two spatial dimensions (refer to Sec. 2), 
the spatial derivatives of flux functions can be calculated 
by using the flow solutions and their spatial derivatives 
through using the chain rule. Therefore, in three spatial 
dimensions, the independent discrete variables at each 
solution point are um, umx, umy and umz.  
 

3.2 The Calculation of um, 

The space-time flux conservation, Eq. (3.2), can be 
calculated by using its discrete counterpart:  

0
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                                           (3.5)  

where the discrete space-time current vector is 
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Substituting Eqs. (3.3), (3.4), and (3.6) into Eq. (3.5), we 
obtain 
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where l = 1, 2, 3, 4, 5, and 6, denoting the flux 
contributions from the six neighboring cells, and m=1, 2, 
3, 4, and 5 denoting the five unknowns of the three-
dimensional Euler equations. The symbols used in 
Eqs.(3.7) and (3.8) are similar as that in section 2.  

The first term on the right hand side of Eq. (3.8) is the 
calculation of space-time flux through boundary of 
CE(Q) at  t = tn-1/2.  The other terms are the space-time 
fluxes through the lateral volumes of CE(Q) during the 
time evolution process. The space-time flux is then 
balanced by the flux through the boundary of the CE(Q) 
at t = tn, which is simply (um)Q* multiplied by V. 
 

3.3 Calculations of umx umy and umz  
First, the polyhedron A1

*A2
*A3

*A4
*A5

*A6
* is moved to be 

A1
oA2

oA3
oA4

oA5
oA6

o, so that the centroid of the new 
polyhedron coincides with the solution point Q*. Refer to 
Fig. 3.1(b). Let the centroid of the volume 
A1

*A2
*A3

*A4
*A5

*A6
* be denoted as Q°, and 

oQQ xxx −= *δ , oQQ yyy −= *δ , oQQ zzz −= *δ , then we 

have 
xxx

l
o
l AA δ+= * ;   yyy

l
o
l AA

δ+= * ;  zzz
l

o
l AA

δ+= *     (3.9) 

where l=1, 2, 3, 4, 5, 6.  We can then use the values of um 
at points A1

o, A2
o, A3

o, A4
o, A5

o, A6
o and Q*, at  t = tn to 

calculate the spatial derivatives of flow variables at point 
Q*. For example, by using the values of um at points oA1 , 

oA2 , oA5  and Q*, i.e., n
Am ou

1
)( ' , n

Am ou
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)( ' , n
Am ou

5
)( '  and 

n
Qmu *)( , we can calculate )1(

mxu , )1(
myu , and )1(

mzu . Note 

that the superscript (1) denotes this particular tetrahedron 

composed of points oA1 , oA2 , oA5  and Q*.  First, we use 
the Taylor series expansion to get   
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where l = 1, 2, 5.   We can then obtain the following 
formulation for spatial derivatives )1(

mxu , )1(
myu  and )1(

mzu :  
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Similarly, by using points other seven sets of points, we 
can get the other seven similar sets of, )(k

mxu , )(k
myu , )(k

mzu  
(k=2, 3, 4, 5, 6, 7). Finally, we can obtain the umx, umy 
and umz at Q*

 by a simple average procedure:  
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or the following re-weighting method: 
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with  l = 1, 2, 3, 4, 5, 6, 7, 8, and  m = 1, 2, 3, 4, 5. α is 
an adjustable parameter and usually, α = 1 or 2.  As in 
section 2.3, we can get the similar remarks as in two-
dimensional equations. 

 
4. Numerical Results 

 
In order to demonstrate the capabilities of the present 
scheme, the following flow problems are calculated: (1) 
oblique shock reflection on a flat plate, (2) a shock over 
a wedge, and (3) three-dimensional detonation wave 
propagation. Details of these testing problems and the 
numerical results by the present CE/SE method are 
provided in the following sections. 
 
