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Abstract

This paper reports a numerical study of the Marangoni—Benard (MB) convection in a planar fluid layer. The least-squares finite element
method (LSFEM) is'employed to solve the three-dimensional Stokes equations and the energy equation. First, the governing equations are
reduced to be first-order by introducing variables such as vorticity and heat fluxes. The resultant first-order svstem is then cast into o
div—curl—grad formulation, and its ellipticity and boundary conditions are illustrated. This numerical approach provides an equal-order
discretization for velocity, pressure, vorticity, temperature and heat conduction fluxes. Numerical results reporied include the critical
Marangoni numbers (M, ) for the onset of the convection in containers with various aspect ratios, and the planforms of supercritical MB
flows. The numerical solutions compared Favorably with the experimiental results reported by Koschmieder and Prahl, @ 1998 Elsevier
Science S.A. All rights reserved.

1. Introduction

When a temperature gradient is applied orthogonally to a thin planar liquid layer with a free interface, cellular
convection occurs from an originally quiescent state. The onset of the convection is due to the combined effects
of the thermal stratification instability and the thermo-capillary effect. In particular, the temperature dependence
of the surface tension on the free surface can destabilize the motionless fluid state to form regular convective
cells. Usually, the diameters of these cells are in the same order of magnitude as compared to the depth of the
fluid. This transport phenomenon is referred to as the Marangoni—Benard instability due to the first report of the
flow phenomenon by Benard. The name also distinguishes it from the Rayleigh—Bernard instability which could
occur without the free surface and is induced by buoyancy. In the past, extensive experimental studies of the
MB convection using silicon oil as the working fluid have been conducted by Koschmieder and his coworkers
[1-4]. Comprehensive reviews of the MB phenomena can be found in [5-7].

The theoretical studies of the MB convection have been focused on the stability analyses. The linear stability
theory was first established by Pearson [8] and later on extended by Nield [9]. Since that time, other type
analytical studies flourished, e.g. the energy stability theory [10] and the bifurcation theory [11,12]. While these
studies have greatly enhanced our understanding of the flow physics, direct simulations of the flow phenomena
remain attractive for further investigation. Full flow equations can be numerically solved without assumptions
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and simplifications usually employed in the stability analyses. The complications caused by the buoyancy for
ground-based experiments can also be avoided. More than ever, the direct simulation is an indispensable tool for
studying the regime of the supercritical MB flows where few studies have been conducted.

Duh [13] reported a two-dimensional numerical study of the MB flows. A method of stream function-vorticity
was employed to simulate the MB rolls constrained by the bottom and two vertical peripheral walls. Numerical
results of M, for the onset of convection as a function of the aspect ratio of the container (A,) were reported.
Here. A _is defined as the ratio of the width of the container to the depth. Particularly, he found significant
increase of M, when A, is reduced to be less than two. Winters et al. [14] used a finite element method to solve
the two-dimensional flow equations and they interpreted the numerical results by using the bifurcation theory.
Similar to Duh’s work, they also predicted the increase of M,_for lower A,.

Bestehorn [15] conducted the first three-dimensional calculation of the MB convection by a special method.
He decomposed the divergence free velocity into a toroidal and a poloidal part. For fluids with large Prandtl
numbers, the toroidal part of the velocity is null. As a result, the calculations were greatly simplified. By using
this spectral treatment, Bestehorn showed the connection between the amplitude equations and the two-
dimensional Ginzburg—Landau equation. He presented numerical results of the MB planforms in large
containers without considering the wall effects.

By solving the primitive variables directly. Thess and Orszak [16,17] reported direct simulations of
three-dimensional MB flows. Their numerical approach took advantage of the flow physics inherent in an
infinite and periodic MB layer, i.e. the flow motion is solely determined by the temperature distribution on the
free surface. Therefore, the calculation procedure was simplified and an efficient pseudo-spectral method was
developed. The MB flows in both weakly and strongly supercritical regimes were reported. However, similar to
Bestehorn’s work, because of the assumption of the infinity and periodicity of the simulated MB cells, no wall
effects were congidered in Thess and Orszak’s work.

In most practical systems, the working fluid is bounded by vertical walls, and the wall effects cannot be
overlooked. For small containers. this situation is more pronounced. Rosenblat et al. [18,19] reported the first
analytical study of the onset and the planforms of MB convection in small containers. Both linear and nonlinear
stability analyses were conducted. A slippery lateral wall condition was employed to avoid the difficulty of the
no-slip condition. By using a similar analytical method, Chen et al. [20] revisited this problem using the no-slip
condition on the lateral walls. Both studies show a sharp increase of M, as A, decreases below 2 and no
significant increase of M, for A, = 2. Similar conclusions have been reached by Duh using two-dimensional
direct simulations. Recently, Koschmieder and Prahl [3] reported an experimental study of the onset and
planforms of the MB convection in small circular and square containers. This study provided the physical
evidence to confirm the strong increase of the M, as the A, decreases to a small number. More than ever, they
reported the post-onset Marangoni cells of unusual shapes not seen before when using large containers.

