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ABSTRACT 

In this paper, we report numerical simulation of 
transverse fuel injection in the setting of a scramjet 
engine. We emphasize on the complex flow 
structure of the transverse injection into a 
supersonic cross-flow in the vicinity of the injector. 
We solve the three-dimensional flow equations by 
using an extended CESE method. The results shown 
here are based on a mesh of 5.5 millions cells. The 
simulations were conducted by using a cost-
effective Beowulf cluster. The parallel computing is 
based on the domain decomposition. The numerical 
results show complex vortex and shock structure. 
The results compare favorably with the available 
experimental data in terms of Mach disk location 
and penetration depth of the fuel jet. 

 

1. INTRODUCTION 

The study of transverse injection into a supersonic 
stream is important for supersonic combustion 
ramjet (scramjet) engines. When a gaseous fuel jet 
is injected into a supersonic crossflow, the fuel acts 
as an obstruction to the crossflow and produces a 
strong shock wave. This shock interacts with the 
boundary layer on the wall to form a complex flow 
system, in which high and low pressure regions 
exist in the vicinity of the injector. Figure 1 shows a 
schematic of the transverse injection, where the jet 
is sonic and injected perpendicular to the supersonic  
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crossflow. A bow shock occurs due to the 
disturbance to the incident flow by the transverse 
injection. The shock strength varies with respect to 
the distance measured from the injector wall. Away 
from the wall, the bow shock curves around the 
injectant plume. Due to the expansion of injected jet 
and its interaction with the bow shock, complex 
shock waves are generated in the injectant plume, 
including a barrel shock and a Mach disk. Due to 
the blockage to the supersonic cross flow by the 
fuel injection, a horseshoe vortex tube is formed 
near the wall. In the injectant plume, a pair of the 
counter-rotating vortex tubes is also developed. 

The trajectory of the fuel jet is of obvious 
importance in the application of scramjet engines 
because of the required uniform fuel distribution in 
the air stream entering the combustor. The jet 
structure and fuel penetration depend on the jet-to-
free stream momentum ratio. Since 1960s, many 
experiments have been conducted to investigate the 
effect of the controlling flow parameters to the 
overall flow field. The free stream Mach number 
ranged from 1.3 to 4.5 [1-6]. In general, the 
injection pressure and free stream Mach number are 
the key factors controlling the overall flow structure. 
Zukoski et al. [6] and Billig et al. [2] developed 
equations for calculating the penetration depth and 
the trajectory, including formulation for predicting 
the location of the Mach disk, a key feature of the 
fuel injection. The effect of the static pressure ratio 
of jet to free stream was formulated based on the 
concept of an effective backpressure [2-6]. To 
present the experiments, injectant concentration 
profiles were presented to describe the trajectory 
and to verify the theorem [2-6]. Recent works by 
Gruber et al. [1] also showed the lateral spread of 
the injectant, which is of great interest to the 
research on scramjet engines.  
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Hydrogen and/or heavy hydrocarbons are used 
as fuels for the scramjet engines. The molecular 
weights of the fuels employed lead to significant 
compressible effects in the mixing layer between 
the injectant stream and the supersonic cross flow. 
The interactions would directly impact the mixing 
layer growth rate, flow stability, and turbulent 
structures and intensity. Therefore, different fuel 
may affect the potential performance of the 
scramjets and should be investigated carefully. In 
previous experiments, injectant includes N2, He, 
and Ar. Gruber et al. [1] also used air besides He 
for the jet in their work. In this work, our simulation 
follows [1] closely. 

The objective of the present paper is to conduct 
numerical study of the flow field created by sonic 
transverse injection through a circular nozzle into a 
supersonic cross flow.  The rest of the present paper 
is organized as follows. In Section 2, we briefly 
describe basic principle of the CESE method. In 
section 3, we report the implementation of parallel 
computing using a Beowulf cluster. Numerical 
results based on the use of 5.5 millions mesh nodes 
are shown in Section 4. We then offer concluding 
remarks and provide cited references. 
 

