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ABSTRACT 
In the present paper, we report the two-dimensional 
calculations of propagating detonation waves by the 
method of Space-Time Conservation Element and 
Solution Element, or the CE/SE method for short.  
The two-dimensional Euler equations in conjunction 
with a species equation are solved in a time-accurate 
manner.  The chemical reaction is modeled by a one-
step Arrhenius kinetic model.  The stiff source term 
is treated by a volumetric integration over a space-
time region.  As a contrast to the modern upwind 
methods, the present method does not use the 
Riemann solver, reconstruction methods, and/or 
directional splitting as the building blocks.  Thus the 
logic and rational is significantly simpler.  Two 
examples are reported: detonation initiation and two-
dimensional propagating detonations.  Special flow 
features of detonations are crisply resolved, including 
cellular structure, triple points, unburned pocket, and 
transverse waves.  It is clearly that the present space-
time method is a viable approach for solving 
unsteady detonation waves. 

 

1. INTRODUCTION 

Research of detonation waves [1] was pioneered by 
Zeldovich, von Neumann, and Doering, i.e., the ZND 
model, in which a steadily propagating detonation 
wave consisting of an ordinary compressible flow 
shock followed by a finite-rate reaction zone is 
postulated.  This remarkable insight of the flow 
physics provided the preliminary knowledge of 
detonations.  Further experimental evidences showed 

that detonation waves are often unstable with 
transverse wave structure, and the pressure level of 
the pressure spike is significantly higher than that 
predicted by the ZND model. 

Capability of accurate calculation of stable and 
unstable detonation waves is imperative for the 
further development of new numerical methods for 
detonations.  To this end, the ZND model is an ideal 
proofing ground.  Many important works about the 
development and application of numerical methods 
for detonations have been reported.  A brief account 
of previous works, which are beneficial to the present 
research, is provided in the following.  

Numerical calculation of the ZND detonation 
model was pioneered by Fickett and Wood [2,3].  
They solved the one-dimensional equations using the 
method of characteristics in conjunction with a shock 
fitting method.  Longitudinal instability waves were 
accurately simulated. 

Taki and Fujiwara [4,5] applied Van Leer’s 
upwind method to calculate two-dimensional 
traveling detonation waves.  They solved the Euler 
equations coupled with two species equations.  The 
chemical reaction was simulated by a two-step finite-
rate model.  The shock front was perturbed to trigger 
transverse instabilities and triple points. 

Oran, Kailasanath and coworkers [6,7,8] extended 
the Flux-Corrected Transport (FCT) algorithm for 
detonations.  The FCT approach is the most popular 
method in calculating detonation.  The software has 
been widely used for one, two, and three-dimensional 
calculations.  
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Bourlioux et al. [9,10] developed an advanced 
numerical method, composed of a high-order upwind 
scheme, a front tracking method, and an adaptive 
refinement algorithm, for direct calculations of 
detonations.  They presented detailed comparisons 
between the theoretical solution and their numerical 
solution.  The results in [9,10] are used as the 
guideline of our development of the CE/SE method 
for detonations. 

Quirk [11] addressed the particular deficiency of 
the Godunov type upwind schemes when solving 
complex flows such as detonations.  As a result, he 
developed a strategy to overcome the weakness.  By 
using his modified upwind method, he successfully 
simulated the galloping one and two-dimensional 
detonations  

Yungster and Radhakrishnan [12] developed a 
fully implicit, time-accurate upwind method for 
supersonic combustion.  An efficient Successive 
Gauss Seidel (SGS) iteration method was used to 
invert the matrix.  They have reported numerical 
results related to projectile moving in a hydrogen-air 
mixture.  

Papalexandris [13] developed an unsplit upwind 
method for hyperbolic conservation laws with stiff 
source term.  The method is based on integrating the 
flow equations along the characteristic manifolds in 
space-time.  We will repeat Case C reported in [13] 
in the present paper.  

