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 Abstract 
The present paper reports one-, two-, and three-
dimensional numerical simulation of propagating 
detonations. We solve the Euler equations for chemically 
reacting flows with the space-time CESE method. The stiff 
source terms in the species equations are treated by a 
volumetric integration over a space-time region as an 
integral part of the space-time flux conservation. The 
classical ZND solution is used for code validation as well 
as the initial condition in the simulations. One-dimensional 
results include a piston problem and an instability problem. 
Two-dimensional cases include planar detonation waves 
and an oblique detonation over a ramp. Three-dimensional 
results include planar detonations in square ducts of 
various sizes. For H2/air mixtures at various equivalence 
ratios, the cell size of the calculated soot trace compares 
well with experimental data. For the same flow conditions, 
the cell sizes of two-dimensional calculations are generally 
30 to 40% less than that in three-dimensional ones. 
Moreover, both the amplitude and the frequency of the 
peak pressures in the calculated three-dimensional 
detonations are much higher than that in the two-
dimensional results. Similarly, the frequency and 
amplitudes of the calculated two-dimensional pressure 
peaks are higher than that of the galloping one-dimensional 
detonations. While one- and two-dimensional simulations 
provide qualitative features of propagating detonations, one 
has to resort to three-dimensional simulations to obtain 
realistic flow structures of a detonation wave.  

1. Introduction 
Detonations are efficient processes of converting stored 
chemical energy in fuels to useful thermal and mechanical 
energy for various applications. In scramjet engines, 
standing detonation waves are the primary combustion 
mode and the associated blast waves also enhance fuel/air 
mixing. In pulsed detonation engines, the thrust power is 
directly from the high pressures behind detonations. 
Detonations were first recognized by Mallard and Le 
Chatelier. Chapman and Jouguet proposed the first 
theoretical model, which focuses on thermodynamic states 
before  and  after  the  detonation  wave.  The structure of a 
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detonation wave was illustrated by Zeldovich, von 
Neumann, and Doering, i.e., the ZND model [1], in which 
a shock coupled with and followed by a combustion zone 
was depicted. Refer to Fig. 1. Further experiments, 
however, showed that detonation waves are unstable with 
transverse wave structure, and the unsteady pressure spikes 
are much higher than that predicted by the ZND model. 

Recently, direct calculations of detonations have 
become quite commonplace [2-13]. Fickett and Wood [2] 
pioneered the numerical calculations of detonations by 
solving the one-dimensional Euler equations for reacting 
flows with the method of characteristics in conjunction 
with a shock fitting method. Longitudinal instability waves 
were accurately simulated. Taki and Fujiwara [3] reported 
the first two-dimensional simulation of detonations. They 
applied the upwind method for shock capturing and a two-
step finite-rate model for modeling the ignition delay. Oran, 
Kailasanath, and coworkers [4-6] applied the FCT method 
to calculate detonations and reported detailed structures of 
two-dimensional detonations, including transverse waves, 
Mach stems, and fish-scale soot trace. Bourlioux and 
Majda [7] developed an accurate method, composed of a 
high-order upwind scheme, a front tracking method, and an 
adaptive refinement algorithm to calculate detonation 
waves. Papalexandris [8] developed an unsplit upwind 
method, which is based on integrating the flow equations 
along the characteristic manifolds in the space-time domain.  

The first three-dimensional simulation of detonations 
was performed by Fujiwara and Reddy [9]. They studied 
detonation propagation in co-axial tubes. Williams et al. 
[10] reported the three-dimensional structure of 
detonations in a square channel. They reported the 
evolving incident waves and Mach stems in a rectangular 
pattern. By using the CESE method, direct calculations of 
three-dimensional detonations were reported by Zhang et al. 
[11, 12]. They reported the first simulated diagonal 
structure of propagating detonation in square tubes. 
Recently, Tsuboi et al. [13] also reported three-dimensional 
calculations of detonations by using a TVD scheme. They 
reported both rectangular and diagonal structures. In these 
three-dimensional calculations, the computational domains 
were very small and the discussions of the numerical 
results focused on the details of one or a handful of 
detonation cells.  
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In this paper, we report direct calculations of one-, 
two-, and three-dimensional detonations by using the 
space-time conservation element and solution element 
(CESE) method. Originally developed by Chang and 
coworkers, the CESE method [14-19] is a novel numerical 
framework for conservation laws. The CESE method 
employs a unified treatment for space and time to enforce 
local and global flux conservation. The objectives of the 
present paper are twofold. First, we wish to demonstrate 
the capability of the CESE method for calculating 
detonation waves. With a moderate mesh resolution, we 
will show that the CESE method is capable of capturing 
salient flow features of a propagating detonation wave in 
one-, two-, and three-dimensional calculations. Secondly, 
we will show that the structure of detonation waves is 
essentially three-dimensional and one has to conduct three-
dimensional simulation to catch basic features of 
detonation waves, e.g., the cell size of the soot traces. We 
will clearly present the differences between the one-, two-, 
and three-dimensional results.  

