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Cavity Flow in Scramjet Engine by Space–Time
Conservation and Solution Element Method

Chang-Kee Kim,∗ S.-T. John Yu,† and Zeng-Chan Zhang‡

The Ohio State University, Columbus, Ohio 43210-1154

Numerical simulation of supersonic flows over open cavities in the setting of a dual-mode ramjet/scramjet engine
are reported. To calculate the unsteady cavity flows, we employ the space–time conservation element and solution
element (CESE) method, a novel numerical method based on a unified treatment of space and time for calculation
of flux balance. Supersonic cavity flows with and without fuel injection are studied to understand the mechanisms of
mixing enhancement and flame holding by cavities. Without injection, numerical results compared favorably with
the experimental data for dominant frequencies and time-averaged pressure coefficients inside the cavities. With
an upstream injection, the flow oscillations are drastically suppressed. In a downstream injection arrangement,
cavity-generated acoustic waves and vortices greatly enhance fuel/air mixing. Numerical results show that the
CESE method provides high-fidelity numerical results of unsteady flows in the advanced scramjet engine concept.

I. Introduction

F UEL injection, ignition, and flameholding are challenging is-
sues for high-speed combustion. In a viable scramjet engine, the

fuel injection method employed must provide rapid fuel/air mixing
with minimum total-pressure loss in the airstream. A stable flame-
holding system under a wide range of operating conditions is crit-
ical to sustain the supersonic combustion. Recently, cavity-based
flameholders, an integrated mixing-enhancement and flameholding
approach, have attracted considerable attention in the scramjet com-
munity. Under suitable conditions, flow recirculation, or the trapped
vortices, significantly increases the flow residence time of the fluid
entering the cavity. A pilot flame could be set up inside the cavity to
provide a pool of hot chemical radicals, which in turn would reduce
the ignition delay of the air/fuel mixture in the airstream and, thus,
sustain high-speed combustion.

High-speed cavity flows are inherently unsteady, involving both
broadband small-scale fluctuations typical of turbulent flows, as
well as distinct resonance with harmonic properties in its frequen-
cies and amplitudes. In the past, it has been demonstrated that the
aspect ratio of the cavity and freestream flow conditions are the
critical parameters dominating the complex flow features, including
boundary-layer separation, compressible free shear layer with shed-
ding vortices, linear/nonlinear acoustic waves, and complex shock
and expansion waves interacting with vortices and acoustic waves.

In the setting of wheel wells and bomb bays, previous studies
for high-speed cavity flows showed that cavity flows could be cate-
gorized into the following two groups: 1) open cavity flows, when
L/D < 7 ∼ 10, and 2) closed cavity flows, when L/D > 7 ∼ 10,
where L denotes the length of the cavity and D the depth. In flows
over cavities of large aspect ratios (L/D > 7 ∼ 10), the separated
free shear layer emanating from the upstream corner of the cav-
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ity reattaches to the bottom wall of the cavity and results in two
separated recirculation zones near the two corners between the lat-
eral walls and the cavity floor. The resultant low-pressure zones at
the lower corners and high pressures on the cavity floor, where the
shear layer reattaches, lead to significant drag and pressure loss of
the airstream. In this case, mass addition/ejection into/from the cav-
ity by aerodynamic unsteadiness is low to moderate, and the flow is
referred to as closed.

On the other hand, flows over cavities with smaller aspect ratios,
L/D < 7 ∼ 10, result in reattachment of the free shear layer to the
rear bulkhead of the cavity. The impingement of the free shear layer
on the rear lateral wall causes violent unsteady motions and results in
significant periodical mass addition/ejection near the rear bulkhead
of the cavity. These flows are referred to as open. The wave patterns
of open cavity flows could be further categorized into 1) transverse
mode for very short cavities, L/D ∼= 1, and 2) longitudinal mode for
longer cavities, for example, 2 ∼ 3 < L/D < 7 ∼ 10. In short cavi-
ties, L/D < 2, only one main vortex inside the cavity is sustained
by the driving shear layer spanning the top of the cavity. The up
and down motions of the single main recirculation bubble gener-
ate acoustic waves, which by and large propagate in the direction
perpendicular to the free shear layer, provided the freestream is tran-
sonic. The propagating waves are referred to as in a transverse mode.
On the other hand, when the cavity is longer, 2 ∼ 3 < L/D < 7 ∼ 10,
multiple moving vortices occur inside the cavity leading to complex
interactions among trapped vortices, propagating and rebounding
pressure waves, and the flapping free shear layer. In general, the re-
bounding pressure waves, while interacting with the free shear layer,
drastically amplify the growth rate of the free shear layer, which,
in turn, sheds enormous vortices propagating toward and impinging
on the aft wall of the cavity. Because of propagating vortices in the
streamwise direction and the rebounding pressure waves, prevalent
acoustic waves propagate in the longitudinal direction outside the
cavity into the downstream area. If the airstream is transonic or sub-
sonic, the acoustics would transversely propagate into the upstream
areas.