The objective of the present work is to extend the 
Space-Time CE/SE method, originally developed by 
Chang and coworkers [14,15,16,17,18], to calculate 
the two-dimensional unstable detonations.  We want 
to access the efficiency and the accuracy of the 
method in calculating the complex flow features of 
detonations.  The rest of this paper is organized as 
follows.  In Section 2, a brief account of the CE/SE 
method will be provided.  The numerical treatment 
for the stiff source terms associated with the finite-
rate chemistry will be discussed.  In Section 3, the 
numerical solutions by the CE/SE method for two-
dimensional unsteady ZND waves will be reported.  
We then offer the concluding remarks. 

 

2  THE SPACE-TIME CE/SE METHOD 

The details of the Space-Time CE/SE method have 
been extensively illustrated in [14,15].  Here, a brief 
discussion of the essentially steps of the method is 
provided.  The basic idea of the CE/SE method is an 
equal footing treatment of space and time in 
calculating the space-time flux balance.  Consider an 

initial-value problem involving the partial differential 
equation, 

∂u
∂t +a∂u

∂x +b∂u
∂y=τ(u )   (2.1) 

where a and b are constants and the source term τ(u) 
is a function of u.  Let x1 = x, x2 = x and x3 = t be the 
coordinates of a three-dimensional Euclidean space 
E3.  Equation. (2.1) can be reformulated as a 
divergence free condition, 

∇ ⋅ h = τ(u )     (2.2) 

where the current density vector h = (au, bu, u).  By 
using Gauss’ divergence theorem in E3, it can be 
shown that Eq. (2.1) is the differential form of the 
integral conservation law: 

h⋅ds
S(R)

= τ(u ) dR
R

   (2.3) 

Here S(R) is the boundary of an arbitrary space-time 
region R in E3, ds = dσ n with dσ  and n , the area of 
a surface element normal on S(R), and its outward 
unit, respectively.  In Eq. (2.3), R is the volume of a 
space-time volume inside S(R), and h ⋅ ds  is the 
space-time flux h leaving the region R through the 
surface element ds .  All mathematical operations can 
be carried out as if E3 were an ordinary three-
dimensional Euclidean space.  We remark that space 
and time are treated in an equal-footing manner.  
Therefore, there is no restriction on the space-time 
geometry of the conservation elements over which 
the space-time flux is imposed. 
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Fig. 2.1 A space-time mesh of the two-dimensional 
CE/SE method; solid circles for the time step n, and 
the filled circles are for the time step n+1/2. 

Two sets of space-time nodes are used in the 
present method, i.e., the solid circles and the open 
circles in Fig. 2.1. Each node is denoted by (j, k, n),  
with n being a time index, and (j, k) the spatial 
indices.  Associated with each node (j, k, n), the 
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solution element SE(j, k, n) is the space-time region 
in the immediate neighborhood of three vertical 
planes and one hexagonal plane.  Note the vertical 
direction is referred to the time marching direction.  
In Fig. 2.1, the projection of the three vertical planes 
on the x-y plane associated with point a is illustrated.  
For detailed description, refer to [14,15]. 

To proceed, for any (x, y, t) ∈ SE(j, k, n), let u(x, 
y, t) be approximated by u*(x, y, t; j, k, n), which is 
defined as 

u*(x,y,t; j,k,n ) = u j,k
n + (ux )j,k

n (x – xj )
+(uy )j,k

n ( y – yk )+(ut )j,k
n (t – tn ) ,  (2-4) 

where (i) u j,k
n , (ux )j,k

n ,(uy )j,k
n  and (ut )j,k

n  are constants 
in SE(j, k, n), and (ii) (xj, yk, tn) are the coordinates of 
the mesh point (j,k,n).  Here, we shall assume that 

(ut )j,k
n = – ax(ux )j,k

n – ay(uy )j,k
n         (2.5) 

Combining Eqs. (2.4) and (2.5), one has 

)]()[()(),,;,,( ,,
* n

xj
n

kjx
n

kj ttaxxuunkjtyxu −−−+=  

)]()[()( ,
n

yk
n

kjy ttayyu −−−+ ,(2.6) 

where (x, y, t) ∈ SE(j, k, n).  As a result, there are 
three independent marching variables u j,k

n , (ux )j,k
n  and 

(uy )j,k
n  associated with each (j, k, n) ∈ Ω.  