The rest of this paper is organized as follows.  Section 
2 provides a brief account of theoretical model. For 
completeness, the classical ZND analytical solution is 
summarized in an appendix. Section 3 illustrates the space-
time CESE method. Section 4 reports numerical solutions. 
We then offer concluding remarks and provide cited 
references. 

2. Model Equations 
Model equations for chemically reacting flows with 
various levels of complexity exist. We have employed two 
approaches in the present paper. In the present section, we 
present the simpler one, which is consistent with the 
classical ZND model equations. Equation (2.1) shows the 
three-dimensional Euler equations for chemically reacting 
flows: 
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where m =1, 2, 3, 4, 5 and 6, indicating the continuity 
equation, the x-, the y-, and the z- momentum equations, 
the energy equation, and a species equation. In Eq. (2.1), 
the vectors are 
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where ρ is density; u, v, and w are three Cartesian velocity 
components; p is pressure; and Z is the mass fraction of the 
reactant. The total energy E is defined as  

)(
2
1 222 wvueE +++= ,  

)(
2
1

)1(
222

0 wvuZq
γ-
p

++++=
ρ

  (2.3) 

where e is the specific internal energy, and q0 is the heat of 
formation of the reactant. To close the equation set, the gas 
mixture is assumed polytropic, i.e., (i) the mole number of 
the reacting gas mixture is a constant; (ii) the molecular 
weight of the reacting gas mixture is a constant; (iii) the 
gas mixture is ideal, and (iv) the specific heats Cp and Cv of 
the gas mixture are constants. For ideal gases, p = ρRT, 
where T is the temperature and R = Ru/Mw is the gas 
constant. Note that Ru is the universal gas constant and Mw 
is the molecular weight of the gas mixture. To model 
chemical reactions, we consider a one-step irreversible 
reaction. The source term in the species equation, Eq. (2.2), 
due to chemical reaction is  

ZTREK u ρω  )/exp(  +−−=� ,     (2.4)   

where K is reaction rate coefficient and E+ is the activation 
energy.  

To proceed, the above equations are made 
dimensionless based on the state of the unburned gas, i.e., 
ρ0, p0, T0. A reference velocity is defined as 0RT , which 
is in the same order of magnitude of the speed of the sound 
in the unburned gas. The reference length x0 is chosen as 
the half- reaction length, L1/2, which is defined as the 
distance between the detonation front and the point where 
half of the reactant is consumed by chemical reaction. The 
total energy E, the internal energy e, the heat release q0 are 
made dimensionless by being divided by RT0. The 
activation energy E+ is non-dimensionalized by RuT0..  The 
dimensionless variables are denoted by a bar on top each 
variable:  
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The form of the dimensionless governing equations remain 
unchanged except the source term, 

)/exp( TEZK +−−= ρω� ,   (2.6) 

where the universal  gas constant has been absorbed into 
the dimensionless activation energy. For convenience, the 
bar above each flow variable is dropped in the following 
discussions. 

3. The Space-Time CESE Method 
The CESE method, developed by Chang and coworkers 
[14-19] has been extensively illustrated in the cited 
references. In this paper, we present a brief discussion for 
solving the reacting Euler equations. Consider Eq. (2.1) 
and let x1 = x, x2 = y, x3 = z, and x4 = t be the coordinates of 
a four-dimensional Euclidean space E4.  By using the 
Gauss divergence theorem, Eq. (2.1) becomes  

∫∫ =⋅
V mVS m dVd µ

)(
sh ,   (3.1) 

where S(V) is the boundary of an arbitrary space-time 
region V in E4, ds is a surface element vector pointing 
outward, and hm = (fm, gm, qm, um) is the space-time current 
density vector. Equation (3.1) states that the total space-
time flux hm leaving volume V through S(V) must be 
balanced by the flux produced by the source term within V.  

The CESE method integrates Eq. (3.1) in the space-
time domain and solve for um in the new time levels. 
Contrast to the conventional finite volume methods, the 
CESE method has separate definitions of Conservation 
Element (CE) and Solution Element (SE). CEs are non-
overlapping space-time domains such that (i) the whole 
computational domain can be filled by the union of all CEs; 
(ii) flux conservation is enforced over each CE or over a 
union of several neighboring CEs; and (iii) inside a CE, 
flow discontinuity is allowed. SEs are non-overlapping 
space-time domains such that (i) an SE does not generally 
coincide with a CE; (ii) the union of all SEs does not have 
to fill the whole computational domain; (iii) flow variables 
and fluxes are discontinuous across interfaces of 
neighboring SEs; and (iv) within a SE, flow variable and 
fluxes are assumed continuous, and they are approximated 
by the first-order Taylor series expansion in both space and 
time.  

The time marching of the CESE method is based on a 
space-time staggered mesh such that the flow information 
propagates only in one direction across the interfaces of 
neighboring CE and towards the future. Refer to Fig. 3(a). 
Therefore, the integration of Eq. (3.1) is carried out 
without encountering a Riemann problem.  In this paper, 
we use a modified space-time CESE method [17], which is 
an extension of the original CESE method. A single CE at 

each grid point is employed for solving conservation laws 
in one, two, and three spatial dimensions. Note that one has 
to use two CEs in one-dimensional, three CEs in two-
dimensional, and four CEs in three-dimensional flows in 
the original CESE method. In what follows, we briefly 
discuss the modified CESE method in one, two, and three 
spatial dimensions.   