In the setting of supersonic combustion inside a scramjet engine,
trapped vortices inside cavities could be useful for flameholding.
Moreover, cavity resonance, which produces periodic mass addi-
tion/expulsion with large flow structures, could be useful for mixing
enhancement. Simultaneously, cavity drag must be minimal, for ex-
ample, much less than that of a bluff body, and thereby only cause
acceptable pressure loss. Gruber et al.1,2 have developed a dual-
mode ramjet/scramjet engine concept, which is envisioned to use
hydrocarbon fuels for a flight regime of Mach numbers from 3 to
6 ∼ 9. In their supersonic combustors,1,2 open cavities with aspect
ratios about 5 < L/D < 8 have been tested in conjunction with var-
ious fuel injection schemes. Numerical simulation of cavity flows
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has been conducted by Baurle et al.3 The results showed that the
cavities have great potential to be a viable combined flameholder/
mixing enhancement device for a scramjet engine combustor. Sim-
ilar ideas have also been independently proposed and tested by Yu
et al.4 In particular, Yu et al.4 have tested supersonic flows passing
multiple cavities. Some of recent results have been summarized by
Ben-Yakar and Hanson.5

In the past, extensive experimental and theoretical studies on
cavity flows have been conducted for applications in wheel wells
and bomb bays, and flow characteristics such as the oscillation fre-
quency and amplitudes at various locations in the cavity have been
reported.6−11 However, it is difficult to apply this knowledge base di-
rectly to cavity flows for the advanced scramjet engines due to much
shorter length/timescales in scramjet engines. Additional complex-
ity associated with fuel injection also warrants further studies be-
cause cavity flows and the associated acoustics would be drastically
changed by the fuel injection schemes employed. In particular, in-
herent oscillations of cavity flows may be significantly suppressed
by an upstream injection.4,9−11

In the present paper, we focus on time-accurate calculation of su-
personic cavity flows in the setting of a dual-mode ramjet/scramjet
engine combustor.1,2 The objectives of the present study are 1) to val-
idate the numerical results by assessment of the calculated frequen-
cies and amplitudes of pressure oscillations and comparison with
previously reported data, 2) to assess the fuel/air mixing enhance-
ment based on the application of upstream as well as downstream
injection to cavity flows, and 3) to demonstrate the capabilities of
the conservation element and solution element (CESE) method for
capturing complex flow features of the supersonic cavity flows.

The rest of the paper is organized as follows. Section II is a review
of the model equations to be solved by the CESE method. Section III
provides background information on the CESE method. Section IV
shows numerical solutions, including comparison between the nu-
merical results and previously reported data. Moreover, we will
show the effects by both upstream and downstream injection on
pressure oscillations, acoustics, and vortices, leading to effects on
fuel/air mixing and flameholding. We then offer concluding remarks
and provide cited references.

II. Governing Equations
The fundamental behavior of cavity flows was known to be

two-dimensional.8 Equation (1) shows the vector form of the two-
dimensional flow equations in Cartesian coordinates, including the
continuity equation, the Navier–Stokes equations, the energy equa-
tion, and one species equation:

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

− ∂Fv

∂x
− ∂Gv

∂y
= 0 (1a)

where the flow variable vector

U =




ρ

ρu

ρv

ρe

ρY f




(1b)

the inviscid flux vectors are

F =




ρu

ρu2 + p

ρuv

u(ρe + p)

ρuY f




, G =




ρv

ρuv

ρv2 + p

v(ρe + p)

ρvY f




(1c)

and the viscous flux vectors are

Fv =




0

τxx

τxy

uτxx + vτxy − qx

−ρû f Y f




, Gv =




0

τxy

τyy

uτxy + vτyy − qy

−ρv̂ f Y f




(1d)

In the preceding equations, ρ is the density; u and v are velocity
components in the x and the y directions, respectively; p is the
static pressure; and e = ε + 1