Furthermore, because h = (ax, ay, u), we define 

h*(x,y,t; j,k,n)=(axu*(x,y,t; j,k,n),ayu
*(x,y,t; j,k,n)

,u*(x,y,t; j,k,n))
(2.7) 

Let E3 be divided into non-overlapping hexagonal-
based-column regions with its projection to the x-y 
plane as the area A∆  in Fig.2.1, referred to as 
conservation elements (CEs).  As depicted in Fig. 2.1, 
the CE with the midpoint of its top face being a mesh 
point (j, k, n) is denoted by CE(j, k, n) and the 
discrete approximation of Eq. (2.3) is expressed as 

2
)( ,)),,((

tAusdh n
kjknjCES

∆∆
=⋅∫ τ .        (2.8) 

Here τ(u j,k
n )  is assumed to be the average value of τ(u) 

in CE(j, k, n).  Because (∆A ∆t)/2 is the volume of 
CE(j, k, n), Eq. (2.8) simply states that the total 
space-time flux of h* leaving the boundary of any CE 
is equal to the source integral over the CE.  Because 
the surface integration over any interface separating 
two neighboring CEs is evaluated using the 
information from a single SE, the local conservation 
relation Eq. (2.8) leads to a global flux conservation 
relation.  Thus, the total flux of h* leaving the 
boundary of any space-time region that is the union 
of any combination of CEs is equal to the source 
integral over the same space-time region. 

To justify Eq. (2.8), we shall assume that the 
value of u on a macro scale, i.e., the value of u 
obtained from an averaging process involving a few 
neighboring CEs, will not vary significantly as a 
result of redistribution of τ over each CE is held 
constant.  We take the liberty to redistribute the 
source term such that there is no source present 
within each SE.  Thus, with the aid of Eq. (2.4), Eq. 
(2.5) is the result of substituting u = u*(x, y, t; j, k, n) 
into Eq. (2.3).  Because the boundary of CE(j, k, n) is 
a subset of the union of SE(a), SE(c), SE(e) (refer to 
Fig. 2.1), Eq. (2.8) imply that 

u j,k
n –∆t

2 τ(u j,k
n )= f1(un–1/2(a),ux

n–1/2(a),uy
n–1/2(a))

+ f2(un–1/2(c),ux
n–1/2(c),uy

n–1/2(c))
+ f3(un–1/2(e),ux

n–1/2(e),uy
n–1/2(e)).  (2.9) 

Given the values of the marching variables at the (n-
1/2)th time level, u j,k

n  is determined by solving Eq. 
(2.9) with the aid of Newton’s iteration method.  
Note the initial condition for Newton’s iterations is 
calculated by assuming that the source term is zero.  
After u j,k

n  is known, (ux )j,k
n and (uy )j,k

n  are calculated 
by the standard a-ε scheme.  The resultant (ux )j,k

n and 
(uy )j,k

n  are further modified by a reweighted-
procedure to catch shock.  These treatments are fully 
illustrated in [14,15].  The detailed the stiff source 
term treatment in the context of the CE/SE scheme 
for one-dimensional problems can be found in [16]. 

