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Abstract 
In this paper, we report an extension of the Space-Time 
Conservation Element and Solution Element (CE/SE) 
Method for solving the Navier-Stokes equations. 
Numerical algorithms for both structured and unstructured 
meshes are developed. To calculate the viscous flux terms, 
a ‘midpoint rule’ is used. In the setting of space-time flux 
conservation, a new and unified boundary-condition 
treatment for solid wall is introduced. The Navier Stokes 
solvers retain all favorable features of the original CE/SE 
method for the Euler equations, including high fidelity 
resolution of unsteady flows, easy implementation of non-
reflective boundary conditions, and simplicity of 
computational logic. In addition, numerical results show 
that the present Navier-Stokes solvers can be used for 
high-speed flows as well as low-Mach-number flows 
without preconditioning. The present Navier Stokes 
solvers are efficient, accurate, and very robust for flows at 
all speeds.  

1. Introduction 
The Space-Time Conservation Element and Solution 
Element Method, or the CE/SE Method for short, 
originally proposed by Chang [1-6], is a novel numerical 
framework for conservation laws.  The CE/SE method has 
many non-traditional features, including a unified 
treatment of space and time, the introduction of 
conservation element (CE) and solution element (SE), and 
a shock capturing strategy without Rieman solver. 
Moreover, the CE/SE method is based on triangles and 

tetrahedrons for two- and three-dimensional flows.  Thus it 
is naturally suited for unstructured mesh. As such, the 
CE/SE method is a genuine multidimensional scheme 
because the method has been constructed without 
dimensional splitting. To date, numerous highly accurate 
solutions have been reported, including traveling and 
interacting shocks, acoustic waves, shedding vortices, 
detonation waves, shock/acoustic waves interaction, 
shock/vortex interaction, and cavitating flows. In this 
paper, the CE/SE method is extended for solving the 
Navier-Stokes equations. The rest of the paper is organized 
as follows.  

 In the beginning of Section 2, a short summary 
for the CE/SE method for the Euler equations in two 
spatial dimensions is provided.  The CE/SE scheme for the 
Navier-Stokes equations will then be presented. In Section 
3, a new and unified wall boundary treatment (proposed by 
Chang), which is based on space-time flux conservation 
near wall, is introduced. This wall boundary condition 
treatment is accurate and numerically stable.   In Section 4, 
we present several flow solutions in a wide range of speeds 
obtained by the CE/SE Navier Stokes solver. All results 
compared favorably with reported experimental data or 
previous numerical solutions. A three-dimensional result 
by the CE/SE method is also reported.  We then offer 
concluding remarks and give the list of cited references. 
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2. The CE/SE Viscous Scheme 

Consider the following two-dimensional Navier-Stokes 
Equations, its dimensionless conservation form can be 
written as  
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where m =1, 2, 3, 4 indicating the continuity, two 
momentum and the energy equations. Here f and g are the 
inviscid parts of the fluxes, and they are functions of Um. 
Fv and Gv are viscous parts of the fluxes, which are 
functions of Um, Uxm and Uym. Let x1 = x, x2 = y and x3 = t 
be the coordinates of a three-dimensional Euclidean space 
E3. The integral counterpart of Eq. (2.1) is 
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Here Hm=(fm-Fvm, gm-Gvm, Um) are the space-time current 
density vectors of mass, x-momentum, y-momentum and 
energy, respectively. S(V) is the boundary surface of a 
space-time region V in E3. The above flux vector Hm can 
be decomposed into the inviscid and viscous parts: 

vmmm HhH −=                                          (2.3) 
with  

hm = (fm,  gm, Um),                  (2.4a) 
  Hvm = (Fvm, Gvm, 0),                    (2.4b) 

In two spatial dimensions, triangular spatial mesh is used 
to perform space-time integration. Refer to Fig.1. The grid 
points are located at centers of triangles. At each mesh 
node, three conservation elements (CEs) and one solution 
element (SE) are defined in connection with its three 
neighbors. For example, at point G, three CE(l) (l = 1, 2, 3) 
are the cylinders EFGDE′F′G′D′ (CE(1)), ABGFA′B′G′F′ 
(CE(2)) and CDGBC′D′G′B′ (CE(3). The SE is the union of 
four planes ABCDEF, G′G′′B′′B′, G′G′′D′′D′, G′G′′F′′F′ 
and their immediate neighborhood.   

