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Abstract 
In this paper, we report a variation of Chang’s Space-
Time Conservation Element and Solution Element 
CE/SE Method for structured mesh. The algorithm of 
the present modified CE/SE method is even simpler 
than the original CE/SE method. Nevertheless, all 
advantageous features of the original CE/SE method 
have been retained, including a unified treatment of 
space and time, accurate calculation of the space-time 
flux, high-fidelity resolution of unsteady flow 
motions, and full compliance with the physics of 
initial valued problems. The present modified method 
is also extended to solve Navier Stokes equations. To 
calculate the viscous flux terms, a ‘midpoint rule’ is 
used. In the setting of space-time flux conservation, 
two boundary-condition treatments for solid wall are 
introduced. Numerical results show that the present 
Navier Stokes solver can be used for high-speed 
flows as well as low-Mach-number flows without 
preconditioning. Results of several standard flow 
problems show that the present method is efficient 
and accurate. 
 
1 Introduction 
The Space-Time Conservation Element and Solution 
Element Method (or the CE/SE Method for short), 
originally proposed by Chang [1], is a new numerical 
framework for conservation laws.  The CE/SE 
method has many non-traditional features, including 
a unified treatment of space and time, the 
introduction of conservation element (CE) and 
solution element (SE), and a novel shock capturing 
strategy without Rieman solver. More than all, the 
CE/SE method is a genuine multidimensional scheme 
because the method has been constructed without 

dimensional splitting. Thus, calculations of 
multidimensional equations and source terms are 
more realistic. To date, numerous highly accurate 
solutions have been obtained, including traveling and 
interacting shocks, acoustic waves, shedding vortices, 
detonation waves, shock/acoustic waves interaction, 
shock/vortex interaction, and cavitating flows. 

 In the original CE/SE method, the flow 
variable U and its spatial gradient Ux are considered 
as unknowns and that are solved simultaneously. 
Therefore, for equations in one spatial dimension, 
two CEs at each grid point are constructed to derive 
two discrete equations for U and Ux. Similarly, three 
and four CEs at each grid point are needed in two and 
three-dimensional cases, respectively.  

In this paper, the original CE/SE method is 
modified such that only one CE at each grid point is 
employed for equations in one, two and three spatial 
dimensions. As will be illustrated in the following 
sections, the definitions of the modified CE are very 
simple. Accordingly, the logic of the modified CE/SE 
scheme is simple and can be easily implemented. 

As compared to the original CE/SE method, 
CE in the present method is used to calculate U only;   
Ux is calculated by a central difference method . For 
equations in one spatial dimension, the modified 
scheme is a special case of Chang’s a-ε scheme. For 
equations in two and three dimensions, this new 
modified method can be easily applied to structured 
meshes. As such, it can serve as an alternative solver 
for time-accurate solutions in well-established CFD 
codes. The rest of the paper is organized as follows.  

 In Section 2, the modified CE/SE method 
for two-dimensional Euler equations will be 



illustrated. Two definitions of CE and SE will be 
presented. In section 3, the modified CE/SE scheme 
is extended to solve the Navier-Stokes equations. A 
‘midpoint rule’ is used to integrate the viscous fluxes 
as part of the space-time flux conservation. In section 
4, we discuss two numerical treatments for wall 
boundary based on the concept of space-time flux 
conservation. The first one is similar to traditional 
wall boundary treatment.  The second one is designed 
based on a novel pseudo-reflection concept, which 
proves to be more accurate and numerically more 
stable. In section 5, several prototype flow problems 
are calculated using the modified CE/SE scheme. The 
results are verified by comparing with experimental 
data or previously reported numerical solutions. We 
then offer concluding remarks and give cited 
references. 
 