The objective of the present paper is to develop a new numerical approach to directly simulate the full
three-dimensional MB convection. In particular, we like to include the peripheral wall effect. We concentrate our
attention to the MB rolls in small square containers, and we want to recapture the unusual planforms observed
by Koschmieder and Prahl [3]. Since the wall effect must be reckoned, the algorithms used by Bestehorn |15]
and Thess et al. [16.17] cannot be employed. In the present paper. we used the least-squares finite element
method (LSFEM) to solve the equations governing the flow physics of the MB convection.

The employed LSFEM is an extension of the work developed by Jiang and coworkers [21,22]. In [21].
div—curl—grad formulations and their ellipticity for incompressible Navier—Stokes equations were derived. In
[22], Jiang et al. showed that the LSFEM is optimal for the elliptic problems in the sense that the global error is
of the same order of accuracy as compared to the approximation errors. Later on, the LSFEM has been extended
by Yu et al. [23-25] to solve the compressible viscous flows at low Mach numbers and chemically reactive
flows. In this work, we shall further extend the technique to calculate the MB convection.

The rest of the paper is organized as follows. In Section 2, we present the detailed derivation of the first-order
formulation for the MB flows, including the non-dimensionalization, the div—curl-grad formulation, the
ellipticity, and the boundary conditions. In Section 3, the LSFEM and the Jacobi conjugate gradient (JCG)
method for solving the first-order equation set are elaborated. In Section 4, we report the numerical results of the
MB flows inside small square containers. The calculation is set up according to the experiments conducted by
Koschmieder and Prahl [3]. We then offer some concluding remarks.
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2, Theoretical modeling
21, Governing equations and boundary conditions

In the present study, we like to recapture the MB planforms in square containers reported by Koschmieder
and Prahl [3]. In Table 1, the properties of the silicon oil used in their experiments are listed.

According to these data, the Prandtl number of the silicon oil P, = #/k is about 1000, and the capillary
number C = prr/yd is about one thousandth. Note that d is the depth of the fluid layer and is in the order of
minimeter. Since the flow motion is thermally driven, the Prandtl number is a measure of the sluggishness of the
fluid velocity: higher Prandtl number implies slower motion and vice versa. On the other hand, in the absence of
gravity the capillary number C is a measure of the surface deflection. And smaller C implies higher surface
tension. which corresponds to a non-deflecting free surface. Discussions of the surface deflection effect as a
function of C can be found in [6].

According to the above discussion, two assumptions are made in the present calculation: (1) the Prandtl
number of the working fluid is large and therefore the Stokes cquations are used instead of the full
Navier—Stokes equations; and (2) the capillary number is small and the free surfaces of the MB rolls are flat. As
a result, the following equations are solved for the MB convection:

V-v=0, (1)
Vp

— 4+ VV=0), (2)
P

ar

W-HV-V)T: KT, (3)

where V= (.o, w)' is the velocity vector., p is pressure, p in the density of the fiuid, and 7" is temperature. The
transport properties « and » and the density p are assumed constant in the flow field. Eq. (1) is the continuity
equation, (2) is the Stokes equations for momentum conservation, and (3) is the energy equation.

To proceed, the governing equations are reduced to a first-order system by introducing new variables:

R=(&n.8) =VxXV, (4)

0 =4, 4,.4.) =T, (5)

where £2 is the vorticity with £ %, and ¢ as the three components, and @ is the heat conduction flux vector with
4. 4, and g_ as the Lomponent‘s in the respective directions. This step is necessary for the application of the
LSFEM so that the C” elements can be used in the calculations. As a result, we obtain the following first-order
flow equations:

V-V=0, (6)
p
— Hx =0, (7
aT
K-f-fV'V}T:V'Q_ (8)
Table |
Properties of the silicon oil at 25°C
Svmbol Property Unit Value
v Viscosity em'/s e]
i Density elem’ 0.968
& Thermal diffusivity em’/s 0.001095

Surface tension coetficient dyne/cm 13:96
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In addition, the vorticity is divergence free, and heat conduction flux vector is curl [ree. That is
V- 02=0, (9)
VX0=0. (10)

The boundary conditions on the bottom and the side walls of the container is the no-slip condition for
velocities and vorticities,

u=v=w=>_0
2-n=0

where n i$ a unit vector normal to the wall. In addition, prescribed temperature at the heated bottom. and the
insulated condition on the side walls are applied,

Ir=17,, on the bottom :
@Q-n=0, on the vertical walls .

On the free surface, the Marangoni boundary conditions are applied.

du aT
oz~ Vo o
PV 5 == (12)

where y is the surface tension coefficient. Note that the x and y coordinates are tangential to the free surface.
and z is perpendicular to the free surface. By using the vorticities and heat conduction fluxes, the Marangoni
conditions can also be expressed as

pim = —%tf,- (13)

pré= % Gy (14)

Since a flat free surface is assumed, we also set w =10 on the free surface.