3.1. One-Dimensional Euler Solver 
Figure 3(b) shows the CE and the SE associated with grid 
point (j, n). The SE is composed of the rectangle ABB′A′ 
and the line segments QQ″ on the top of ABB′A′. The CE is 
rectangle ABB′A′. For any (x, t) within SE(j, n), um(x, t) and 
fm(x, t) are discretized based on the first-order Taylor 
expansion and they are denoted by the superscript *:  
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)),,,(),,,,((),;,( *** njtxunjtxfnjtx mmm =h . (3.4) 

Equation (3.1) is approximated by the discrete form:  
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To integrate the right hand side, assume the source term µm 
is constant within SE(j, n). µm is evaluated based on the 
values of um at point (j, n). To evaluate the left-hand-side, 
we substitute Eqs. (3.2-4) into Eq. (3.5) and obtain 
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Equations (3.6-7) are the algorithm for solving um. In Eq. 
(3.7), (fm)j

n is a function of (um)j
n, (fmt)j

n can be determined 
in terms of (umt)j

n by chain rule, and (umt)j
n can be obtained 

from Eq. (3.1) with no source term included: 
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where (fmx)j
n can be determined in terms of (umx)j

n by chain 
rule. Owing to the source term on the left hand side, Eq. 
(3.6) is a nonlinear equation of (um)j

n. Given the values of 
the marching variables at t = tn-1/2, the right hand side of Eq. 
(3.6) can be explicitly calculated. (um)j

n is then solved by 
using Newton’s iteration method. The initial condition for 
the iterations is calculated by using Eqs. (3.6-7) without the 
source term. To solve (umx)j

n at point (n, j), central 
differencing is performed:  
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For flows with discontinuities, Eq. (3.9) is further modified 
by a re-weighting procedure to add artificial damping: 
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where the function W is defined as 
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α is an adjustable constant, and usually α = 1 or 2.   

3.2. Two- and Three-Dimensional Euler Solver 

In two spatial dimensions, the computational domain is 
divided into non-overlapping quadrilaterals. Refer to Fig. 
4(a). Vertices and centroids of quadrilaterals are marked by 
dots and circles, respectively. Q is the centroid of the 
quadrilateral B1B2B3B4. Points A1, A2, A3, and A4, 
respectively, are the centroids of the four neighboring 
quadrilaterals of the quadrilateral B1B2B3B4. Q* marked by 
a cross in Fig. 4(a), is the centroid of the polygon 
A1B1A2B2A3B3A4B4. Point Q*, which generally does not 
coincide with point Q, is referred to as the solution point 
associated with Q. Similarly, points A1

*, A2
*, A3

*, and A4
*, 

which are also marked by crosses, are the solution points 
associated with the centroids A1, A2, A3, and A4, 
respectively. To proceed, consider the space-time mesh 
shown in Fig. 4(b). Here t = n∆t at the nth time level, 
where n = 0, 1/2, 1, 3/2, …. For a given n, Q, Q′, and Q″, 
respectively, denote the points on the time levels n, n-1/2, 
and n+1/2 with point Q being their common spatial 
location. Other space-time mesh points in Fig. 4(b) are 
defined similarly. 

To proceed, we discuss the geometry of CE and SE 
associated with Q*. The numerical solution of the flow 
variables um at the nth time level are calculated based on 
the known flow solution in points at the previous time level 
n-1/2, denoted by superscript prime. To integrate Eq. (3.1), 
four Basic Conservation Elements (BCEs) of point Q* are 
constructed, and they are denoted by BCEl(Q), with l = 1, 
2, 3, and 4. These four BCEs are defined to be the space-
time cylinders A1B1QB4A1′B1′Q′B4′, A2B2QB1A2′B2′Q′B1′, 
A3B3QB2A3′B3′Q′B2′, and A4B4QB3A4′B4′Q′B3′, respectively. 
The compounded conservation element of point Q, denoted 
by CE(Q), is defined to be the space-time cylinder 
A1B1A2B2A3B3A4B4A1′B1′A2′B2′A3′B3′A4′B4′ , i.e., the union 
of the above four BCEs. Moreover, the SE of point Q*, 
denoted by SE(Q*), is defined as the union of CE(Q) and 
four plane segments QQ″B1″B1, QQ″B2″B2, QQ″B3″B3, and 
QQ″B4″B4. 

