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Abstract 
In this paper we apply the Space-Time CESE 

method to simulate supersonic flows over open 
cavities, in the setting of a dual-mode scramjet 
engine to enhance fuel/air mixing and flame 
holding.  Detailed flow features of cavity flows 
with and without an upstream injection are 
successfully captured. The present numerical 
results compared favorably with the experimental 
data for dominant frequencies and time-averaged 
pressure coefficients inside the cavities. With an 
upstream injection, the flow oscillations are 
drastically suppressed. The present results show 
that the CESE method is a viable CFD approach for 
high fidelity simulations of unsteady flows relevant 
to advanced scramjet engine concepts. 

 

1. Introduction 
Fuel injection, ignition, and flame holding are 

challenging issues in designing a scramjet engine. 
A successful fuel injection method must provide 
rapid fuel/air mixing with minimum total-pressure 
loss in the air stream.  A stable flame-holding 
system for a wide range of operating conditions is 
critical to the engine performance.  

The AF supersonic combustion testing facilities 
in WPAFB [1, 2] provide a prototype of a next-
generation, dual-mode, hydrocarbon fueled 
scramjet engine. Inside the combustor, various 
cavity flame holders have been tested in 
conjunction with flush-wall and parallel fuel 
injection schemes.  

Cavity flows is composed of complex flow 
features of boundary layer separation, shear layer 
instability, vortices shedding, and acoustic waves.  
Unsteady oscillations occur under a wide range of 
flow conditions and cavity geometries. Recent 
studies showed that the oscillations are useful to 
enhance fuel/air mixing and to stabilize the flame 
with acceptable pressure loss [3, 4, 5]. Behaviors of 
cavity flows and the associated acoustic waves, 
however, can be drastically changed by the fuel 
injection mechanism employed.  Many times, the 
inherent oscillations of cavity flows may disappear 
[3, 9, 10, 11]. 

In the past, extensive experimental and 
theoretical studies on flows over cavities have been 
conducted. Fundamental characteristics such as the 
oscillation frequency have been reported, e.g., [6-
8].  However, it is difficult to directly apply this 
knowledge to scramjet engine design due to the 
additional complexity of fuel injection and different 
flow regimes of interest.  In particular, a viable 
modeling tool is needed to assess the amplitude of 
pressure oscillations and dominant frequency 
modes in the scramjet engine. 

The objective of the present paper is to 
demonstrate the capabilities of the Space-Time 
Conservation Element and Solution Element 
(CESE) Method in calculating the highly unsteady 
cavity flows with and without the fuel injection 
mechanism, in a setting of a typical scramjet 
engine, e.g., the AF testing facilities [1, 2]. The 
experience and knowledge so gained could be a 
steppingstone to further explore the use of the 
novel CESE method for simulations of more 
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complex flows relevant to advanced concepts in the 
further development of scramjet engines.   

The rest of the paper is organized in the 
following. In Section 2, we briefly review the 
model equations to be solved by the CESE method. 
Section 3 provides background information of the 
CESE method. Section 4 shows numerical solutions 
by the CESE method, including detailed 
comparison between the present numerical results 
and the experimental data for oscillating 
frequencies and time averaged pressure coefficient 
on the cavity floor. We then show results of 
interactions between an upstream injection and a 
cavity flow.  Finally, we offer concluding remarks 
and provide cited references.  

2. Governing Equations 
The two-dimensional Navier-Stokes equations 

for compressible flows in Cartesian coordinates are 
presented in a vector form:  
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where U is the flow variable vector, F and G are 
the inviscid flux vectors, and  Fν, and Gν  are the 
viscous flux vectors:   
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where ρ is density; u and v are velocity components 
in the x and the y directions, respectively; p is 
pressure; e = ε +1/2(u2 + v2 ) is the specific total 

energy with ε as the internal energy.  Note that due 
to the ideal gas equation, p=(γ - 1)ρ ε, and γ= 
Cp/Cv is the specific hear ratio. In the viscous 
vectors, τxx, τxy, τyx, and τyy are shear stresses, and 
qx and qy are the x and the y components of the heat 
conduction flux, respectively.  