2. THE CESE METHOD 

The space-time CESE Method, originally proposed 
by Chang [7], is a novel numerical framework for 
hyperbolic conservation laws.  The CESE method is 
not an incremental improvement of a previously 
existing CFD method, and it differs substantially 
from well-established CFD methods. The CESE 
method has many non-traditional features, including 
a unified treatment of space and time in calculating 
flux conservation, the introduction of conservation 
element (CE) and solution element (SE), a novel 
shock capturing strategy without using a Riemann 
solver, and simple treatments for reflective, non-
reflective, and no-slip boundary conditions based 
on a local space-time flux conservation over CEs 
near the computational boundaries. Details of the 
CESE method have been extensively illustrated in 
the cited references [7-10]. 

To date, numerous highly accurate solutions 
have been obtained by the CESE method. Based on 
experience, we found that the CESE method is 
capable of capturing shocks and acoustic waves 
simultaneously, where the magnitude of the shock 

pressure jump could be several orders of that in the 
acoustic waves. The high-resolution capabilities of 
the CESE method and the simple boundary 
condition treatment are critically important to the 
present calculations.  

We note that in the original CESE method, 
triangular and tetrahedron meshes in spatial domain 
are used for two- and three-dimensional 
calculations. Recently, the CESE method has been 
extended to include quadrilateral and hexahedral 
meshes in two- and three-dimensional calculations 
[10]. This extended CESE method is adopted in the 
present work. 

 

3. PARALLEL COMPUTING 

To conduct three-dimensional simulations with 
millions of mesh grids, we employed parallel 
computation using a Beowulf computer cluster, 
which is a PC-based system, interconnected by 
high-speed networks. The PCs run an open-source 
UNIX operating system, e.g., Linux in our case. 
Parallel application programs communicate using 
industry standard message passing models and 
libraries, e.g., MPI. By using off-the-shelf PC parts 
and free software, the parallel computer clusters are 
fairly affordable.  

Effective use of a Beowulf system requires a 
proper distribution of simulation tasks among the 
computer nodes. The approach here is to 
decompose the computational domain into a 
number of partitions, and to assign each partition to 
a PC node. The processing nodes execute the same 
CFD solver but in different sub-domains. They 
exchange intermediate numerical results at sub-
domain boundaries at the end of each iteration time 
step. Proper domain decomposition would balance 
the computational workload and memory 
occupancy of the processing nodes, while 
minimizing the inter-node communication. In the 
present work, the computational domain is a simple 
cube and the domain decomposition could be easily 
done. For complicate domains, special de-
composition tools, such as METIS, could be used. 

Different application needs different hardware 
and different system design. The competition 
between Intel and AMD bring consumers 
processors with frequency of up to 3 GHz. However, 
according to our experience, large memory 
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bandwidth and fast network are critical to CFD 
simulations. In two- and three-dimensional 
calculations, huge amount of double precision data 
“flow” between computer nodes. Fortunately, 
recent development of RAMBUS and DDR 
memory, and Gigabit Ethernet can satisfy our 
increasing need for fast data transfer. 

The Beowulf cluster used in present work 
consists of eight PC nodes of 2 GHz Pentium 4 
CPU, 2 GB PC2100 DDR memory and Gigabit 
Ethernet controller on each node. The cost of the 
cluster including the switch is about 20K dollars in 
the summer of 2002.  

 

4. NUMERICAL RESULTS 

The flow conditions are taken from the 
experimental conditions by Gruber et al. [1]. The 
free stream is air with pressure Pa = 41.8 kPa, 
density ρa = 0.86 kg/m3 and Mach number Ma = 
1.98. The injectant is also air with pressure Pj = 476 
kPa and density ρj = 6.64 kg/m3. The injection 
Mach number is slightly higher than the sonic 
condition, Mj = 1.0, to avoid complex boundary 
condition treatment at the injection port. The 
diameter of the injector nozzle d = 2 mm. A 
structured hexahedron mesh of about 5.5 million 
cells is used in the present calculation. 
Measurement of length and coordinates are 
normalized based on the diameter of the injector 
hole. Numerical solutions of the flow variables 
were normalized by the free stream values.   