 

3. THEORETICAL MODEL 

The classical ZND model of the two-dimensional 
detonation waves can be formulated by the Euler 
equations coupled with a species equation. The five 
equations can be cast to a vector form: 

S
t
F

t
E

t
Q

=
∂
∂

+
∂
∂

+
∂
∂          (3.1) 

where Q is the unknown vector, E and F are the flux 
vector, and S is the source term: 
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The five equations here are the continuity, moment, 
energy, and species equations, respectively.  In the 
equation set, ρ is density, u and v are velocity, p is 
pressure, Y is the mass fraction of the reactant, and 
E= e + Yq + (u2+v2)/2 is the total energy with e as 
the internal energy and q as the heat release.  In the 
species equation, a source term exists due to a one-
step, irreversible chemical reaction, modeled by 
finite-rate kinetics.  The source term can be expressed 
as 

ω = – K exp(�E+/ RT ) ρY   (3.3) 

where K is the pre-exponential factor of the 
Arrhenius kinetics, E+ is the activation energy, and R 
is the universal gas constant. 

To proceed, the above equations are non-
dimensionalized based on density, pressure, and a 
reference velocity (defined similar to the speed of 
sound) of the unburned gas, i.e., 0ρ , p0, and 

oRT .  
Note that subscript 0 denotes the unburned state.  In 
order to keep the flow equations consistent, the total 
energy, internal energy, and the activation energy in 
the governing equations are nondimensionalized by 
RTo.   The reaction rate constant K is a parameter, 
which sets the spatial and temporal scales.  Typically, 
K is chosen such that the half-reaction length, L1/2, of 
the ZND wave is unity.  Note that L1/2 is defined as 
the distance between the detonation front and the 
point where half of the reactant is consumed.  In 
addition, we also assume that the fluid is polytropic, 
i.e., the molecular weights and the specific heats are 
constants for the unburned and the burned gases. 

 

4. RESULTS AND DISCUSSIONS 

In one of our previous papers [12], we have reported 
the one-dimensional stable and unstable ZND waves, 
calculated by the CE/SE method.  We also conducted 
the mesh refinement study to assess the accuracy of 
the CE/SE method for resolving the longitudinal 
instabilities.  Essentially, five mesh nodes per half 
reaction length are required for satisfactory results.  
The findings of the one-dimensional calculations will 
be used as the yardstick for the two-dimensional 
calculations in this paper. 

In Ref. [18], two types of the ZND problems 
were simulated; i.e., the piston problem and the 
instability problem.  In the piston problem, the 
detonation is initialized by a driving piston running 
into the fresh reactant gas.  As a result, a shock is 
created, which in turn ignites the reactant and creates 
a detonation.  In this case, the detonation would run 
away from the piston and a long computational 
domain is required. 

To avoid the complexity of the start-up process 
in the piston problem, we also calculate the instability 
problem, in which the analytical solution of a 
stationary ZND detonation is used as the initial 
condition.  The spatial coordinate is chosen such that 
the origin of the coordinate system is placed at the 
shock front, and the coordinate system is moving at 
the same velocity as the detonation.  As such, we 
were able to fully control the flow condition and 
conduct the detailed comparison between the CFD 
results and the analytical solution.  For completeness, 
a typical one-dimensional instability solution is 
provided in Fig. 4.1. 
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Fig.4.1 Shock pressure history for a calculation with 
20 mesh cells per half-reaction length. 

The parameters of the flow field are q = 50, E+ = 50, 
γ = 1.2, and the overdrive factor f is 1.6.  The 
calculation was started with the analytical ZND 
solution as initial condition.  According to the 
classical theory for detonation instability, the above 
flow parameters would trigger longitudinal instability.  
Figure 4.1 shows the temporal evolution of the 
pressure level of the shock front.  Twenty grid nodes 
per half reaction zone were used.  Note that this mesh 
resolution is not necessary for one-dimensional 
calculations.  This calculation is done as the 
benchmark for the two-dimensional calculation.  The 
pressure trace in Fig. 4.1 compares well with 
Bourlioux’s result [6].  Moreover, the average peak 
pressure is in close agreement with the value given 
by Fickett and Wood [2]. 