The above governing equations are non-
dimensionalized by the free stream conditions, i.e., 
velocity components u and v by u∞,; density by ρ∞; 
pressure by ρ∞u∞

2; and the total energy e by ρ∞u∞
2. 

The cavity depth D is used as the length scale for 
nondimensionalization, and the time scale is D/u∞. 

3. The CESE Method  
The Space-Time Conservation Element 

Solution Element (CESE) Method, originally 
proposed by Chang [12, 13, 14, 15], is 
distinguished by the simplicity of its conceptual 
basis, i.e., flux conservation in space and time and a 
unified treatment of space and time in enforcing 
flux conservation. As a contrast to modern upwind 
schemes, no Riemann solver or reconstruction 
procedure is used, and the logic and rational of the 
present method is extremely simple.  No directional 
splitting or fractional step method is used in the 
CESE method, and numerical accuracy does not 
deteriorate as we change from one-dimensional 
calculations to multi-dimensional ones.  

In the CESE method, we reformulate Eqn. (1) 
by letting x1 = x, x2= y, and x3= t. The space-time 
domain of interest in the present calculation 
becomes a three-dimensional Euclidean space E3.  
As a result, Eqn. (2) could be represented as 

0i =⋅∇ h ,      (2)  

for i =1, 2, 3, and  4 for the four equations.  The 
space-time flux vector hi = [(f- fv)i, ( g-gv)i, ui]T.   
Note that  (f- fv)i and  (g- gv)i are ith component of 
F-Fv and G-Gv, respectively.  By Gauss’ divergence 
theorem,   

∫ =⋅
)(VS i 0dsh �

                                 (3) 

where V is a space-time volume, S(V) is the surface 
of V, and s�d is a surface element vector pointing 
outward. Figure 1 shows an arbitrary space-time 
volume in one spatial dimension. By introducing 
separated definition for conservation element and 
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solution element, the CESE method integrates Eqn. 
(3) and march the solution forward in time. 
Computer programs solving one-, two- and three- 
dimensional flow equations have developed. The 
CESE computer programs can solve structured and 
unstructured meshes, composed of triangles and 
quads for two-dimensional problems and 
tetrahedrons, prisms, pyramids, and hexes for three-
dimensional problems.  

r+dr

r

dr

ds
V

S(V)

t

x 
Fig. 1: A schematic of space-time integral of the                    
           CESE method. 

Previously, by using the CESE method, we 
have reported numerical results of detonation 
waves, cavitations, low-Mach-number viscous 
flows, various acoustic problems, and plume 
dynamics of a pulse detonation engine (PDE). We 
also found that the CESE solver is capable of 
calculating high-speed compressible flow as well as 
flows at very low Mach numbers without applying 
preconditioning to the flow equations. The CESE 
method is indeed a promising new numerical 
framework for unsteady fluid mechanics at all 
speeds. 

The boundary condition treatments in the 
CESE method is constructed based on space-time 
flux conservation in the vicinity of the 
computational boundary, including the reflective, 
non-reflective, and solid-wall boundary conditions.  
In particular, in the setting of the space-time flux 
conservation, i.e., Eqn. (3), the implementation of a 
non-reflective boundary condition is extremely 
simple due to the fact that all fluid information 
must propagate into the future.  Along a wall 
boundary, Chang and co-works developed a unified 
boundary condition for both inviscid and viscous 
flows. A non-slip condition will be automatically 
enforced when the viscosity is not null.  

4. Results and Discussion 
Three numerical examples are presented here 

(1) an AF testing condition for evaluating the 
accuracy of the calculated frequency, (2) a NASA 
testing condition for evaluation of the accuracy of 
time-averaged amplitudes of pressure fluctuations 
along the cavity walls, and (3) preliminary results 
of a cavity flow with an upstream transverse 
injection.  