2 (u2 + v2) is the specific total energy
with ε as the specific internal energy. We assume the fluid is ideal
and polytropic. Because of the equation of state of an ideal gas,
p = (γ − 1)ρε, where γ = Cp/Cv is the specific heat ratio, and it
is a constant due to the polytropic gas assumption. In the viscous
vectors, τxx , τxy , and τyy are stress components; and qx and qy are
the heat conduction fluxes in the x and y directions, respectively.
Y f is the mass fraction of fuel. The diffusion velocity components,
û and v̂ are calculated by Fick’s law:

Y f û f = −D
∂Y f

∂x
(2a)

Y f v̂ f = −D
∂Y f

∂y
(2b)

where D is the mass diffusivity of fuel in the gas mixture. The
molecular viscosity µ is calculated by the use of Sutherland’s law
(see Ref. 12), and the Lewis number Le = 1 is assumed to calcu-
late the mass diffusivity D. In numerical calculations, the preceding
governing equations are nondimensionalized by the freestream con-
ditions, that is, velocity components by u∞, density by ρ∞, pressure
by ρ∞u2

∞, and the total energy by ρ∞u2
∞. The subscript ∞ denotes

the freestream condition. The cavity depth d is used as the length
scale, and the timescale is d/u∞.

III. CESE Method
The CESE method is a novel numerical framework for high-

fidelity solution of hyperbolic conservation laws. Originally devel-
oped in Refs. 13–18, the tenet of the CESE method is a unified
treatment of space and time in calculating flux balance. In contrast
to modern upwind schemes, no Riemann solver and/or reconstruc-
tion procedure is used as the building block of the CESE method. As
a result, the logic and computational counts of the CESE method are
simpler and more efficient. Based on the CESE method, computer
programs for solving unsteady flows in one, two, and three spatial
dimensions for structured and unstructured meshes, and for meshes
composed of mixed elements, have been developed. These solvers
have been parallelized based on domain decomposition in conjunc-
tion with the use of message passing interface (MPI). Because no
Riemann solver is used, we have straightforwardly extended the
CESE method for flows with complex physical processes, includ-
ing detonation, cavitations, and magnetohydrodynamics (MHD).

Previously, various flow phenomena were calculated by the use
of the CESE method. In particular, the CESE solver is capable of
calculating high-speed compressible flow as well as flows at very
low Mach numbers without applying preconditioning to the gov-
erning equations. The CESE method is indeed an all-speed solver.
Moreover, the CESE method is capable of simultaneously capturing
strong shock waves and the acoustic waves in the same computa-
tional domain, despite that the amplitude of the pressure jump across
the shock wave would be several orders of magnitude higher than
that of the acoustic waves.

The CESE method employed in the present paper is based on the
use of quadrilateral cells on the x–y plane,17 which was extended
from the original CESE method. Note that the original CESE method
for two-dimensional flows was designed based on the use of trian-
gular cells. In the present paper, a brief discussion of this particular
extension of the CESE method is provided. The discussions here
will be focused on the space–time geometry of the CESE method.
We remark that the basic structure of the CESE method can always
be easily grasped by visualization of the space–time geometry of
conservation element (CE), solution element (SE), and how they fa-
cilitate the space–time integration. The detailed algebraic equations
of the method, perhaps, only reaffirm the structure of the method.
We refer the interested readers to the cited references for all details.

To proceed, let E3 denote a three-dimensional Euclidean space, in
which x1 = x , x2 = y, and x3 = t . Let ∇ · be the divergence operator
in E3, and hm def [( f − fv)m, (g − gv)m, um] for m = 1, 2, 3, 4, and
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a)

b)

c)

Fig. 1 Space–time geometry of the CESE method: a) surface element
on boundary S(V) of a region V, b) grid points on the x–y plane, and
c) SEs and CEs.

5. Here ( f − fv)m, (g − gv)m , and um are the mth components of
F − Fv , G − Gv , and U , respectively, in Eq. (1). Aided by the pre-
ceding definition, for each m = 1, 2, . . . , 5, the flow equations (1)
become

∇ · hm = 0 (3a)

Apply Gauss’s divergence theorem to Eq. (3a) and we get
∮

S(V )

hm · d s = 0 (3b)

As shown in Fig. 1a, S(V ) is the boundary of the space–time region
V in E3 and ds is a surface element vector pointing outward. Equa-
tion (3b) states that the total space–time flux hm , leaving volume
V through S(V ), vanishes. All mathematical operations can be car-
ried out as though E3 were an ordinary three-dimensional Euclidean
space. The CESE method is designed to integrate Eq. (3b) accurately
to provide high-fidelity results of evolving um in the space–time
domain.