With the definitions of the CE and SE, we proceed to 
illustrate the numerical integration of the space-time flux 
balance, i.e., Eq. (3.5). The flow variables and flux vectors, 
i.e., um(x, y, t), fm(x, y, t), and gm(x, y, t), are approximated 
to their numerical counterparts, i.e., um

*(x, y, t; Q*), fm
*(x, y, 

t; Q*), and gm
*(x, y, t; Q*), based on the first-order Taylor 

series expansion with respect to Q*(xQ*, yQ*, tn). As such, 
the space-time flux vector hm(x, y, t), can be replaced by 
hm

*(x, y, t; Q*) and the numerical analogue of the space-
time flux conservation is the same as Eq. (3.5) with an 
additional spatial dimension. By conducting the integration 
of Eq. (3.5) over the CE = BCE1 + BCE2 + BCE3 + BCE4, 
the discrete flow variables (um)Q* associated with the space-
time point Q* can be straightforwardly evaluated. This is 
achieved by the aid of the geometrical information of 
CE(Q*) as shown in Fig. 4(b), and the linear distribution of 
um in each SE by the first-order Taylor series expansion. 
Similar to that in the one-dimensional case, the source term 
µm is assumed constant in x and t within SE(Q*) and it is 
evaluated based on the flow properties at Q*. To solve the 
equations involving the stiff source term, Newton’s method 
is used. The calculation of the gradient variables, i.e., 
(umx)Q* and (umy)Q*, is based on finite differencing with 
artificial damping, similar to that in the one-dimensional 
scheme.  

To solve three-dimensional flow equations, the mesh 
is constituted of hexahedral cells. Refer to Fig. 4(c), where 
the symbols and letters are similar to that in Fig. 4(a). The 
hexahedron B1B2B3B4B5B6B7B8 is a cell located in the 
three-dimensional space with Q as its centroid. A1 is the 
centroid of one of the six neighboring cells of 
B1B2B3B4B5B6B7B8. Point Q* denotes the centroid of the 24-
face polyhedron B1B2B3B4B5B6B7B8A1A2A3A4A5A6. The 
construction of CE and SE in the E4 space is similar to that 
in E3 for equations in two spatial dimensions. However, 
due to the complexity of the hyper planes and hyper 
cylinders in the four-dimensional space, the definition of 
the CE and SE is hard to be illustrated. For the complete 
description please refer to related papers [17]. The 
procedure of formulating the flux conservation and solving 
(um)Q* and their spatial derivatives, i.e., (umx)Q*, (umy)Q*, and 
(umz)Q*, is a straightforward extension of that in two spatial 
dimensions, except more complex in geometry.  

3.3. Non-Reflecting Boundary Conditions 

Numerical treatments to achieve non-reflecting 
boundary condition in conventional CFD methods have 
been developed based on theorems of the partial 
differential equation, and they could be categorized into the 
following three groups: (i) applying the method of 
characteristics to the discretized equations, (ii) the use of 
the buffer zone or a perfectly matched layer, and (iii) 
applying asymptotic analytical solution at the far field. In 
the setting of the CESE method, we only concern the 
integral equation and the above ideas of treating non-
reflective boundary are not applicable. Instead, the non-
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reflecting boundary condition treatment here is based on 
flux conservation near the computational boundary and 
letting the flux from the interior domain to the boundary 
CE smoothly exit to the exterior of the domain. Because 
surface element of each CE allows flow information to be 
propagated into the future, the numerical implementation 
of this flux-based method is extremely simple. Chang and 
coworkers [18] have provided detailed discussions of 
various implementations of the above principle, including 
enforcing a back pressure.  

4. Numerical Results and Discussions 
4.1. One-Dimensional Detonations 

Two one-dimensional detonation problems are considered: 
(i) a piston problem, which is initialized by pushing a 
piston into the reactant gas, and (ii) the instability problem, 
in which the analytical ZND solution is the initial condition 
and certain flow parameters are chosen to simulate the 
known flow instability phenomena.   

We consider a long tube filled with the stagnant 
reactant gas. A piston on one end of the tube moves into 
the gas at a constant speed. We let the piston face as the 
origin of the spatial coordinate. In this coordinate system, 
the reactant gas charges into a closed-end tube at a constant 
speed.  The reflected shock wave from the piston face 
raises the gas temperature and ignites the reactant. In the 
present study, the specific heat ratio γ = 1.2, the heat of 
formation q0 = 50, and the activation energy E+ = 50. 
Results of the linear-stability analysis [2] show that there is 
a critical overdriven factor f, below which the detonation is 
unstable. For the above parameters, the critical overdriven 
factor is f* = 1.72. Two cases are considered: (i) a stable 
detonation with f = 2, and (ii) an unstable detonation at f = 
1.6. For the stable case, the pressure history of shock front 
is shown in Fig. 5(a), in which the peak pressure of the 
established detonation wave remains constant after the 
initiation process. For the unstable case, Fig. 5(b) shows 
galloping pressures at the shock front when t > 50. 
Essentially, a longitudinal wave bounces back and forth, 
leading to pulsating peak pressures at the shock front. 
These results, including the values of the pulsating peak 
pressures and frequency of the instability wave, compare 
well with Fickett and Wood’s results [2]. 