4.1 AF Testing Case 

Our first numerical example follows the testing 
condition in the AF facility reported in [4]. A 
supersonic flow at Mach 2 and Reynolds number of 

7105.4 × (per meter) passes a swallow cavity, in 
which L/D = 7.76. L and D are the length and depth 
of the cavity, respectively. The computational 
domain after non-dimensionalization is 

52.110 ≤≤ x , and 82.30 ≤≤ y . Mesh points were 
clustered at the forward and aft bulkheads, at the 
plane of the mouth, and along the lateral sidewalls. 
143,000 triangular elements are used in the domain.  
The inlet boundary condition was assumed 
uniform. The unified boundary condition is applied 
to the solid wall. The non-reflective boundary 
condition is applied to the free stream surface and 
outlet.  Initially, velocities inside the cavity are set 
to zero, and the density and pressure of the whole 
domain are set to the free stream values. The time 
step was chosen such that CFL ≈ 0.8. 

Figure 2 shows a series of snapshots of 
pressure contours, vorticity contours, and numerical 
Schlieren images. The numerical Schlieren image is 
the contour plots of   
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These figures demonstrate very complex flow 
features, including traveling acoustic waves, vortex 
generation at the leading edge, shedding vortices in  
the shear layer, and pressure waves impinging on 
and rebounding from the aft wall. These 
mechanisms form self-sustained oscillations, which 
are consistent with the feed back loop suggested by 
Rossiter [7].  

From Fig. 2(b), the shear layer fluctuations 
could be clearly discerned. Inward deflection of the   



 4

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

                               (a)                                                        (b)                                                              (c) 
 
             Fig. 2:  Snapshots of flow fields of a cavity flow with M=2.0, L/D=7.76,  
                         (a) pressure contours, (b) vorticity contours, and (c) numerical Schlieren images 
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shear layer results in mass addition into the cavity.  
On the other hand, outward deflection of the shear 
layer allows mass expulsion from the cavity. This 
periodic mass addition/expulsion could be critical to 
the fuel/air mixing and flame-holding in scramjet 
engine applications. Moreover, a resonating shock 
wave above the cavity, shown in Fig. 2 (c), can also 
enhance fuel/air mixing. 

Figure 3 shows the pressure history at locations 
on the aft wall and on the floor. The flow has reached 
a semi self-sustained oscillatory state after about 15 
tc. Note tc = D/ U∞. However, the oscillation pattern 
changes from cycle to cycle, and one cannot clearly 
identify the period of the oscillation cycles. This is 
consistent with experimental observation reported in 
[8]. The amplitude of the pressure oscillations at the 
aft wall is much higher than that at the cavity floor 
due to the mass addition and expulsion mechanism 
along the aft wall.   
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Fig. 3:  Monitored pressure history on the wall            
            inside the cavity for Mach 2.0 and L/D=7.76 

Figure 4 shows its frequency spectra of the 
pressure oscillations shown in Fig. 3. The predicted 
values of the dominant frequencies compare well 
with the Rossiter relation, and the numerical results 
by Baurle et al. [4].  The Rossiter formula is  
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where mf is the resonant frequency corresponding to 
the thm  mode, U is the main stream velocity, L is the 

cavity length, α = 0.513, and K= 0.57. The 
calculated dominant frequencies are 574, 2294, 3441, 
and 5735Hz, which compare well with the 1st, 3rd,  4th 
, and 6th  mode by the Rossiter relation. 
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Fig. 4: The predicted frequencies for the cavity flow  
           with in the AF testing case.  

 

4.2 NASA Testing Case 

The validation of the numerical calculations for 
the amplitudes of pressure oscillations is performed 
by using the experimental data reported in [16].  In 
this testing case, a free stream at Mach 1.5 flows 
over an open cavity with L/D = 6.0. 