The CESE method is a family of numerical schemes, with the a
scheme13 as its backbone. In contrast to conventional finite volume
methods, the CESE method has separate definitions of CE and SE
in the construction of the discretized equations for integration of
Eq. (3b) in the space–time domain. CEs are nonoverlapping space–
time subdomains such that 1) the whole computational domain can
be filled by the CEs, 2) flux conservation can be enforced over each
CE and/or over a union of several neighboring CEs, and 3) flow
discontinuity is allowed inside a CE. On the other hand, SE are
nonoverlapping space–time subdomains such that 1) SE do not gen-
erally coincide with a CE, 2) the union of all SEs does not have to fill
the whole computational domain, 3) flow variables and fluxes are
discontinuous across interfaces of neighboring SEs, and 4) within a
SE, flow variable and flux function are assumed continuous, and they
are approximated by the use of a prescribed smooth function. In the
present paper, a first-order Taylor series expansion is used. Thus, the
discretized flow variables and fluxes are linearly distributed inside
each SE.

The time-marching strategy in the CESE method is designed
based on a space–time staggered mesh stencil composed of CEs

and SEs. Note that when Eq. (3b) is integrated over the boundary of
a CE, the surface element of S(V ) in Eq. (3b) is always lying inside
a SE, where flow variables and fluxes are continuous. We remark
that the paradigm of the Godunov schemes is that one has to resort
to the use of a Riemann solver to reckon the nonlinear flux function
at the cell interfaces. In the CESE method, however, flow informa-
tion propagates only in one direction across all cell interfaces, that
is, toward the future. Thus, the space–time flux integration can be
straightforwardly carried out without reconciling the values of flux
functions at cell interfaces through the use of a Riemann solver. In
other words, in contrast to the upwind methods, there is no cell in-
terface across which two-way flow traffic information propagates.
Thus, the CESE method can capture shocks without using a Riemann
solver. In what follows, we discuss specific space–time geometry of
the CE and SE in the integration of Eq. (3b).

Consider Fig. 1b. The x–y plane is divided into nonoverlapping
quadrilaterals. Two neighboring quadrilaterals share a common side.
Vertices and centroids of quadrilaterals are marked by dots and cir-
cles, respectively. Q is the centroid of the quadrilateral B1 B2 B3 B4.
A1,A2, A3, and A4, respectively, are the centroids of the four quadri-
laterals neighboring the quadrilateral B1 B2 B3 B4. Q∗, marked by a
cross in Fig. 1b, is the centroid of the polygon A1 B1 A2 B2 A3 B3 A4 B4.
Hereafter, point Q∗, which generally does not coincide with point
Q, is referred to as the solution point associated with Q. Note that
points A∗

1, A∗
2, A∗

3, and A∗
4, which are also marked by crosses, are

the solution points associated with the centroids A1, A2, A3, and A4,
respectively.

To proceed, we consider Fig. 1c. Here t = n�t at the nth time
level, where n = 0, 1

2 , 1, 3
2 , etc. For a given n > 0, Q, Q ′, and Q ′′,

respectively, denote the points on the nth, the (1 − 1
2 n)th, and the

(1 + 1
2 n)th time levels with point Q being their common spatial

projection. Other space-time mesh points, such as those shown
in Fig. 1c, and also those not depicted, are defined similarly.
In particular, Q∗, A∗

1, A∗
2, A∗

3, and A∗
4 lie on the nth time level,

and they are the space–time solution mesh points associated with
points Q, A1, A2, A3, and A4. Q ′∗, A′∗

1 , A∗
2, A′∗

3 , and A′∗
4 lie on the

(1 − 1
2 n)th time level and are the space–time solution mesh points

associated with points Q ′, A′
1, A′

2, A′
3, and A′

4.
With the preceding preliminaries, we are ready to discuss the

geometry of the CE and SE associated with point Q∗, where the
numerical solution of the flow variables um at nth time level are
calculated based on the known flow solution in all points at an earlier
time level, that is, n − 1

2 , denoted by superscript prime. First, the SE
of point Q∗, denoted by SE(Q∗), is defined as the union of the five
plane segments Q ′ Q ′′ B ′′

1 B ′
1, Q ′ Q ′′ B ′′

2 B ′
2, Q ′ Q ′′ B ′′

3 B ′
3, Q ′ Q ′′ B ′′

4 B ′
4,

and A1 B1 A2 B2 A3 B3 A4 B4 and their immediate neighborhoods.
To integrate Eq. (3b), four basic conservation elements (BCEs)

of point Q∗ are constructed, and they are denoted by BCEl(Q),
with l = 1, 2, 3, and 4. These four BCEs are defined to be the
space–time cylinders A1 B1 Q B4 A′