4.1 Shock Reflection on a Flat Plate 

This testing problem was proposed by Yee et al. [15]. 
By imposing suitable upstream boundary conditions, an 
oblique shock is reflected on a flat plate. The 
computational domain is [4.0×1.0]. The flow conditions 
are: 

Ahead of shock: 
 )71428.0,0.1,0.0,9.2(),,,( =pvu ρ  

Behind the shock: 
 )5282.1,7.1,50632.0,6193.2(),,,( −=pvu ρ            (4.1) 

where u and v are the x and y components of velocity, ρ 
is density, and p is pressure.  The flow condition before 
the incident shock is imposed on the left lateral 
boundary. The after-shock condition is imposed on the 
top horizontal boundary.  The lower horizontal 
boundary is a solid wall, where a reflective condition is 
used.  The right lateral boundary is a supersonic outlet, 
and a non-reflective condition is imposed. Note that the 
details of the non-reflective condition treatment in 
setting of the CE/SE method can be found in reference 
[8]. The analytical solution of the reflected shock is 
provided in [15]. 

The computational domain is decomposed into 
19200 uniform quadrilaterals. Because a structured 
mesh is used in this calculation, only half of these mesh 

points, i.e. 9600 quadrilaterals, are used for time 
marching in each half time step. Figure 4.1(a) shows the 
pressure contours, calculated by the present scheme. The 
angle of the reflected shock is 23.28o, which compares 
well with the analytical solution. Figure 4.1(b) shows 
the distribution of the pressure coefficient, Cp, at the 
mid-section of the computation domain. The pressure 
coefficient is defined as  

)1(2
2 −=

∞∞ p
p

M
Cp γ

            (4.2)  
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Fig. 4.1:  The Euler solution of a steady-state shock 
reflection problem: (a) pressure contours;  (b) pressure 
coefficient distribution at the mid-section of the 
computation domain (y=0.5); and (c) Convergence 
histories for Um, m=1, 2, 3, 4. 

 
The numerical result here shows that the pressure jump 
condition agrees well with the analytical solution. Note 
that there is only one data point in the jump condition 
for both incident shock and the reflected shock. In 
addition, the numerical resolution of the reflected shock 
is identical to that of the incident shock. 
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Figure 4.1(c) shows the convergence history of 
the four computational variables, denoted as um, for m = 
1, 2, 3, 4.  The abscissa N is the number of time steps, 
and the ordinate is the errors, which are defined as the 
difference between numerical results and analytical 
solutions, i.e., 

c

N

j
m

n
jmm NuunE

c

/]ˆ)[()(
1 








−= ∑
=

                 (4.3) 

where mû is the analytical solution, and Nc is the 
number of mesh points employed in the present 
calculation. Figure 4.1(c) shows that numerical solutions 
converge to the analytical solutions monotonically 
except U3 near N = 250 where the E3 wiggles. This is 
due to the incidence of the imposed oblique shock 
reaching the lower solid wall boundary.  
 

4.2 Shock Wave Diffraction over a Wedge 

This is a flow field taken from the flow album edited by 
van Dyke [16].  A planar shock wave at Ma=1.3 moves 
towards a wedge of θ = 26.565o.  Only half of the flow 
field is calculated because of the symmetric condition. 
The computational domain is [−0.8, 3.2]×[0, 1.1], 
excluding the wedge. The whole domain is decomposed 
into 66,864 non-uniform quadrilaterals.  Here a 
structured mesh is used, so only half of mesh points are 
used for time marching in each half-time step. To 
enhance the visual effect, the solution of the full 
domain is presented in Fig. 4.2.  
 

 
                 ( a ) t=0.725                                                                             

 

 
                 ( b ) t=1.2125 

 
                       ( c ) t=1.825 

Fig. 4.2: Density contours at three different times 
compared with the experimental photographs.  

 
At t = 0, the incident planar shock wave is 

placed at x = −0.5. A slip and reflective condition is 
imposed on upper and lower horizontal boundaries. 
Note that the lower horizontal boundary is the 
symmetric central line.  The slip and reflective condition 
is also imposed on the surfaces of the wedge.  The right 
lateral boundary is a supersonic outlet, where the non-
reflective condition is imposed.  

Figure 4.2 shows the density contours at three 
different times. When the planar shock reaches the 
wedge, a circular reflection wave is generated. As the 
shock passes the wedge, flow field separates and forms 
vortices around the two sharp corners.  Further 
interaction between shock and vortices produces 
increasingly elaborate patterns of shock waves, slip 
lines and vortices.  These results agree well with the 
experiment result [16] in flow pattern except those 
phenomena induced by the viscous effect. Here, it 
should be point out that the size of the experimental 
photos is a little smaller than that of the numerical 
figures. 