2.  The Modified CE/SE Method for Two-
Dimensional Euler Equations 
 
Consider the two-dimensional unsteady Euler 
equations of a perfect gas: 

0/// =∂∂+∂∂+∂∂ yGxFtU mmm  ,   
 m=1,2,3,4           (2.1) 

Let x1=x, x2=y and x3=t be the coordinates of the 
three-dimensional Euclidean space E3. Assuming 
smoothness of the physical solutions, Eq.(2.1) is 
equivalent to the integral equation: 

0
)(

=⋅∫ VS m dsH  ,     m=1,2,3,4                        (2.2) 

Here S(V) is the boundary of an arbitrary space-time 
region V in E3, and Hm=(Fm, Gm, Um). 

 A CE in the CE/SE method is a space-time 
region, in which the space-time flux conservation, 
Eq. (2.2), is enforced. A SE is a different space-time 
region, in which the flow variables are supposed to 
be smooth and Eq. (2.1) is valid. Since the flow 
variables are smooth inside a SE, discretization of 
the flow variables with a prescribed order of 
accuracy can be performed. In the CE/SE method, 
the first order Taylor series expansion is used.  In 
what follows, two kinds of CEs and SEs are 
illustrated for the present modified method.  

 
2.1 CE and SE of the First Kind  
 
In Fig. 1(a), representative grid points in a x-y plane 
are depicted. There are two groups of grid points, 
marked by open circles and crosses, which represent 
mesh nodes at two different time levels. One CE 
and one SE are associated with a mesh point (i , j, 
n). Here the CE is the quadrilateral cylinder 
EFGHE’F’G’H’, and the SE is a union of the 

quadrilateral cylinder P”Q”R’S”P’Q’R’S’ and the 
horizontal plane EFGH. Refer to Fig. 1(b). 
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Fig.1 The representative grid points in x-y plane and 
the definitions of CE and SE. 
 
To proceed, for any (x, y, t) ∈  SE (i, j, n), Um(x, y, 
t), Fm(x, y, t) and Gm(x, y, t) are approximated by the 
first-order Taylor expansion: 
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Accordingly, 
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Thus Eq. (2.2) can be approximated by its discrete 
counterpart:  
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Substituting Eq. (2.3) into Eq. (2.1), one gets 
n

jimy
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jimt GFU ,,, )()()( −−=                 (2.6) 
Therefore, in two-dimensional case, the independent 
discrete variables at each grid point are Um, Umx and 
Umy. By substituting Eqs. (2.3) and (2.4) into 
Eq.(2.5), we obtain: 
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Equation (2.7) is the discrete equation for the 
numerical solution of Um. 

To solve Umx and Umy, numerical continuity 
of Um* at the common grid points E, F, G and H 
between neighboring SEs are assumed. Refer to Fig. 
2(b). This lead to the central difference equation for 
Umx and Umy: 
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For flows with discontinuities such as shocks, Eq. 
(2.8) can be further modified by a re-weighting 
procedure: 
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Where the re-weighting function W is defined by  
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Here α is an adjustable constant, usually α=1 or 2. 
Other limiters could also be used, e.g., the minmod 
function: 
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Equations (2.7) and (2.8) (or (2.9) or (2.10) ) are the 
modified CE/SE scheme for solving the 2-D Euler 
equations based on the CE and SE of the first kind.  
 
2.2 CE and SE of the Second Kind 

 
The representative grid points in x-y plane and the 
definition of CE and SE are depicted in Fig.2. For 
each mesh point (i , j, n), there is one CE and one 
SE. Here the CE is defined as a quadrilateral 
cylinder ABCDA’B’C’D’. The SE is the union of 
the quadrilateral cylinder EFGHE’F’G’H’ and the 
horizontal plane ABCD. Refer to Fig. 2(b). The 
second definition of CE and SE here can be obtained 
by performing a coordinate transformation of 45o on 
the CE and SE of the first kind. 
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Fig. 2 Representative grid points and the definitions 
of SE and CE of the second kind. 
 