Based on the exactly the same flow condition, a 
two-dimensional simulation of a travelling detonation 
is calculated.  Figure 4.2 shows the peak pressure 
history for two-dimensional detonation waves and it 
comparisons with that of the one-dimensional 
detonation and the analytical ZND solution at the 
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same flow condition.  The numerical result shows 
that the value of peak pressure for two-dimensional 
structure is much higher than that of the one-
dimensional case and the frequency is much higher.  
This plot shows the fundamental difference between 
the one and two-dimensional calculations of 
detonations. 
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Fig. 4.2 Shock peak pressure history in one and two-
dimensional detonation waves as compared to the 
analytical ZND solution. 

 

In Figures 4.3-6, we present snapshots of the 
mass fraction, pressure, vorticity, and temperature, 
respectively.  The width of the computational 
domain is 7.6 half-reaction lengths, and the height is 
9.5.  The mesh size is the 190x152.  The grid points 
are distributed evenly.  A periodic boundary 
condition is imposed along the two lateral boundaries.  
The detonation is traveling from bottom to top.  The 
numerical result is plotted twice to enhance the visual 
interpretation.  In each plot, ten snapshots are 
provided to show the initiation of the transverse 
instability and its development to the triple point 
shocks.  The first snapshot is taken when t=8.  Note 
that the time unit is nondimensionalized by a 
characteristic time period, which defined as the ratio 
of the reference velocity 

oRT to L1/2.  The time 
increment between the snapshots is 0.5.  The 
computation is initialized by the analytical solution of 
the stationary ZND wave, and twenty mesh nodes are 
used in the half-reaction zone.  No perturbation is 
imposed to trigger the instability.  The computation 
was done using a regular Pentium II PC.  It took 
about three hours to reach a stationary solution.  Note 
that at this point, no effort was made to optimize the 
computational efficiency. 

Similar to that in the one-dimensional detonations, 
the flow field is composed of: (i) the quiescent state 

of the reactant before the shock, (ii) a von Neumann 
spike with finite rate reaction, and (iii) the 
equilibrium state after the reaction zone.  However, 
due to the two-dimensional cellular structure of the 
detonation, the flow field is much more complex.  
The shock front is characterized by mushroom-
shaped incident shocks interacting with a Mach stem.  
The width of the Mach stem changes in a periodic 
fashion and tremendous vortices are created during 
the process. 

From this sequence, we can confirm the classical 
picture of “explosion within explosions,” sustained 
by the propagation of the transverse cells in the 
detonation front.  The vorticity contours show high 
concentration of vortex at the triple points.  At each 
collision of triple points, a new pair of vortices with 
opposite signs will be created and propagated 
downstream.  Due to these vortices, some unburned 
reactant is engulfed into the flame zone and the 
unburned pockets behind the flame zone are created.  
The continuous burning of the unburned pockets 
behind the flame zone greatly extended the effective 
flame zone.  In general, the flow features shown in 
Figs. 4.3-6 are consistent with previous reported 
numerical and experimental results. 

 

CONCLUDING REMARKS 

The space-time CE/SE method was conceived from a 
global CFD perspective and designed to avoid the 
limitation of traditional methods.  It was built from a 
foundation, which is solid in physics and yet 
mathematically simple enough that one can built 
from it a coherent, robust, and accurate CFD 
framework for complex flow fields. 

In the present paper, the space-time CE/SE 
method has been extended to solve the two-
dimensional detonations.  All special features of this 
complex flow are crisply resolved, including 
transverse wave structure, triple points, Mach stem, 
counter rotating vortices, and unburned pockets.  The 
result obtained is consistent with the previous 
experimental and numerical results. 
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Fig. 4.4 Sequence of ten snapshots of pressure. Time increases from top left to bottom right, 
and shock moves upwards.   The flow condition is  E  = 50, q  = 50 and f=1.6.+
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Fig. 4.5 Sequence of ten snapshots of vorticity. Time increases from top left to bottom right, 
and shock moves upwards.   The flow condition is  E  = 50, q  = 50 and f=1.6.+
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Fig. 4.6 Sequence of ten snapshots of temperature. Time increases from top left to bottom right, 
and shock moves upwards.   The flow condition is  E  = 50, q  = 50 and f=1.6.+
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