Figure 5 shows the comparison between the 
present numerical solutions and the experimental 
data for the time-averaged pressure coefficient, 
which is defined as 
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where p  is the time-averaged surface pressure.  

The calculated results for both inviscid and 
viscous flows are in good agreement with the 
experimental data.  The discrepancy near the fore 
wall is probably due to uncertainties of the incoming 
boundary layer in the experiments.    

 



 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Distance from the fore wall

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pr

es
su

re
 C

oe
ffi

ci
en

t, 
C p

 N-S

Euler

Experiment [16]

 
Fig. 5: Time-averaged pressure coefficients along the  
           cavity floor in the NASA testing case.  

4.3 Cavity with Upstream Injection  

As the last numerical example, we consider a 
cavity flow with an upstream injection in the 
transverse direction. The calculation domain is 

80.130 ≤≤ x , 0.40 ≤≤ y , which is decomposed into 
45,200 triangular elements. The free stream flow 
condition and the cavity geometry are identical to 
that of the Case 1. The injection jet opening is 0.2 D, 
and its center is located 1.0 D upstream from the 
leading edge at forward bulkhead. A choked jet with 
a uniform condition at the opening imposed with 

0.1=J , 34.4/ =∞pp j , 593.6/ =∞ρρ j , where  

freestreamjet uuJ )/()( 22 ρρ=    (7) 

is the ratio of stream momentum fluxes of jet and the 
free stream.  

Figure 6 shows the time histories of pressure 
oscillations with and without upstream injection at 
the fore wall and aft wall locations. When the 
injection is turned on, flow oscillations inside the 
cavity are suppressed, and the oscillation pattern is 
changed. This result is qualitatively consistent with 
that reported by Vakili et al. [9].  

Figure 7 shows the frequency spectrum of 
pressure oscillations on the aft wall location. The 
calculated dominant frequencies are 315, 1893, 2523, 
3470 and 5735Hz. Comparing with the frequencies 
shown in Fig. 4, we conclude that upstream injection 
causes the dominant frequencies shift to lower 
values.  
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Fig. 6: Pressure oscillations at (a) the fore wall and  
           (b)  the aft wall locations, with and without  
            injection  
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Fig. 7: The dominant frequencies for the cavity flow  
           with injection.   

Figures 8 and 9 show snapshots of vorticity and 
pressure contours, respectively, at three different 
times ( 75.0=∆ ct ). The thickness of the shear layer 
increases due to the upstream injection. This increase 
could significantly reduce the amplitude of cavity 
oscillations[9]. The predicted results show the 
suppression of the roll up or downward deflection of 
the shear layer due to the increase in its thickness. 
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This is consistent with the experimental 
observations. 

 
 

 
 

 
Fig. 9: Snapshots of vorticity contours for the cavity  
           flow with an upstream injection;  
          J = 1, M = 2.0, and L/D = 7.76.  
 

 
 

 
 

 
Fig. 8: Snapshots of pressure contours for the cavity  
           flow with an upstream injection;  
          J = 1, M = 2.0, and L/D = 7.76. 

5. Concluding remarks 
In the present paper, we use the CESE method to 

simulate supersonic flows over open cavities in the 
setting of advanced scramjet engine combustor. Both 
Euler and Navier Stokes solvers are used and three 
testing conditions are simulated. The calculated 
results showed that the CESE method could predict 
the well-known feedback mechanism and the self-
sustained oscillations in the cavity flows. We have 
shown that the CESE method could catch the 
dominant frequencies up to the fourth mode in the 
AF Case, and to the fifth mode for cavity flow with 
injection. We observed that oscillation pattern 
changes from cycle to cycle, which was also reported 
by experimentalists. Finally, preliminary results 
shows that an upstream injection could drastically 
suppress flow oscillations and simultaneously cause 
the dominant frequencies shifted to lower values. 
The above results show that the CESE method is 
indeed a viable CFD method for high fidelity 
simulation of unsteady flows relevant to advanced 
scramjet engines.  
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