We then consider the instability problem. The 
analytical solution of an overdriven ZND wave is used as 
the initial condition. Again, two cases are calculated: (i) 
stable detonation with f = 1.8 and (ii) unstable detonation 
with f = 1.6. For the stable detonation f = 1.8, Fig. 6 shows 
the calculated p-v diagram as compared with the theoretical 
solution. The initial condition of p = v =1 is located at the 
lower right corner of the figure. The solid line is the 
Hugoniot curves at various heat of formation q0, and the 
dashed line is the Rayleigh line. The intersection of a 
Hugoniot curve and a Rayleigh line is the analytical 
solution of the final state of the detonation wave. Our CFD 

result is denoted by symbols of encircled cross. The 
analytical shock path, denoted by symbols of cross, is 
calculated by the analytical solution of the one-dimensional 
Navier-Stokes equations [20]. Chemical reactions and heat 
release occur along the Rayleigh line between the two 
Hugoniot curves of q0 = 0 (the solution of the von 
Neumann spike) and q0=50 (the final product). Across the 
jump condition of the shock front, there are two CFD 
solution points. The numerical solution shows that the 
artificial damping by the central differencing and the 
reweighing procedure in the CESE method produces flow 
solution very close to the real gas effects inside the shock 
wave predicted by the one-dimensional Navier Stokes 
equations. 

Figure 7 shows the history of shock front pressures for 
an unstable detonation wave with f = 1.6, γ = 1.2, q0 = 50, 
and E+ = 50. The wave length of the oscillating pressures 
agrees well with that reported by Bourlioux and Majda [7]. 
To assess the numerical accuracy of the CESE method, the 
same calculation is repeated by using 5, 10, and 20 grid 
nodes to resolve the length of the half reaction zone. Figure 
8 shows the peak pressures obtained by various upwind 
schemes as compared with the CESE method.  The x axis 
in Fig. 8 is the relative mesh spacing, defined as 5/n with n 
as the number of mesh nodes for the half-reaction zone. 
According to Fickett and Wood [2], the maximum peak 
pressure with the above flow parameters is 98.6.  As shown 
in Fig. 8, when 5 mesh nodes per half reaction zone is used, 
the CESE method produces a peak pressure about 98.2.  
When fine meshes are used, i.e., data points closer to the y 
axis, nuermcial results converge to 98.6. 

4.2. Two-Dimensional Detonation Waves 

We consider two cases in two-dimensional simulation of 
detonation waves: (i) an oblique detonation wave over a 
ramp, and (ii) planar detonation wave. For the first case, 
we consider the combustion of a supersonic premixed H2-
air flow over a ramp. The flow conditions were taken from 
previously reported works [21-23] as a standard test case 
for the NASP project in USA. In the present calculation, 
we adopt a two-step finite-rate chemistry model for H2-air 
reaction, proposed by Korobeinikov et al. [24] and further 
developed by Taki and Fujiwara [3].  In this model, two 
species (a and b) equations are included in the equations 
set and the chemical reactions are split into two stages: (i) 
the induction period, leading to (ii) the exothermic process.  









−==
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E
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dt
da a

aa expρω�  , 
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


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/

exp1exp 222ω� , 

      (4.1) 
where a and b are the reaction progression parameters. The 
rate constants are chosen to correspond to the diluted 
oxygen-hydrogen mixture: ka = 0.3×109 m3/(kg⋅s), Ea = 
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5000 K, kb = 0.1×10-4 1/(Pa2⋅s), and Ea = 2000 K. Two inlet 
temperatures are considered: 900 K and 1200 K. The 
pressure of the free stream is 1 atm, and the Mach number 
is 4. The mixture ratio of the H2/air gas is stochiometric. 
The angle of the ramp is 10o. Figure 9 shows the flow 
solution of the 900 K case. The higher temperature and 
pressure behind the ramp shock ignite the reactant gas. 
Heat release due to the chemical reaction results in 
pressure increase, which causes the ramp shock to bend 
upward. In previously reported calculations [21-23], the 
calculated detonation wave was always an upward-bending 
smooth curve. Here we observe a distinct change of the 
shock angle and fine ripples travel back and forth along the 
detonation front. Emanating from the kink of the ramp 
shock, a shear layer propagates to the downstream. This 
instability was also reported in [22, 23]. Figure 10 shows 
the comparison of pressure and temperature between the 
present calculations and the previous results. The 
distributions of temperature and pressure are obtained from 
y = 0.13 cm above the bottom wall. Three earlier tests with 
different numerical schemes were considered, including an 
LU method [21], a PNS method [22], and a TVD scheme 
[23].  

For the planar detonation wave, we consider a two-
dimensional detonation wave propagating into a quiescent 
medium. The reaction zone is initialized by the analytical 
solution of the ZND wave with sinusoidal perturbations on 
the shock front. The flow parameters are q0 = 50, E+ = 50, 
γ = 1.2, and f = 1.6. The width of the computational domain 
is 7.5, and the height is 9.0 with the unit length as the half 
reaction zone. The flow conditions on the upper boundary 
surface are fixed according to the condition of the 
unburned gas. Periodic boundary condition is imposed at 
the two lateral boundaries. 54,000 quadrilateral cells are 
used for the computational domain. 

