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Abstract. In this paper, we report the calculations of low-Mach-number viscous 
flows without preconditioning by the space-time CE/SE method [12,3]. It is 
shown that the CE/SE method can sustain highly resolved solution for long-term 
calculations with large numbers of time steps. Several numerical examples are 
calculated to demonstrate the efficiency and accuracy of the CE/SE method in 
calculating low-speed flows. 
 
1. Introduction 
Many low-Mach-number flows contain both compressibility effects and low-
speed regions, and the compressible equations must be used in the model. For 
example, low speed flows with significant temperature variations are compressible 
due to density variation induced by heat addition. Although flow speeds are slow, 
one must employ the compressible flow equations to model these flow fields. 
However, it is well known that the conventional CFD methods, which can handle 
high-speed compressible flow easily, fail miserably when applied to low-Mach-
number flows. In the past, due to wide applications of low-speed compressible 
flows, extensive studies have been conducted to construct viable numerical 
methods [4,5]. Conventional approaches can be divided into two categories: the 
pressure-based methods and the density-based methods. The pressure-based 
methods are extension of the projection method for incompressible flows. The 
SIMPLE schemes are typical examples.  The density-based methods are extension 
of methods for compressible flows with two modifications: (1) adding a pseudo 
compressibility term to the continuity equation, and (2) preconditioning the 
Jacobian matrix of the convection terms such that the eigenvalues are artificially 
brought closer to each other. Combination of the two special treatments enables 
one to fabricate an artificial hyperbolic system, which is amenable to be solved by 
conventional CFD methods in a limited number of time steps.   

To date, the newly developed space-time CE/SE method [1,2,3] has been 
used to calculate high-speed flows with shocks and aero acoustic flows. In this 
paper, we apply the CE/SE method to low-Mach-number compressible flows as 
well as incompressible by using the same flow solver for high speed flows. We 
show that numerical difficulties encountered when using the conventional CFD 
methods to calculate low-Mach-number flows do not exist if the space-time 
CE/SE method was used. Demonstrated by numerical examples, we show that the 
same CFD code, which has been used for shock capturing in high-speed flows, 
can be directly applied to low-Mach-number flows without any modification. We 
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remark that the size of the time step employed in the present calculations is still 
restricted by the CFL number and the von Neumann number. Thus a large number 
of time steps are needed to march the flow solution to its full development. Note 
that when conventional methods without preconditioning were used, false 
solutions would be obtained due to excessive artificial damping and accumulation 
of errors. The preconditioning procedure will artificially enhance numerical wave 
propagation and thus reduce the number of time steps required for calculations. As 
such, the error accumulation by the numerical schemes is avoided. Therefore, the 
key issue here is whether the numerical scheme employed can sustain highly 
accurate solution for a large number of time steps.  This issue is not restricted to 
low-speed flows only. In simulating a propagating normal shock over a long 
period of time, all upwind schemes show the so-called carbuncle effect, leading to 
numerical overflow.  

 The surprising finding reported here shows that the CE/SE method 
maintains the integrity of the flow solution when the simulation is carried out in a 
large number of time steps. In other words, the accumulation of errors is 
minimum, and the local and global flux conservation in a space-time sense has 
been truly maintained. In this paper, we first briefly summarize the CE/SE method 
for Navier Stokes equation. Then three numerical examples are included to 
demonstrate capabilities of the newly developed Navier-Stokes solver for solving 
these low-speed flows.  

 
2. The CE/SE Method for the Navier Stokes Equations 
Consider the following two-dimensional Navier-Stokes Equations,  
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where m =1, 2, 3, 4 for the continuity, x and y momentum and the energy 
equations, and U = (ρ, ρu, ρv, Et). Here f im and gim are the inviscid fluxes, and fvm 
and gvm are viscous ones. Let x1 = x, x2 = y and x3 = t be the coordinates of a 
three-dimensional Euclidean space E3. The integral counterpart of Eq. (2.1) is 
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Here S(V) is the boundary surface of a space-time region V in E3, and mh
�

= (fim-fvm, 
gim-gvm, Um), and it can be decomposed into the following inviscid and viscous 
parts: 

vmimm hhh
���

−=  =  (fim,  gim, Um) - (fvm, gvm, 0)                                   (2.3) 
To perform the space-time integration in two spatial dimensions, triangular spatial 
mesh is used. Refer to Fig. 1. The grid points are distributed at the center of each 
triangle. In connection with its three neighbors, we define three conservation 
elements (CEs) and one solution element (SE) associated with each mesh node. At 
point G, three CE(l) (l=1,2,3) are the cylinders ABGFA′B′G′F′, BCDGB′C′D′G′ 
and DEFGD′E′F′G′. The SE is the union of four planes ABCDEF, G′G′′F′′F′, 
G′G′′B′′B′, G′G′′D′′D′ and their immediate neighborhood.  
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Inside each SE(j, n), the flow 
variables are assumed continuous, and 
the first-order Taylor series expansions 
is used to approximate Um(x, y, t), 
fim(x, y, t) and gim(x, y, t). To calculate 
the viscose fluxes, the midpoint rule is 
used. From Eq. (2.3), the third 
component of hvm is a null. Thus, in 
calculating the viscous fluxes, we only 
need to calculate integrals over lateral 
surfaces in the space-time domain. For 
example, in CE(2), the quadrilateral 
cylinder ABGFA′B′G′F′, we only need 
to integrate the viscous terms over four 
lateral surfaces ABA′B′, AFA′F′, 
GBG′B′ and GF′G′F′. Consider the 
integral of hvm on the surface AFA′F′, 
using the midpoint rule:   
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where ),,( tyx SSSS =∆
�

is the 
surface vector, defined as the unit 
outward normal vector multiplied by 
its area. And Q is the centroid of 
surface AFA′F′. Because the surface 
AFA′F′ belong to the SE of point A′, 
we can use the parameters at point A′ 
to approximate Um, Umx and Umy at 
point Q. Similar procedure is 
performed for surfaces ABA′B′, 
GBG′B′ and GF′G′F′. 

The space-time flux conservation 
over the three CE′s provides three 
algebraic equations for the three 
unknowns, U, Ux and Uy at each mesh 
node. Since the viscous terms are included, the addition of the artificial damping 
as that in the a-ε scheme is optional.  For flow with shocks, a re-weighting 
procedure is used for the jump condition, i.e., the a-α scheme [1,2]. This 
concludes the brief description the CE/SE method for solving the two-dimensional 
Navier-Stokes equations. 
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Fig. 1 A schematic of the CE/SE
scheme: (a) triangle mesh in two
spatial dimensions;  (b) The
definitions of the CEs and SE; (c)
the calculation of the space-time
flux. 
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3. Numerical Results 
 
Three low-Mach-number flows are calculated using the viscous CE/SE scheme. 
On the wall boundaries, a newly developed unified solid boundary treatment [6] is 
used. On the outlet and/or open boundaries, 
the non-reflective boundary condition is 
used.  

3.1 Buoyancy-driven gas flows 

The first example is a buoyancy-driven gas 
flow in a square box. The configuration 
consists of two insulated horizontal walls 
and two lateral walls with constant 
temperatures of Th (left) and Tc (right). For 
a small temperature difference between 
these two vertical walls, this problem has 
been extensively studied based on the 
incompressible flow equations with 
Boussinesq model for buoyancy force. For 
a large temperature difference, the 
compressible formulation must be 
employed.  

  The flow features of this 
buoyancy-driven cavity flow depend on 
Raylaigh number Ra, Frounde number Fr, 
the aspect ratio of the cavity, and the 
temperature difference parameter ε. Here 
only one case is shown in Fig.2 with 
Raylaigh number Ra = 105 and temperature 
difference parameter ε = 0.6, which 
represents Th/Tc = 4. The Frounde number 
and the aspect ratio are unity. 7200 
triangles (cells) are used. The calculation 
reaches the steady-state solution after about 
10,000 iterations. Fig.2 shows the velocity 
vectors and x-direction velocity distribution 
along the vertical centerline. The solution 
agrees well with previously reported data [7]. 
 
3.2 Driven Cavity Flow 

This is a benchmark problem for incompressibl
the full compressible Navier-Stokes equations
capabilities of the CE/SE scheme at the incomp
used. Figure 3 shows velocity vectors, and x
vertical centerline at Re = 1000. This solution ag
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Fig.2 Solution of the 
buoyancy-driven flow, (a) 
Velocity vectors, (b) u along 
the vertical centerline. 
e viscous flow calculations. Here 
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3.3 Flows over a circular cylinder 

The third example is an external 
flow over a circular cylinder. First, 
we consider Re = 40, and a steady-
state solution is shown in Fig. 4. 
Again, the full compressible 
equations are solved by the CE/SE 
method without preconditioning. 
The computational domain is [-
5,15]×[-5, 5], and 10,092 triangles 
are used.  Figure 4(a) shows the 
unstructured mesh near the circular 
cylinder. Figures 4(b)-(c) show the 
velocity vectors and Mach number 
contours of the flow solution. The 
location of the boundary layer 
separation on the cylinder surface and 
the size of the recirculating region 
(L/d≈2.0) compare favorably with the 
experiment data [9]. If the Reynolds 
number is increased to 200, the flow 
becomes unsteady, and Fig. 5 shows 
vorticity contours at two different 
times. The oscillating frequency 
compares well with the experimental 
data.   
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Fig.3. Solution of a driven cavity 
flows: (a) Velocity vectors and 
(b) u along the vertical 
centerline.
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Fig.5. Vorticity contours of the flow over a cylinder (Re = 200) at two different 

time steps. 

4. Concluding Remarks 
In this paper, we report the applications of the CE/SE method to low-speed flows 
without preconditioning. Numerical results show that the present CE/SE method 
for Navier Stokes equations can be used for flows at all speeds without 
preconditioning. This surprising finding, mainly achieved by low numerical 
dissipation in calculating space-time flux conservation, is in contrast to the 
traditional wisdom of treating low-Mach number flows. It shows that the present 
CE/SE solver can maintain solution integrity for calculation with a large number 
of time steps and error accumulation has been avoided by space-time flux 
conservation and a robust non-reflective boundary condition.  
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