1 B ′
1 Q ′ B ′

4, A2 B2 Q B1 A′
2 B ′

2 Q ′ B ′
1,

A3 B3 Q B2 A′
3 B ′

3 Q ′ B ′
2, and A4 B4 Q B3 A′

4 B ′
4 Q ′ B ′

3, respectively. In
addition, the compounded CE of point Q, denoted by CE(Q),
is defined to be the space–time cylinder A1 B1 A2 B2 A3 B3 A4 B4 A′

1
B ′

1 A′
2 B ′

2 A′
3 B ′

3 A′
4 B ′

4, that is, the union of the four preceding
BCEs.

To proceed, the set of the space–time mesh points whose spatial
projections are the centroids of quadrilaterals depicted in Fig. 1b
is denoted by �, and the set of the space–time mesh points whose
spatial projections are the solution points depicted in Fig. 1b is
denoted by �∗. Note that the BCEs and the compounded CEs of
any mesh point ∈� and the SE of any mesh point ∈�∗ are defined
in a manner identical to that described earlier for point Q and Q∗.
With the clear definitions of the CE and SE as stated, the numerical
integration of the space–time flux balance, that is, Eq. (3b), in the
present modified CESE method can be summarized as follows:

1) For any Q∗ ∈ �∗ and (x, y, t) ∈ SE(�∗), the flow variables and
flux vectors, that is, um(x, y, t), fm(x, y, t), and gm(x, y, t), are
approximated to their numerical counterparts, that is, u∗

m(x, y, t),
f ∗
m(x, y, t), and g∗

m(x, y, t), by the use of the first-order Taylor series
expansion with respect to Q∗ (xQ∗ , yQ∗ , tn). Thus, the space–time
flux vector hm(x, y, t), can be replaced by h∗

m(x, y, t; Q∗), and the
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numerical analog of Eq. (3b) for each m = 1, 2, . . . , 5, is

∮
S[C E(Q)]

h∗
m · d s = 0 (4)

Equation (4) states that the discretized total flux of h∗
m , leaving

CE(Q) through its boundary, vanishes. We note that Eq. (4) can be
written in terms of independent discrete solution variables that are
the main flow variables and their spatial derivatives, (umx )Q∗ and
(umy)Q∗ in this approximation process.

2) When the integration of Eq. (4) is conducted over the
CE = BCE1 + BCE2 + BCE3 + BCE4, the discrete flow variables
(um)Q∗ associated with the space–time point Q∗ can be straight-
forwardly evaluated. This is achieved by the aid of the geometrical
information of CE(Q∗) as shown in Fig. 1, and the linear distribu-
tion of (um)Q∗ in each SE due to the adopted first-order Taylor series
expansion for the flow variables inside the SE as the discretization
process.

3) The calculation of the gradient variables, that is, (umx )Q∗ and
(umy)Q∗ is based on a finite difference approach in conjunction with
the standard CESE artificial damping functions, that is, the a-ε-α
scheme, in which parameter ε is associated with the overall damping
effect and α is for shock capturing. In contrast to the original CESE
method, the calculation of (umx )Q∗ and (umy)Q∗ has nothing to do
with the space–time flux conservation.

To calculate unsteady flows, the nonreflecting boundary condi-
tion treatment is critically important. Without an effective treatment,
the reflected waves would inevitably contaminate the evolving flow
solutions. Numerical treatments to achieve nonreflecting boundary
conditions in the setting of conventional computational fluid dynam-
ics (CFD) methods have been actively researched for a long time. In
general, most of treatments were developed based on theorems of
the partial differential equation, and they could be categorized into
the following three groups: 1) application of the method of charac-
teristics to the discretized equations, 2) use of the buffer zone or a
perfectly matched layer, and 3) application of asymptotic analytical
solution at the far field.

When the CESE method is set, we are only concerned with the
integral equation. The preceding ideas of treating a nonreflective
boundary are not applicable. Instead, the nonreflecting boundary
condition treatments when the CESE method is set are based on
flux conservation in the vicinity of the computational boundary.18 In
other words, the present nonreflecting boundary condition treatment
is equivalent to letting the incoming flux from the interior domain to
the boundary CE smoothly exit to the exterior of the domain. In the
setting of the CESE method, the numerical implementation of this
flux-based method is extremely simple because all flow information
must propagate into the future. Chang et al.18 have provided detailed
discussions of various implementations of the preceding principle. It
has been demonstrated that only negligible reflection occurs when a
shock passes through the domain boundary. Moreover, along a wall
boundary, a unified boundary condition for viscous flows is used.
Based on local space–time flux conservation, a no-slip condition will
be automatically enforced when the viscosity is not null. Again, the
basic principle is based on the space–time flux conservation over
CEs near the computational boundary.