Figure 11 shows the snapshots of the mass fraction, 
pressure, temperature, and vorticity.  The flow field is 
much more complex than that of the one-dimensional 
detonations. The shock front is characterized by 
mushroom-shaped incident shocks interacting with Mach 
stems.  The width of the Mach stem changes periodically 
due to the moving triple points at the shock front.  At each 
collision of two triple points, a pair of vortices, with 
opposite rotational directions, are created and propagate 
downstream.  Due to these vortices, unburned reactant is 
engulfed into the reaction zone and forms unburned 
pockets behind the reaction zone.  The continuous burning 
of the unburned pockets shows the phenomena of 
explosions inside explosion and greatly extends the 
effective reaction zone.  

4.3. Three-Dimensional Detonation Waves 

In this section, we report three-dimensional simulations of 
planar detonations in square tubes. We will focus on the 
calculated cell size of the detonation soot trace, which is 

the most distinct flow feature of detonation waves.  First, 
we consider a detonation wave in a square tube with cross 
section area comparable with the detonation cell size. 
Second, planar detonations in a duct with much larger 
cross section area are considered. For various flow 
conditions, including activation energies and heat release 
amount, we examine the corresponding changes in the 
calculated cell sizes.  Finally, we will use the two-step 
induction chemistry model, Eq. (4.1), to calculate the 
averaged cell size of the soot trace cut on the side walls by 
the detonation waves. This result will be compared with 
the measured data.  We will also compare the three-
dimensional results with the results of the corresponding 
two-dimensional calculations.  

In all three-dimensional calculations, the analytical 
solution with a small spatial perturbation on the shock front 
is employed as the initial condition. The detonation waves 
travel upwards to consume the fresh fuel/oxidant mixture. 
The upper boundary conditions are set to be the flow 
conditions of the unburned gas. The reflective wall 
boundary condition is used on the four lateral side walls. 
On the bottom surface, we impose the non-reflective 
boundary condition.  

In a small duct with cross section of 8×8, we conduct 
three-dimensional simulation of a planar detonation wave. 
The length unit is the length of a half of the reaction zone. 
The numerical mesh is composed of about 6 millions 
hexahedral cells. The detonation parameters are f = 1.6, γ = 
1.2, E+ = 50, q0 = 50. Figure 12 shows snapshots of the 
temperature contours and the contours of the mass fraction 
of the reactant. The side view of the three-dimensional 
contours resembles that of a two-dimensional detonation. 
The triple points in the two-dimensional detonations 
become triple lines and the interactions between the triple 
lines are much more complex than that in the two-
dimensional calculations. The calculated three-dimensional 
flow structure is similar to that reported by Bauwens and 
coworkers [10].   

We then consider detonation wave in a larger duct. 
The computational domain size is 40 × 40 × 40, and is 
discretized by 9.6 million hexahedral cells. The detonation 
parameters are γ = 1.2, q0 = 50, E+ = 50, and f = 1. Figure 
13(a) shows the calculated soot trace on one side wall. The 
soot trace is made visible by a continuous record of the 
shock front.  The soot trace is the path of the triple points 
etched on the wall. Qualitatively, the structure of the 
calculated soot trace agrees well with the smoked foil 
records obtained in experiments [25].  

To investigate the influence of detonation parameters 
on the cell size of the soot trace, we recalculate the same 
case with varied activation energies and heats of formation. 
Figure 13 shows results of this investigation. In general, 
larger q0 results in larger cell size, and larger E+ leads to 
smaller cell size. With E+ decreased from 50 to 35, the 
cells become about three times larger. 
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To validate our three-dimensional calculation, we 
compare the calculated cell sized with the experimental 
data reported by Guirao et al. [26, 27]. In this calculation, 
Taki and Fujiwara’s two-step induction model has been 
adopted. Figure 15 shows the calculated soot traces of the 
H2/air detonation waves with four different equivalence 
ratios, i.e., Φ = 0.7, 0.8, 1.0, and 1.4. The cell widths are 
plotted in Fig. 16, including the case of Φ = 2. The result 
compared favorably with the experimental data [26, 27]. 
When the stochimetric fuel/air ratio is used, i.e., Φ = 1.0, 
the smallest cell size is obtained. 

To further investigate the results, we conduct two-
dimensional calculations for the case of Φ = 1.4 with 
identical flow conditions as that in the three-dimensional 
calculations. The numerical soot trace is shown in Fig. 17. 
Compared with its three-dimensional counterpart, i.e., Fig. 
16(d), the averaged cell width in two-dimensional case is 
about 65% of that in the three-dimensional results. Similar 
calculations of two-dimensional detonations consistently 
show significantly smaller cell widths than that of the 
corresponding three-dimensional simulations.  