Following the same procedure in the 
previous section, we can obtain the discrete 
equation for Um, 
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To proceed, we assume Um* from different SEs at 
the common grid points A, B, C and D have the 
same values. Refer to Fig. 2(b).  And, we have 
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And 
         cos( ) /θ = +∆ ∆ ∆x x y2 2  

         sin( ) /θ = +∆ ∆ ∆y x y2 2   
Uml1 and Uml2 can be considered as two directional 
derivatives. For the computations of flow problems 
with discontinuities, Eq. (2.13) can be replaced by 
the re-weighting function (2.9) or the minmod 
limiter (2.10). Equations.(2.11) to (2.13) are the 
modified CE/SE scheme for the two-dimensional 
Euler equations for the CE and SE of the second 
kind. 

 
3. Modified CE/SE Scheme for the Two-
Dimensional Navier-Stokes Equations 
 

Consider the two-dimensional Navier-Stokes 
Equations: 

yGxFtU mmm ∂∂+∂∂+∂∂ ///   

0// =∂∂−∂∂− yGxF vmvm , m=1,2,3,4     (3.1) 

where Fv and Gv are the viscose fluxes. The integral 
counterpart of Eq. (3.1) is 
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Where  

mH~ =(Fm-Fvm, Gm-Gvm, Um). 
To proceed, the CE and SE of the first kind is used. 
Similar to the treatment for the Euler equations, the 
space-time flux conservation Eq.(2.5) is enforced 
over a CE. However, the Hm* includes the viscous 
terms:  
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Since the viscose fluxes involve spatial gradient of 
flow variables, the midpoint rule is used to integrate 
the viscous fluxes. For example, the integral of Fv 
on the surface FQQ’F’ is calculated by 
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As a result, the discrete equation for Um is 
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Here λ=∆t/∆x, η=∆t/∆y, and (x1, y1, tn-1/4), (x2, y2, tn-

1/4), …, (x8, y8, tn-1/4) are geometric centers of the 
plans AHH’A’, AEE’A’,…,DHH’D’.  
 



In addition, it is better to include the viscous effect  
in the calculation of the time derivative term, for 
example, we can use: 
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(3.6) 
Because of Eq. (3.6), we use the dual mesh 
approach in solving the Navier-Stokes equations. 
That is, at every time level, flow variables at every 
grid point are calculated. To Umx and Umy, Eqs. (2.8)  
or (2.9) is used. Equations (3.5), (2.8) or (2.9) are 
the modified CE/SE method for solving the two-
dimensional Navier-Stokes equations. Using the 
same approach, we can also get a similar scheme 
corresponding to the second definition of CE and 
SE.  The above schemes can be easily extended to 
three-dimensional case. 

 

4. Boundary Condition Treatments 
 
In the CE/SE method, the boundary condition 
treatment is based on space-time flux conservation; 
it is very simple and can be easily implemented. For 
Euler equations, two boundary conditions are of 
concern: the reflective boundary condition and the 
non-reflective boundary condition. At the outlet or 
free surface, the non-reflective boundary condition 
are used. On solid walls or along a symmetry 
surface, the reflective boundary condition is 
applied. For the Navier-Stokes equations, the no-
slip condition along a wall boundary must be 
considered. In the setting of the CE/SE method, two 
treatments for the no-slip condition along wall 
boundaries are proposed, namely, the traditional 
solid boundary condition and the pseudo–reflective 
boundary condition. 

 
4.1 Traditional Wall Boundary Conditions  
 
Along a wall boundary, the non-slip condition is 
used, i.e., uw = vw = 0. In addition, the distribution 
of heat flux qn along the wall should be provided. 
Or, wall temperatures Tw should be given. Usually,  
an additional boundary condition is needed along 
the wall. The traditional approach is to specify null 
pressure gradient vertical to the wall along the 
boundary, i.e., ∂P/∂n=0. This condition is 
reasonable for boundary layer type flows. However, 
for flows with separation along the wall boundary, 
this treatment is only an approximation. To recap, 
the traditional boundary conditions along an 
insulated wall are  