IV. Results and Discussion
Three sets of numerical results are presented: 1) supersonic cavity

flow in the supersonic combustion facility by Gruber et al.1,2 and
by Baurle et al.,3 2) Stalling and Wilcox’s cavity flow test,19 and
3) cavity flows with fuel injection. The first test is performed to
assess the numerical accuracy of the calculated frequencies. The
results will be compared with previously reported data and Rossiter’s
empirical relation (see Ref. 6). The second test is performed to assess
the numerical accuracy of time-averaged amplitudes of pressure
fluctuations along the cavity walls. The results will be compared
with the experimental data.19 In the third test, cavity flows with
downstream, as well as upstream, injections are simulated. We will
show that a cavity flow with a downstream transverse injection can

Fig. 2 Schematic of the computational domain and mesh; one mesh
line is drawn for every five to show the clustered mesh points.

effectively generate strong vortices and acoustic waves for fuel/air
mixing enhancement.

A. Frequency Calculations
The first numerical example follows the testing condition in the

U.S. Air Force Research Laboratory supersonic combustion fa-
cility reported in Refs. 1, 2, and 5. A supersonic flow at Mach
2 and Reynolds number of 4 × 105 passes a swallow cavity with
L/d = 7.76, where L and D are the length and depth of the cav-
ity, respectively. The computational domain outside of the cavity
is 0 ≤ x ≤ 11.52, and 0 ≤ y ≤ 3.82, where x and y are nondimen-
sionalized by d. Mesh points were clustered at the forward and aft
bulkheads, at the plane spanning over the cavity mouth, and along the
lateral sidewalls of the cavity. There were 143,000 quadrilateral ele-
ments used for the computational domain. Figure 2 shows the mesh,
in which one of every five mesh lines is displayed. The nonreflecting
boundary condition is applied to the freestream surfaces and outlet.
Initially, velocities inside the cavity are set to zero, and the density
and pressure of the whole domain are set to the freestream values.
The time step was chosen such that the Courant–Friedrichs–Lewy
number (CFL) ≈ 0.8 based on the freestream condition.

Figure 3 shows a series of snapshots of pressure contours, vorticity
contours, and numerical schlieren images that are contour plots of

|∇ρ| =
√(

∂ρ

∂x

)2

+
(

∂ρ

∂y

)2

(5)

Figures 3 demonstrate very complex flow features, including travel-
ing acoustic waves, vortex generation at the leading edge, shedding
vortices in the free shear layer, and pressure waves impinging on and
rebounding from the aft wall. The interactions between the rebound-
ing pressure waves and shed vortices form a feedback loop that leads
to self-sustained oscillations as illustrated by Rossiter (see Ref. 6).
In Fig. 3b, periodic shear layer deflections in the transverse direc-
tion could be clearly discerned. Inward deflection results in mass
addition into the cavity; outward deflection expels mass from the
cavity. This periodic mass addition/expulsion mechanism enhances
fuel/air mixing. Moreover, flapping shock/expansion waves ema-
nating from the upstream bulkhead of the cavity, shown in Fig. 3c,
can also enhance fuel/air mixing.

Figure 4 shows pressure histories on the aft wall and on the floor.
The flow has reached a self-sustained oscillatory state after about
15tc, where tc = D/U∞. However, the oscillation pattern changes
from cycle to cycle, and we cannot clearly identify the period of the
oscillation cycles. This is consistent with experimental observation
reported in Ref. 20. The amplitude of the pressure oscillations at the
aft wall is much higher than that at the cavity floor due to the mass
addition/expulsion mechanism near the aft wall. Figure 5 shows the
frequency spectra of the pressure data in Fig. 4. The predicted values
of the dominant frequencies compare well with the Rossiter relation
(see Ref. 6) and the numerical results by Baurle et al.3 The Rossiter
formula is

fm =
(

U

L

)
m − α

(K )−1 + M∞(T/To)
1
2

(6)

where fm is the resonant frequency corresponding to the mth mode,
U is the main stream velocity, L is the cavity length, α = 0.513,
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a) b) c)

Fig. 3 Snapshots of flowfields of a cavity flow with M = 2.0 and L/D = 7.76 at nine different times (∆t = 0.8tc): a) pressure contours, b) vorticity
contours, and c) numerical schlieren images.

and K = 0.57 (Ref. 5). Figure 5 shows five calculated dominant
frequencies, that is, 2523, 3533, 4290, 5804, and 8579 Hz, that
compare well with the third, fourth, fifth, sixth, and ninth modes
predicted by the Rossiter relation. The first and second frequency
modes also compared well with Baurle’s calculation.