 
4.3 Three-Dimensional Detonation 
 
The present scheme has been extended for solutions of 
conservation laws with source terms. Previously, we 
have reported numerical simulations of one- and two-
dimensional detonation waves by using the CE/SE 
method [17].  Those results have been validated by 
compared with analytical solutions and previously 
numerical solutions reported by other numerical 
analysts.  In the present paper, a three-dimensional 
simulation of detonation wave is performed by solving 
the reacting Euler equations. The chemical reactions are 
modeled by single-step, irreversible, finite-rate kinetics. 
Two chemical species are consider, i.e., the reactant 
and product. One species equation is added to the Euler 
equations and solved simultaneously.  After proper 
non-dimensionalization, the controlling parameters of 
this detonation wave are the overdriven factor f, the 
specific heat ratio γ, the activation energy E+, and the 
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heat release rate q0. In the present calculation, f = 1.6, 
γ=1.2, E+= 50, and q0 = 50.   
 

  
(a) 

 
(b) 

Fig. 4.3: A simulated three-dimensional detonation 
wave in a square duct: (a) temperature contours, and (b) 
product species contours. 
 

The computation domain is [8×8×6], which is 
decomposed into 6.4 millions hexahedrons. Since a 
structured mesh is used, only half of the mesh points 
(i.e., 3.2 millions hexahedrons) are used for time 
marching in each half-time step. Reflective wall 
condition is imposed on the four lateral boundaries. The 
fresh reactant travels from top to bottom, and is 
consumed by the flame front. On the top surface, the 
incoming flow condition is specified.  On the bottom 
surface, a non-reflective boundary condition is 
imposed. The coordinate system is chosen such that the 
flame front stays around z=0.5 section of the 
computational domain.  

Figure 4.3 shows snap shots of temperature and 
product species contours. The flow field is composed of 
the quiescent state of the reactant before the shock, a 
flame zone with finite rate reaction, and the equilibrium 
state after the reaction zone. Due to cellular structure of 
the detonation, the flow field is very complex.  The 
shock front is characterized by mushroom-shaped 
incident shocks interacting with a Mach stem.  The width 
of the Mach stem changes in a periodic fashion and 
many strong vortices are created during the process. We 
observe the classical picture of “explosion within 
explosions,” sustained by the propagation of the 
transverse cells in the detonation front.  The contours 
show high temperature regions around triple points.  At 
each collision of triple points, vortices with opposite 
signs will be created and propagated downstream.  Due 
to these vortices, unburned reactant is engulfed into the 
flame zone and the unburned pockets behind the flame 
zone are created.  The continuous burning of the 
unburned pockets behind the flame zone greatly 
extended the effective flame zone. 
 
 

Concluding Remarks 
 

In this paper, a modified space-time CE/SE 
method for two- and three-dimensional Euler equations 
are introduced. In the present method, only one 
conservation element (CE) is employed at each grid 
point.  Space-time flux conservation is enforced over the 
CE to calculate the flow variables um.  As a contrast to 
Chang’ original CE/SE method, the calculation of the 
spatial gradients of the flow variables is not based on the 
principle of space-time flux conservation. Instead, a 
central difference reconstruction procedure is employed 
to calculate them. As a result, quadrilaterals and 
hexahedron are used as the basic mesh elements for the 
two- and three-dimensional Euler equations, 
respectively. This arrangement can be illustrated as a 
straightforward extension of the CE/SE method for the 
one-dimensional equations. It should be noted that the 
two- and three-dimensional formulations of the present 
scheme are general and suitable for structured as well as 
unstructured meshes.  

Nevertheless, the present modified space-time 
CE/SE schemes retain most of the favorable features of 
the original CE/SE method, including the unified 
treatment of space and time, accurate computation of 
space-time flux conservation, and high-fidelity 
resolution of unsteady flow field.  The capabilities of the 
present method are demonstrated by the numerical 
results of several standard flow problems. It is shown 
that the present scheme is accurate in capturing shocks 
and vortices, and very robust.  
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