Figure 2 shows the two-dimensional pressure 
contours from the side view. One can clearly 
observe the bow shock, the barrel shock and the 
Mach disk. Due to the high-pressure regions in 
front of the injection hole, the bow shock bends 
forward in the near-wall region.  

Figure 3 shows pressure distribution along the 
central line of the computational domain on the wall. 
Note that pressure increases steeply before the 
injector, and the variation of pressure distribution in 
front of the injector showed the complex flow 
structure in the region. In the lee of the injection 
hole, pressure is lower than the free stream pressure. 
Further downstream from the injector, pressure 
recovers to be higher than unity. Although not 
shown, pressure would asymptotically approach 
unity in far downstream locations.  

Figure 4 shows the vorticity contours on cross 
sections at various axial locations.  The well-known 
counter-rotating vortex pair is clearly shown.  In 
addition, there are many smaller vortices, and the 
overall flow pattern is very complex. We remark 
that the contour plots also show the interactions 
between the vortex pair and the boundary layer.  

Figure 5 shows the two-dimensional vorticity 
contours at the central plane.  Figure 6 shows the 
top view of the vorticity contours at various heights 
from the injection plane. From the top view, we can 
access the lateral spread of the injected jet. The 
necking of the wake near the wall could be clearly 
seen. Along the streamwise direction, a lateral 
contraction of the mixing region occurs, where the 
mixing layer becomes smaller. These figures show 
elaborate structure of the flow field.  

Figure 7 shows the two-dimensional velocity 
vectors at the central plane. Similarly to Fig. 2, all 
salient features of the transverse injection flow field 
are resolved, including the bow shock, the barrel 
shock, the Mach disk, and the recirculation regions 
near the injection hole.   

Figure 8 showed the two-dimensional velocity 
vectors on cross sections at various axial locations. 
These plots show multiple vortices in the 
streamwise direction. Moreover, Figure 8 shows a 
striking three-dimensional shock structure just 
below the main vortex pair. At x/d = 4, a narrow 
trapezoidal zone is enclosed by the shock wave. 
The trapezoidal zone expands in the transverse 
direction as the fluid flows downstream.   

Figures 9-11 show the mass fraction contours of 
the jet. The main features are very similar to that in 
the vorticity contours. These plots also clearly show 
the propagation of the injectant along the boundary 
layer.   

The location of the Mach disk is an important 
parameter to access the effectiveness of the 
injection flow field. Using Mach number of the free 
stream and the pressure ratio as the controlling 
parameters. Billig et al. developed the following 
two equations for the Mach disk location [2]:  
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where x1 and y1 are the coordinates of the Mach 
disk center. In Eqns. (1-2), Mj and pj are the Mach 
number and pressure of the injectant, Dj is the 
diameter of the hole. The superscript * stands for 
sonic point condition. Ma is the Mach number of the 
free stream. peb = 2/3 pta’ is the effective back 
pressure, where pta’ is the Pitot pressure behind the 
shock of the free stream. The Mach disk locations 
predicted by these two equations are plotted in 
Figure 12 and Figure 13. The present results, 
denoted by filled and open rhombuses, compared 
well with the predictions by Billig’s correlations. In 
the same plots, some of the previous experimental 
data are also included. 

Figure 14 shows the injectant concentration 
profiles at various streamwise positions. The 
trajectory is also plotted based on the injectant 
concentration profiles. Along each injectant 
concentration profile, the concentration decreases 
sharply in the region lower than the core of the 
injected jet.  

Lateral spread of the injectant is plotted in 
Figure 15. We check the maximum width of the 
concentration contour where the injectant 
concentration is equal to 10% or 90%, at all 
streamwise locations. From this figure, we can see 
that the maximum spread width is reached at the 
location about 4d from the injection hole. The 
spread remains about the same with some 
contraction for locations at x/d > 4.  