To proceed, we perform simulation of the same cavity flow with an
added transverse injection at upstream of the cavity. The freestream
flow condition and the cavity geometry are identical to that shown in
Figs. 3–5. The injection jet opening is 0.2 D, and its center is located
1.0 D upstream from the leading edge of the cavity. A choked jet
with a uniform condition at the opening is imposed:

J = 1.0, p j/p∞ = 4.34, ρ j/ρ∞ = 6.593

where the subscript j denotes the injection stream and J is the ratio
of the stream momentum flux of the injected jet as compared to the
freestream:

J = (ρu2)jet/(ρu2)freestream (7)

Figures 6a and 6b show snapshots of pressure and vorticity con-
tours, respectively, at three different times with time increment
�t = 0.75tc. Compared to Fig. 3a, pressure contours in Fig. 6a are
smoother and less violent due to the blocking effect provided by the
transverse injection upstream of the cavity. Compared to Fig. 3c,
Fig. 6 shows a much thicker shear layer spanning over the cavity
mouth. It is evident that vortex shedding and periodic transverse

deflections of the separated shear layer have been significantly sup-
pressed. Moreover, Fig. 6b shows only one major vortex trapped
inside the cavity, and there is little evidence for the existence of
periodic mass addition/expulsion mechanism.

Figure 7 shows the frequency spectrum of pressure oscillations
on the aft wall, where y = 0.75D. When the injection is applied,
flow oscillations inside the cavity are suppressed, and the oscillation
pattern is changed. The calculated dominant frequencies here are
1893, 2523, and 3470 Hz. This result is qualitatively consistent with
that reported by Vakili and Gauthier.9 As compared to that in Fig. 5
for the same cavity flow without injection, the dominant frequencies
shift to lower values due to the upstream injection. Although not
shown, the averaged amplitudes of pressure oscillations are reduced
to about 25–30% of that shown in Fig. 4 for the same cavity flow
without upstream injection.

B. Pressure Amplitude Calculation
Because the oscillation patterns in cavity flows change from cycle

to cycle, it is difficult to compare the numerical results with the
experimental data in terms of the instantaneous pressure oscillations.
In Sec. IV.A, we have assessed the numerical accuracy of calculated
frequency of pressure oscillations inside the cavity based on the use
of Gruber’s testing conditions. To further validate the numerical
accuracy of the calculated amplitudes of pressure oscillations, we
use the time-averaged experimental data reported by Stallings and
Wilcox.19 In this case, a freestream at Mach 1.5 flows over an open
cavity with L/D = 6.0. Figure 8 shows the comparison between
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the present numerical solutions and the experimental data for the
time-averaged pressure coefficient, which is defined as

cp = 2
[

p̄ − (
1
/

γ M2
∞
)]

(8)

where p̄ is the time-averaged surface pressure. The calculated results
are in favorable agreement with the experimental data, except near
the fore wall of the cavity. The discrepancy between the numerical
solution and experimental data is perhaps due to uncertainties of

Fig. 4 Monitored pressure history on the wall.

Fig. 5 Calculated dominant frequencies of the U.S. Air Force Research
Laboratory testing case.

a) b)

Fig. 6 Cavity flow with an upstream injection; J = 1, M = 2.0, and L/D = 7.76: a) snapshots of pressure contours and b) snapshots of vorticity contours.

Fig. 7 Dominant frequencies for the cavity flow with injection.

Fig. 8 Time-averaged pressure coefficients along the cavity floor in the
NASA testing case.

Fig. 9 Schematic diagram of flowfield inside a supersonic-combustion
duct.
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a) b) c)

Fig. 10 Snapshots of flowfields of a cavity flow with downstream injection: a) pressure contours, b) vorticity contours, and c) mole fraction contours
of fuel.