Inside each SE(j, n), the flow variables are 
assumed continuous. By using the first-order Taylor series 
expansions, Um(x, y, t) , fm(x, y, t) and gm(x, y, t) are 
approximated by,  
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Fig. 1 A schematic of the CE/SE scheme: (a) triangle mesh 
in two spatial dimensions;  (b) The definitions of 
the CEs and SE; (c) the calculation of the space-
time flux.  

Thus Eq.(2.2) can be calculated by using the dicrete form:  
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where S(CE(l)(j,n)) is the boundary surface of CE(l).  

To proceed, we illustrate the viscous term integral 
in Eq. (2.7).  From Eq. (2.4b), the third component of Hvm 
in time is null. Thus, in calculating the viscous fluxes, we 
only need to calculate integrals over lateral surfaces in the 
space-time domain. For example, in calculating viscous 
flux over CE(2), the quadrilateral cylinder ABGFA′B′G′F′, 
we only need to calculate the integrals of viscous terms 
over four lateral surfaces ABA′B′, AFA′F′, GBG′B′ and 
GF′G′F′. As shown in Fig.1(c), we define the surface 
vector, denoted by ),,( tyx SSSS =∆

�

, for the surface 

AFA′F’ as the unit outward normal vector multiplied by its 
area.  Thus we have 
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where Q is the centroid of AFA′F′. Because the surface 
AFA′F′ belong to the SE of point A′, we have 

+−+≈ −−− )()()()( '
2/1

'
2/1

'
4/1

AQ
n
Amx

n
Am

n
Qm xxUUU  

  2/1
''

2/1
' )(4/)()( −− ⋅∆+−+ n

AmtAQ
n
Amy UtyyU              (2.9) 

To calculate (Umx)Q and (Umy)Q, we assumed a linear 
distribution of U in the SE, and the following 
approximation is employed:  
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It is similar for surface AFA′F′. But for surfaces GBG′B′, 
GDG′D′ and GF′G′F′, because they belong to the SE of 
point G, and they also belong to the SE of point G′, we can 
use the flow variables Um, Umx and Umy at point G or G′ to 
approximate the Um, Umx and Umy at the centroid of each 
surface. We note that as an approximation it is more 
efficient to use the flow variables and their derivatives at 
point G′, which is located at previous time step, such that 
we need not solve nonlinear equations for Umx and Umy at 
each grid point at the new time level. In this case, 
however, we must use the dual mesh. 

          To proceed, we substitute Eqs. (2.5) and (2.6) into 
Eq. (2.7), and obtain the following discrete equations: 
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where l =1,2,3  for flux conservation over three CEs. By 
adding the three equations together, we get the final 
formulation for the numerical solution of the flow 
variables U
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By solving any two of Eqs. (2.11), we can obtain the 
numerical solutions for n
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         Equation (2.12) for U
�

, in conjunction with two of 
the three equation expressed by Eqs (2.11) for xU

�

 and 
yU

� , 
are the space-time CE/SE scheme for solving the two-
dimensional Navier-Stokes equations. This is similar to the 
a-scheme for Euler equations [1-6]. Using the same 
method as that in [1-6], we can get the a-ε and the a-ε-α-β 
schemes for the Navier Stokes solver.  Since the above 
scheme is based on triangles, it can be directly used in 
unstructured mesh. In addition, the above scheme can be 
extended to three-dimensional case in a straight way.  

3. Wall Boundary Treatment 
In the setting of the CE/SE method, a new boundary 
condition treatment is developed based on space-time flux 
conservation. The idea was proposed by Chang, the fourth 
author of the present paper. Here, only a brief account of 
this treatment is provided. 
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Fig.2. A schematic for wall boundary treatmnet: (a) 

Spatial mesh and (b) CEs near the wall boundary. 

In the traditional wall boundary treatment, the slip 
condition is applied along the wall for inviscid flows, 
while non-slip condition is applied for viscous flows. One 
cannot make any connection between these two treatments. 
In the setting of the Space-Time CE/SE method, a new and 
unified wall boundary treatment is proposed for solving 
the Navier-Stokes equations. Essentially, the shear stress 
exerted on the fluid by a wall is modeled as a source term 
as a part of the local space-time flux conservation over a 
conservation element in the vicinity of the wall boundary. 
When the fluid is inviscid, the source term vanishes and 
the boundary condition reduces to the usual “slip” 
condition along the wall. When the flow is viscous, the 
source term survives and the boundary condition is fully 
consistent with the traditional non-slip condition.  