In order to access the numerical accuracy of the 
present calculation, we conducted another 
calculation based on the flow conditions reported in  
[3], i.e., Ma = 2.72, pj*/peb = 2.73, ptj/peb = 5.18, 
qji/qa = 2.38, where ptj is the total pressure of the 
injectant, qji is the initial dynamic pressure of the 
injectant and qa is of the free stream. Species 
concentration profiles at four streamwise positions 
were investigated, including x/d =2.23, 4.46, 6.70, 
and 8.92. The concentration profiles and trajectory 
are shown in Figure 16, where the numerical results 
are shown in lines and symbols are the experimental 
data. The comparison between the present CFD 
results and the experimental data is favorable. In 
addition, based on the maximum values of the 
species concentration at each axial location, we also 

plotted the trajectory of the jet. The trajectory also 
compared well with the experimental data by Orth 
et al. [3] and the result predicted by Shetz et al. [5].  

 
5. CONCLUDING REMARKS 

In this paper, we reported high-fidelity numerical 
solutions of the transverse injection into a 
supersonic cross flow. The calculation was done by 
using the CESE method, running on a Beowulf 
cluster. For high resolution, more than 5 millions 
mesh nodes were used. The numerical results show 
crisp resolution of complex flow features. In 
particular, the present results show complex vortex 
structure in the streamwise direction and a distinct 
three-dimensional shock structure in the region 
under the bended jet and the boundary layer. The 
numerical results compared well with the previous 
theoretical and experimental data for the Mach disk 
locations, jet trajectory, and the injectant 
concentration profiles. 
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Fig. 1: A schematic of the transverse injection flowfield. 

 
 

 
Fig. 2: Pressure contour at the central plane (y = 0). 

  
Fig. 3: Pressure distribution at central line along the 

wall. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4: Contours of the x-component of the vorticity. 
(a) The checking plane distribution. (b) x = 2d, 
measured from the center of the injector hole. (c) 
x = 4d. (d) x = 6d. (e) x = 8d. 

 

 
Fig. 5: Contours of the y-component of the vorticity 

at the central plane (y = 0). 
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(a) 

 
(b) 

 
(c) 

Fig. 6: Contours of the z-component of the vorticity. 
(a) z = d, above the wall, (b) z = 2d, (c) z = 3d. 

 

 

 

 

 

 
Fig. 7: Velocity vectors at the central plane (y = 0). 

 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

Fig. 8: Velocity vectors at the cross sections at (a) x 
= 2d measured from the center of the injector 
hole, (b) x = 4d, (c) x = 6d, (d) x = 8d. 

 

 
Fig. 9: Injectant concentration contour at the central 

plane (y = 0). 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Fig. 10: Injectant concentration contours on the 
cross sections in the streamwise direction. (a) 
The checking plane distribution and the contour 
legend. (b) x = 2d, measured from the center of 
the injector hole. (c) x = 4d. (d) x = 6d. (e) x = 
8d. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11: Injectant concentration contour at (a) z = d 
above the wall, (b) z = 2d, (c) z = 3d. 
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Fig. 12: Mach disk locations as a function of the 

injection Mach number and pressure. 

 
Fig. 13: The coordinates of the center of the Mach 

disk as a function of the Mach number ratio. x 
and y are the coordinates of the Mach disk 
location. Ma, Mj are the Mach numbers of the 
free stream and the injectant, respectively. 

 

 

Fig. 14: Jet trajectory and injectant concentration 
profiles at location x = 1d, 2d, …, and 8d. The 
free stream Mach number is 1.98 [1]. 

 

 
Fig. 15: Injectant lateral spread for the case of Ma = 

1.98 [1]. 

 

 
Fig. 16: Jet trajectory and injectant concentration 

profiles. In the four embedded small figures, the 
symbols present experimental data by Orth et al. 
1967, the lines stand for the result of present 
work. For the jet trajectory, the present CFD 
results compared well with the theoretical 
trajectory by Schetz et al. [4], and the 
experimental data by Orth et al. [3]. Note that 
the flow condition follows that in [3] and the 
free stream Mach number is 2.72 