Figure 18 shows the calculated time histories of the 
peak pressures at the shock front of a CJ detonation in a 
H2/air mixture at Φ = 1.4.  For the same flow condition, 
three sets of the results are plotted: (i) the ZND analytical 
solution, (ii) the two-dimensional CESE solution, and (iii) 
the three-dimensional CESE solution. The peak pressures 
of the two-dimensional detonation are about 2.5 times of 
that of the analytical solution because of continuously 
moving and colliding triple points at the shock front. For 
the same detonation wave, the maximum peak pressures by 
the three-dimensional simulation are markedly higher than 
that in the two-dimensional calculation.  Moreover, the 
patterns and frequencies of the pressure fluctuations are 
distinctly different between the two- and the three-
dimensional calculations. Two-dimensional results show a 
regular cyclical pattern with lower frequency, while the 
three-dimensional results are random with higher 
frequencies, because of much more complex three-
dimensional structures. 

5. Conclusions 
In this paper, we have reported the one-, two- and three-
dimensional simulations of detonation waves by using the 
space-time CESE method. In one-dimensional calculations, 
known features of steady detonations and unsteady 
detonations with a galloping pattern were successfully 
simulated. The results compared well with the results of 
classical stability analyses. The mesh refinement study 
showed that based on the use of the CESE method only 5 
mesh nodes were needed to resolve a half of the reaction 
zone for accurate solutions. For two-dimensional 
calculations, we simulated oblique detonations in a 
supersonic H2-air stream over a 10o ramp. The pressure and 
temperature profiles along the ramp surface compared well 
with previously reported CFD results. For planar two-

dimensional detonations, salient features have been crisply 
resolved, including transverse waves, triple points, Mach 
stems, counter rotating vortices, and unburned pockets 
inside the reaction zone.  For three-dimensional 
calculations, the flow structure is very similar to that of the 
two-dimensional ones. However, further studies showed 
significance differences in key flow parameters between 
the two and three-dimensional simulations. For the same 
detonation wave, the averaged cell width of the two-
dimensional result is about 30 to 40% smaller than that of 
the three-dimensional results.  Moreover, both amplitudes 
and the frequencies of the pressure fluctuations at the 
shock fronts of the three-dimensional simulations are much 
higher than that of the two-dimensional simulations, which 
in turn, as repeatedly pointed out in the literature, are also 
significantly higher than that predicted by the classical 
one-dimensional ZND solution.  Therefore, we conclude 
that one has to resort to three-dimensional calculations to 
catch the quantitative features of propagating detonation 
waves.  

Appendix: The ZND Solution 
Consider the one-dimensional Euler equations for 
chemically reacting gas flow: 

m
mm

x
f

t
u µ=

∂
∂

+
∂
∂ .    (A.1) 

The employed species equation could be based on the 
combustion product instead of reactant, as stated in Section 
2. Let  λ = 1-Z be the mass fraction of the combustion 
product. When λ = 1, the chemical reaction is complete. 
Thus, λ is frequently referred to as the progress variable. In 
this case, the species equation changes to  

 exp)1()( 
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Accordingly, the internal energy becomes  

21
 

2
 

2

0

2 uqpvueE +−
−

=+= λ
γ

,  (A.3) 

where v=1/ρ is the specific volume. 

Assume that the detonation wave propagates at a 
constant velocity D, and û = u-D is the velocity in the 
shock frame. By transforming the coordinates such that the 
spatial origin is fixed on the shock front, the equations of 
this steady problem in the new coordinate system become 

0/)ˆ( =dxud ρ ,    (A.4a) 

0/)ˆ( 2 =+ dxpud ρ ,    (A.4b) 

[ ] 0/ˆ)( =+ dxupEd ρ ,     (A.4c) 

)1( )/exp(/)ˆ( λρλρ −−= + TREKdxud u .  (A.4d) 

For convenience, the carat on the top of velocity u is 
dropped hereafter.  
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Integrating the steady state continuity (A.4a), 
momentum (A.4b), and energy (A.4c) equations gives the 
classical Rankine-Hugoniot relations. The Rayleigh lines 
and Hugoniot curves on the p-v plane are described as 
follows, respectively: 

vv
ppvu
−
−

=
0

022 ,    (A.5) 

0))((
2
1

1 00
00 =−−++

−
− qvvppvppv

o λ
γ

, (A.6) 

where the subscript ‘0’ denotes the unburned state of the 
gas mixture, as introduced before, and the flow variables 
without subscript represents a flow condition other than the 
unburned condition, including inside the flame and the 
fully burned region.  

After non-dimensionalization specified in Section 2, 
the unburned state can be described as 

1000 === Tpρ , 00 Mu γ= , 
1

1
0 −
=
γ

e ,  (A.7) 

where M0 is the Mach number of the unburned gas. And the 
equation of state changes to  

Tpv = .     (A.8) 

By applying these dimensionless variables, the Rayleigh 
line and Hugoniot curve equations become 

)1/()1(2
0 vpM −−=γ ,    (A.9) 

0
2

)1)(1(
1
1

0 =−
−+

+
−
− qvppv λ

γ
.  (A.10)  

Thus, the detonation/deflagration/shock solutions are the 
intersections of the Rayleigh lines and the Hugoniot curves. 
For convenience, the subscript “0” in M0, which is a 
constant, is dropped.  