Figure 2(a) shows a schematic of the grid points 
near a horizontal wall. No grid point is placed on the wall. 
Instead, a ghost point E, which is the mirror image of point 
G with respect to the wall, is used. The flow variables Ui, 
(i = 1, 2, 3, 4) (U = (ρ, ρu, ρv, Et) for two-dimensional 
flows) and their spatial derivatives, (Ux)i  and (Uy)i  ( i = 1, 
2, 3, 4),  at point E are obtained from those of point G by 
assuming that, at any time t, the flow fields below and 
above DF  are the mirror images of each other. Note that 
the mirror-image conditions traditionally are applied to 
inviscid flows but not viscous flows. Here, they are applied 
to both inviscid and viscous flows. With these conditions 
specified on the ghost point, we can calculate the flow 
variables and their spatial derivatives at point G for the 
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next time step. In the CE/SE method, this calculation is 
carried out by the space-time integration over three 
conservation elements CE(i), i =1,2,3 (Fig.2(b)). Additional 
treatment for the space-time flux calculation in CE(1) is 
needed due to the existence of the wall boundary lying 
across the conservation element. 

      Let (i) the viscosity µ be a constant; and (ii) the wall be 
an insulated wall. Because (i) u = v = 0 at the wall; and (ii) 
the numerical solution is linear in x, y, and t within a 
solution element, it can be shown that the mass, x-
momentum, y-momentum and energy fluxes entering into 
the fluid in the triangular cylinder GDFG′D′F′ from the 
wall form the row matrix 
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On the other hand, the same four fluxes entering into the 
fluid in the triangular cylinder EFDE′F′D′ from the wall 
form the row matrix 
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Note that, in Eqs. (3.1) and (3.2), (i) S is the area of the 
surface DFF′D′; and (ii) the fluid properties associated 
with 

+wf
�

 and 
−wf

�
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points Q+ and Q-, which, respectively, are immediately 
above and below the centroid Q of the rectangle DFF′D′. 
Using the mirror image conditions, we have 
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By using Eqs. (3.1)-(3.3), it is concluded that the total 
mass, x-momentum, y-momentum and energy fluxes 
entering into the fluid in the cylinder GDEFG′D′E′F′ (i.e., 
CE(1)) from the wall form the row matrix  
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In the current treatment, the surviving x-momentum flux in 
Eq. (3.4) is treated as a source term in flux balance 
calculation involving conservation element CE(1). To 
calculate the flux wf

�

, we need to calculate ∂u/∂y. For 
simple laminar flows with enough mesh resolution of the 
boundary layer, because u = 0 at point Q+, and u ≅  (uG + 
uG′)/2 at the midpoint M of 'GG , we can assume that, 
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Note that, for the inviscid flows (i.e., 1/ReL = 0), 0=wf
�

. 
Thus the current boundary treatment becomes the usual 
“slip” condition because only the mirror-image conditions 
are imposed. As such, the present boundary treatment is a 
unified one, suitable for inviscid as well as viscous flows.  

4. Numerical Results 
To demonstrate the capabilities of the present scheme, 
several flow problems are calculated. 
 

4. 1 Shock/Boundary Layer Interaction 
The first problem is the shock/boundary layer interaction, 
which is a standard test problem for Navier Stokes solvers. 
When the shock is strong and the incident shock angle is 
large, boundary layer separation occurs at the shock 
impinging point. In order to resolve the boundary layer, 
clustered cells near the solid wall must be employed.  
 

         

incident shock

reflective shock

 
Fig.3 Shock/boundary layer interaction. 

 
The free-stream Mach number is M∝ =2.0. The Reynolds 
number Re=2.96×105. The shock incident angle β=32.6o. 
The computational domain is [0, 0.12]×[0, 0.06] and 
38400 triangles are used.  

In this problem, the new solid boundary 
treatment is used along the wall. The numerical results 
are shown in Fig.4, for pressure contours, pressure 
distribution and skin friction distribution along the wall. 
The calculating results all agree well with the experiment 
results [8]. 
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Fig.4 Numerical results of the shock/boundary layer 

interaction: (a) pressure contours, (b) pressure 
distribution along the wall, and (c) skin friction 
distribution along the wall. 