Fig. 11 Pressure oscillations on the cavity wall of an open cavity with
downstream injection.

the incoming boundary layer in the experiments. It can also be due
to the two-dimensional assumption employed in the present paper.
The same issue has been discussed by Rizzetta.8

C. Cavity for Fuel/Air Mixing Enhancement
Results in Sec. IV.A. show that fuel injection upstream of a cavity

suppresses instability of cavity flows and, thus, is not favorable to
be used for fuel/air mixing enhancement in the setting of a scram-
jet engine combustor. To proceed, we simulate a cavity flow with
a downstream transverse injection. The cavity geometry and cavity
flow conditions are identical to that reported by Gruber et al.21 A su-
personic flow at Mach 1.98 (P∞ = 41.8 kPa and ρ∞ = 0.860 kg/m3)
passes a cavity with L/D = 7.76 with D = 6.35 mm. In the present
calculation, hydrogen is the injected fuel. The size and position of the
injection jet opening are shown in Fig. 9. A choked jet with a uniform
condition at the opening is imposed with the following flow condi-
tions: J = 1.0, u j = 317 m/s, Pj = 16.4 kPa, ρ j = 2.283 kg/m3.

Figure 10 shows snapshots of pressure, vorticity, and fuel
mass fraction contours at five different times with time increment
�t = 15 µs. These contour plots show violent interactions between

the fuel jet and the cavity flow, leading to complex pressure waves
and large vortex structures around the aft wall of the cavity and the
fuel injection slot. Compared to the feedback mechanism in cavity
flows without any injection, the self-sustained flow oscillations here
are much more violent. As a result, the mass addition/expulsion pro-
cess near the aft bulkhead of the cavity has been greatly enhanced
by the fuel injection downstream of the cavity. Moreover, these en-
hanced oscillations near the aft corner cause part of fuel, which was
injected downstream of the cavity, to move upstream, enter into the
cavity and become trapped in recirculation bubbles. Thus, the flow
residence time of the fuel in the combustion chamber significantly
increases and flameholding characteristics could be improved.

Figure 11 shows the time histories of calculated pressures at two
locations inside the cavity, that is, the center of the cavity floor
and near the corner on the aft wall, indicated by filled triangles
in Fig. 11. The flow reaches a self-sustained oscillatory state after
about 200 µs (∼=16tc). Contrary to the case of the cavity flow with
an upstream injection (refer to Fig. 6), downstream injection here
enhances the overall pressure oscillations of the flowfield with much
higher pressure oscillation amplitudes. Moreover, the amplitudes of
the pressure oscillations on the floor and on the aft bulkhead are
comparable, whereas, in the case without fuel injection, the pressure
fluctuation amplitudes are much larger on the aft bulkhead than that
on the cavity floor.

V. Conclusions
In the present paper, we applied the CESE method to simulate su-

personic cavity flows in the setting of a dual-mode ramjet/scramjet
engine. Two-dimensional Navier–Stokes solvers are solved for three
sets of testing conditions. As part of the code validation effort, the
calculated results showed that the CESE method could vividly cap-
ture the well-known feedback mechanism and the self-sustained os-
cillations in the supersonic cavity flows. We observed cycle-to-cycle
changes in oscillation patterns. The calculated frequencies of pres-
sure oscillations at locations inside the cavity compared well with
Rossiter’s relation (see Ref. 6) and the Baurle et al.3 data. Numerical
accuracy is further validated by favorable comparison between the
calculated amplitudes of pressure oscillations along cavity floor and
the experimental data by Stallings and Wilcox.19

With regard to mixing and flameholding enhancement for su-
personic combustion, our results show that an upstream injection
drastically suppresses flow oscillations. The dominant frequencies
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of pressure oscillations shift to lower values with much lower ampli-
tudes. Moreover, upstream injection induces thicker and more stable
free shear layer spanning over the cavity mouth, leading to vor-
tex motions reduced drastically. In general, upstream injection sup-
presses the desired mixing and flameholding features for supersonic
combustion. On the other hand, cavity flows with a downstream in-
jection show promising potential for mixing and flameholding en-
hancement. Because of interactions between flow oscillations near
the aft bulkhead of the cavity and the injection jet, the amplitudes
of the pressure oscillations are greatly amplified as compared to the
case without injection. Large vortices occur, leading to fuel propa-
gation upstream in to the cavity, where the recirculation bubbles are
highly unstable. They interact with the pulsating vortex structure
downstream of the cavity. The preceding results warrant further in-
vestigation of the fuel injection downstream of an open cavity for
possible fuel/air mixing and flameholding enhancement. In general,
numerical results obtained by the CESE method can effectively cap-
ture the unsteady and complex mixing processes of cavity flows in
the setting of an advanced scramjet engine.
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