=∂
∂

=∂
∂

=
=

0

0

0
0

n
P

n
T

v
u

w

w

                                        (4.1) 

 
 
4.2 Pseudo-Reflective Boundary Conditions  

 
For a wall parallel to the x-coordinate, no grid point 
at the solid wall is used. Instead, a reflective point 
blow the wall is used. This arrangement is similar to 
the boundary condition for solving the Euler 
equations. Refer to Fig. 3.  To calculate the flow 
variables at E, we use its mirror image, i.e., point E’ 
below the solid wall. Along the wall, since uw = vw= 
0, the flux normal to the wall is 
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Fig. 3 A schematic of the grid point distribution 
near the solid boundary 

          Since when the viscosity µ approaches zero, 
the Navier Stokes solution should asymptotically 
approach the solution of the Euler equations.  
Therefore, the above vertical flux Eq. (4.2) could be 
further modified by imposing the reflective 
conditions along the wall. In addition, if the 
insulated condition is used for the energy equation, 
one only needs to evaluate the value of ∂u/∂y in the 
calculation of the normal flux through the wall.  



In this pseudo-reflective wall boundary 
treatment, no unnecessary assumption is used. Thus 
it is simpler than the traditional boundary condition 
and it can be easily to be implemented. For the 
natural convection case, numerical results obtained 
using the pseudo-reflective solid wall boundary 
condition treatment are better than that obtained by 
the traditional one. 
 
5. Numerical Results 

 
In order to test the robustness and efficiency of the 
present schemes, several prototype flow problems 
are calculated. 
 
5.1 Shock Diffraction Around a 90o Corner 
 
This example is a test for the Euler solver based on 
the modified CE/SE method. At t=0, the calculation 
is initiated with a shock located at the corner. 
Reflective boundary condition is applied on the 
upper and lower surfaces and on all walls. The 
computational domain is 4.7×3.6 and Mach number 
is Ms = 2.4. A uniform mesh of 110 × 45 is used. 
Figure 4 shows the density contours at three 
different times. The result agrees well with the 
experimental result [5].  
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Fig.4  Density contours for shock wave diffraction 
around a 90o corner  
 
5.2 Blast Wave Problem 
 
In this case, a blast wave generated by an open 
ended cylindrical shock tube is simulated. This 
problem is solved using the Euler solver.  The shock 
tube configuration and the initial conditions are set 
up according to [5]. Initially, the compressed gas 
inside the tube is separated from the surrounding 
stagnant gas by a diaphragm located at the outlet of 
the tube. At t=0, the calculation is initiated by a 
sudden removal of the diaphragm. The direct 
contact of the high and low pressure regions results 
in a rarefaction wave propagating back into the tube 
and a shock wave blasting from the tube lip into the 
ambient space. A uniform mesh of 80×60 is used. 
The non-reflective boundary condition is used at the 
inlet and outlet of the computational domain, while 
the reflective boundary condition is used on the 
symmetric axis and the tube walls. Figure 5 shows 
flow solutions at two different times. The results 
agree well with the experimental results[5]. 
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Fig.5  Pressure contours for blast wave problem 
 
 
5.3   Shock/ Boundary Layer Interactions 
 
Because of its simple geometry, shock/boundary 
layer interaction is a standard test problem for 
various Navier Stokes solvers. But the flow pattern 
of this problem are very complicated. When the 
shock is strong enough, boundary layer separation 
occurs at the shock impinging point. In order to 
resolve the boundary layer, clustered grid points 
near the solid wall must be employed. Here a simple 
coordinate transformation is used:  
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where K is a stretching parameter and H is the 
height of the physical domain. Larger K implies 
more grid points clustered near the wall. 
 

      

incident shock

reflective shock

 
  
Fig.6 A schematic of the shock/boundary layer 
interaction.  
 
 In this problem, the free-stream Mach 
number is M∝ =2.0. The Reynolds number is  
Re=2.96×105. The shock incident angle β=32.6o. 