 
 4.2 Buoyancy-Driven Gas Flows in a Square Box 
As shown in Fig.5, the configuration consists of two 
insulated horizontal walls and two lateral walls with 
constant temperatures of Th and Tc. For a small 
temperature difference between two vertical walls, this 
problem has been extensively studied based on the 
incompressible flow equations with Boussinesq model 
for the buoyancy force. For a large temperature 
difference, the compressible formulation should be 
employed. 
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Fig.5 A schematic of the buoyancy-driven gas flow in a 

box 
 
Flow features of this buoyancy-driven cavity flow depend 
on Raylaigh number Ra, Frounde number Fr, the aspect 
ratio of the cavity, and the temperature difference 
parameter ε. Here, two Raylaigh numbers Ra = 104 and 
106 are considered with a temperature difference 
parameter ε = 0.6, which represents Th/Tc = 4. The 
Frounde number and the aspect ratio are unity. This 
problem is calculated using the present scheme with the 
12000 triangles. The present new solid boundary 
treatment is used on the four solid walls. Figure 6 shows 
the velocity vectors at two Raylaigh numbers. Figure 7 is 
the x and y-direction velocity distributions along the 
vertical and horizontal centerlines at Ra = 104. The 
solution by the CE/SE method agrees well with 
previously reported data [9]. 

     

0.5 1
x

0.5

1

y

Ra=10000

 
       
 

                 
0.5 1

x

0.5y

Ra=1000000

 
  
Fig.6  Velocity vectors of the buoyancy-driven flow at two 

Raylaigh numbers. 
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( b ) 

Fig.7 Velocity distributions along the vertical and 
horizontal centerlines: (a) u, and (b) v. 
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 4.3 Driven Cavity Flow 
This problem is a benchmark problem for incompressible 
viscous flow calculations. Here the full compressible 
Navier-Stokes equations are solved to demonstrate the 
capabilities of the CE/SE scheme at the incompressible 
limit. Here the 12000 triangles are used. Figure 8 shows 
velocity vectors, x and y-direction velocity distributions 
along the vertical and horizontal centerlines at Re = 103. 
This solution agrees well with Ghia’s data [10]. 
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Fig.8. Solution of a driven cavity flows: (a) Velocity 
vectors, (b) u along the vertical centerline, and (c) v along 
the central horizontal centerline. 

4.4 Flows Over a Circular Cylinder 
The fourth example is an external flow over a circular 
cylinder at Re = 40, with which a steady state solution 
exists. Again, the full compressible equations are solved 
by the CE/SE method without preconditioning. The 
computational domain is [-5,15]×[-5, 5], and 10,092 
triangles are used.  Figure 9(a) shows the unstructured 
mesh near the circular cylinder. Figure 9(b) shows the 
velocity vectors of the flow solution. The wake length 
L/d≈2.0, and it compares well with the experiment data 
and previously reported results [11]. 
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Fig.9. A flow over a cylinder (Re = 40): (a) the mesh 
around the cylinder, (b) velocity vectors.  
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Fig.10. Velocity vectors in the mid-planes (y=0.5 and 

z=0.5) of a three-dimensional driven cavity flow. 
 
4.5 A Three-Dimensional Driven Cavity Flow 
The top lid is moving in the x direction with a constant 
speed with Re=500. 124,992 tetrahedrons are used. Figure 
10 is the velocity vectors in the mid-plane y=0.5 and 
z=0.5. This result at y=0.5 plane is very similar to its two-
dimensional counterpart. Details of the three-dimensional 
CE/SE method for Navier-Stokes equations will be 
presented in a separate paper. 
 

Concluding Remarks 
In this paper, we report an extension of the space-time 
CE/SE method for Navier Stokes equations. This scheme 
retains all favorable features of the CE/SE method, 
including the unified treatment of space and time, accurate 
computation of space-time flux conservation, and high 
resolution of unsteady flows. Since the present CE/SE 
method is based on triangles and tetrahedrons for two and 
three-dimensional flows, it is naturally suited for 
unstructured meshed. A unified wall boundary condition 
treatment for inviscid as well as viscous flows is 
illustrated. The present Navier Stokes solver of the CE/SE 
scheme can be applied to high speed flows as well as low-
Mach-number flows without preconditioning. Numerical 
results reported in this paper agree well with the 
experimental or previously reported numerical results. 
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