By given values for the specific heat ratio γ, the Mach 
number of the unburned gas M, and the progressive 
variable λ, Eq. (A.9) and Eq. (A.10) are two equations for 
two unknowns, dimensionless specific volume v and 
pressure p, hence solvable. The solution gives 
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      (A.13) 

The notation here follows that by Erpenbeck [28]. The 
temperature can be obtained readily by multiplying (A.11) 
to (A.12). 

The above equations are the analytical solution of the 
classical R-H relations. Clearly, solution of thermodynamic 
variables p, v, and T are functions of the progressive 
variable λ only. Moreover, the two roots with positive and 
negative signs in Eq. (A.11) denote for the strong 
detonation solution and the weak detonation solution, 
respectively, between which located the upper Chapman-
Jouguet point. Usually, the strong detonation solution is 
taken.  

Based on the above discussions, all thermodynamic 
variables of the detonating gas mixture could be calculated 
as function of the combustion progressive variable λ. To 
proceed, consider the non-dimensionalized species 
equation at a steady state,  

 exp)1( 







−

−
=

+

T
E

u
K

dx
d λλ .   (A.14) 

By integrating the above equation with some numerical 
methods such as Runge-Kutta method, the spatial 
distribution of the mass fraction of the product species is 
obtained. With this information, spatial distribution in the 
reaction zone of all the thermodynamic variables, including 
pressure, specific volume, and temperature, can be 
determined. Then the value of the flow variables and the 
corresponding spatial derivatives are adopted as the initial 
condition for the dynamic detonation calculation. A typical 
ZND detonation wave solution, specified by the following 
flow parameters, is shown in Fig. 19: γ = 1.2, q0 = 50, E+ = 
50, f = 1.6, where f = D2 / DCJ

2 is the overdriven factor. 
Because both flow variables and their spatial derivatives 
are used as the unknowns and solved simultaneously in the 
CESE method, the spatial derivatives of the flow variables 
are also required as part of the initial condition. This can be 
done by applying the chain rule to the correlative equations.  
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Fig. 1: A schematic of the ZND detonation wave. 
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Fig 2: A schematic of space-time integral of the CESE 
method in one spatial dimension. 

 
(a) 

 
(b) 

Fig. 3: Schematics of the CESE method in one spatial 
dimension: (a) the staggered space-time mesh, (b) SE 
(j, n) and CE (j, n). 
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Fig. 4: The space-time mesh in multi spatial dimensions: (a) 
2D grid points in the x-y plane, (b) SE and CE for the 
2D scheme, (c) 3D grid points in the x-y-z space.   
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Fig. 5: Shock front pressure history in the piston problem 
for (a) f = 2.0, (b) f = 1.6. 
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Fig. 6: The p-v diagram of a simulated detonation. 
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Fig. 7: Time history of the shock pressure for f = 1.6 with 

the resolution of 40 pts/L1/2.. The horizontal line is 
the ZND solution. 

 
Fig. 8: Variation of peak pressure with grid resolution for 

various schemes. f = 1.6. 
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Fig. 9: Shock ignited supersonic combustion with free 

stream Mach number = 4, temperature = 900 K over a 
10 degree ramp. 

 
(a) 

 
(b) 

Fig. 10: The comparison of temperature and pressure between 
the present calculations and the previous results, 
including an LU [26], a PNS [27], and a TVD [28] 
schemes: (a) T = 900 K; (b) T = 1200 K. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11: Two-dimensional detonation waves: (a) mass 
fraction, (b) pressure, (c) vorticity and (d) temperature. 
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(a) 

 
(b) 

Fig. 12: Snapshots of a three-dimensional detonation wave: 
(a) Temperature contour, (b) Species concentration 
contour. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13: Front track on one side wall: f = 1, γ = 1.2, q0 = 50, 
(a) E+ = 20; (b) E+ = 40; (c) E+ = 45; (d) E+ = 50. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14: Front track on one side wall: f = 1, γ = 1.2, E+ = 35, 
(a) q0 = 30; (b) q0 = 40; (c) q0 = 50; (d) q0 = 60. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15: Front track on side wall, H2-Air: (a) Φ = 0.7; (b) Φ 
= 0.8; (c) Φ = 1.0; (d) Φ = 1.4. 
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Fig. 16: Cell width versus equivalence ratio for detonations 

in the H2-Air mixtures. 

 
Fig. 17: Front track of the two-dimensional calculations of 

a detonation propagating in a H2-Air mixture at Φ = 
1.4. 

 
Fig. 18: Time history of the pressure peaks at the shock 

front for two- and three-dimensional calculations of a 
CJ detonation wave in a H2-Air mixture at Φ = 1.4. 
The results are compared with the ZND analytical 
solution.  
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Fig. 19: Flow variable profiles of a one-dimensional ZND 
detonation wave from the analytical solution: (a) mass 
fraction of reactant; (b) pressure; (c) density, and (d) 
velocity. Parameters: γ = 1.2, q0 = 50, E+ = 50, and f = 
1.6. 