The computational domain is [0, 0.12]×[0, 0.06]. A 
180×160 non-uniform mesh is used.  
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Fig.7  Numerical results of shock/boundary layer 
interaction  using the traditional wall boundary 
condition: (a) pressure contours, (b) pressure 
distribution along the wall, and (c) skin friction 
distribution along the wall  
 



In this case, two different wall boundary 
conditions are used. The numerical results are 
shown in Fig.7 and Fig.8, for pressure contours, 
pressure distribution along the wall, and skin 
friction distribution along the wall. The differences 
between these two solid wall boundary treatments 
are very small, but they all agree well with the 
experiment results[18]. 
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Fig.8  Numerical results of  shock/boundary layer 
interaction  using the pseudo-reflective boundary 
condition: (a) pressure contours (b) pressure 
distribution along the wall and (c) skin friction 
distribution along the wall. 
 
5.4 Natural Convection Flows in a Square Box 
 
The last numerical example is a buoyancy-driven 
gas flow in a square enclosure. As shown in Fig.9, 
the configuration consists of two insulated 
horizontal walls and two lateral walls with constant 
temperatures of Th and Tc. For a small temperature 
difference between two vertical walls, this problem 
has been extensively studied based on the 
incompressible flow equations with Boussinesq 
model for the buoyancy force. For a large 
temperature difference, the compressible 
formulation should be employed. 
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Fig.9 A schematic of the buoyancy-driven gas flow 
in a box 
 
 Flow features of this buoyancy-driven 
cavity flow depend on Raylaigh number Ra, 
Frounde number Fr, the aspect ratio of the cavity, 
and the temperature difference parameter ε. Here, 
four Raylaigh numbers Ra =103, 104, 105 and 106 are 
considered with a temperature difference parameter 
ε = 0.6, which represents Th/Tc =4. The Frounde 
number and the aspect ratio are unity. This problem 
is calculated using the modified scheme, i.e., Eqs. 
(3.5) and (2.8) with a uniform mesh 120×120. The 
pseudo-reflective boundary treatment is used. 
Figure 10 shows the velocity vectors at four 
Raylaigh numbers. Figures11 and 12 are the x and 
y-direction velocity distributions along the vertical 
and horizontal centerlines at Ra = 104. The solution 
by the CE/SE method agrees well with previously 
reported data [19]. 
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Fig.10  Velocity vectors of the buoyancy-driven flow 
at four Raylaigh numbers 
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Fig.11 Velocity u distribution along the vertical 
centerline 
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Fig.12 Velocity v distribution along the horizontal 
centerline 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Concluding Remarks 
 

In this paper, we report a modified space-time 
CE/SE method for Euler and Navier Stokes 
equations for structured meshes. Because of the use 
of simpler CE and SE, the logic of the modified 
CE/SE method is simpler and thus the computation 
is more efficient. Nevertheless, the modified space-
time CE/SE schemes retain all favorable features of 
the original CE/SE method, including the unified 
treatment of space and time, accurate computation 
of space-time flux conservation, and high-fidelity 
resolution of unsteady flow field.   

In the Navier-Stokes solver, the calculation 
of the viscous fluxes is based on a mid-point rule, 
which is simple and effective. Because the 
calculation of the viscous fluxes involves the 
calculation of first order derivatives, the duel mesh 
operation is used. In addition two wall boundary 
conditions, i.e., the traditional one and the pseudo-
reflective one, are used. The latter is simpler and 
more robust. Moreover, the Navier Stokes solver of 
the CE/SE scheme can be applied to high speed 
flows as well as low-Mach-number flows without 
preconditioning. 

Numerical results of several standard flow 
problems show that the numerical accuracy of the 
modified CE/SE schemes is comparable to the 
original CE/SE method. All numerical results 
reported in this paper agree well with the 
experimental or previously reported numerical 
results. 
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