The Marangoni conditions represent the relationship between the flow shear stress and the tangential surface
tension force across the free surface. Any inhomogeneity of the surface tension (due to temperature variations)
creates a shear force on the free surface and therefore results in flow motion. Therefore, the Marangoni
conditions are the driving force of the MB convection. Mathematically, as boundary conditions, the Marangoni
conditions are responsible for the strong coupling between the momentum equations and the energy equation.
This is the difference between simulating the MB convection and simulating the RB convection, in which the
energy equation is passively coupled with the momentum equations through a source term in the momentum
equations,

The heat loss on the free surface is modeled by the usual heat transfer condition:

aT _
prC, = =—hT—1T,) (13)

where h is a heat transfer coetficient. C, is the constant pressure specific heat, and 7, is the prescribed cold
temperature of the ambient air. The heat transfer mechanism on the free surface could be conduction,

convection. radiation, and combinations of these effects.
2.2, Non-dimensionalization

Before the non-dimensionalization, the energy equation is reformulated in terms of the temperature
perturbation #, where

B=1T-T,,.. (16)

ave

A linear distribution of the average temperature 7 _ in the vertical direction is assumed, i.e.

ave
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T.'n'c(‘_") = TJJ o j (Tli - TU) * (I?)

where T, and T_ are the prescribed hot and cold temperatures to set up the MB instability, and d is the depth of
the liquid layer. This procedure for the energy equation is commonly employed in the stability analyses of the
MB flows. As a result, we obtain the following energy equation,

¢ w AT
— + V-V —-——=V-0., (18)
ol €

where w is the vertical component of the velocity, and AT =T, — T,. Note that here we have redefined the heat
conduction flux vector @ as the gradient of the temperature fluctuation, i.e. @ = «VA.

The governing equations and the boundary conditions are then non-dimensionalized by the appropriate
parameters. Here. we choose d and d” / as the spatial and temporal scales. Therefore, the velocity scale is «/d.
In addition. the temperature variation @ is non-dimensionalized by AT.

H*‘:% U*=U?d “F:u:’
ptl g2
T
€= in{i“ 9“%-

Note that p* is not dimensionless: p* could be interpreted as a dimensionless pressure multiplied by a
dimensional constant. This treatment is a common practice for the Stokes equation. As a result, the
non-dimensionalized flow equations are

V-¥v=0, (19)
YW+VX2=0, (20)
i )

E-I—(V-V)(}—n-':V-Q, @1
V-02=0, (22)
VxQ@=0, (23)
Vxv=0, (24)
Ve=g0. (25)

Note that, the superscript * has been dropped for convenience.
The Marangoni boundary conditions are also non-dimensionalized by the spatial and temporal scales, and we
get

n=-M4q,- (26)
E=M,q,: (27)
where
AT d
=12l (28)
prK

is the Marangoni number.
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Similarly, after the non-dimensionalization the heat convection condition on the free surface becomes,
qg.+B.0=0 (29)

where B, = hd/ KpCp is the Biot number, which is a dimensionless measure of the heat loss on the free surface.
Usually, the ambient environment is well controlled in the MB experiments and the heat transfer on the fluid
surface is not efficient. Furthermore, we note that the energy equation and its boundary conditions are
formulated in terms of the temperature variation # instead of temperature itself. Therefore, it is a reasonable
assumption to let B, =0, which implies that the heat transfer to the ambient air through the temperature
fluctuation @ on the free surface is negligible. Instead, all heat transfer on the [ree surface is through the gradient
of the average temperature 7. As a result, the boundary condition for the energy equation on the free surface
becomes ¢_= 0.

2.3. Div—curl-grad formulation

First. we apply the first-order backward differencing to the temporal derivative term of the energy equation. In
addition. by using the definition of the heat conduction fluxes, we transform the nonlinear convective terms of
the energy equation V-V# into an algebraic expression V- Q. As a result, a new set of first-order equations is
obtained:

V-¥=0, (30)
VXV=10, (31)
V-2=0, (32)
VX2+VPp=0, (33)
V-Q=§(9—H"—')+V‘Q—u-‘. (34)
VXQ=0. (35)
V=0, (36)

where Ar is the time step, and the superscript n — 1 denotes the previous time step. Note that all right-hand sides
are algebraic and they have nothing to do with the classification of this equation set. The left-hand sides are
composed of div—curl-grad operations and they are responsible for the characteristics of the partial differential
equations. In terms of components, we have arrived at a system of fifteen equations and eleven unknowns.
Seemingly, we have an ‘over-determined’ problem on our hands.

2.4. Ellipticity

Usually, a system of first-order partial differential equations are elliptic if the number of equations and
unknowns are even such that complex conjugate eigenvalues can be obtained as the roots of the characteristic
polynomial of the equation set, Apparently, Egs. (30)—(36) cannot be fitted into this paradigm. To overcome the
difficulty, dummy variables and additional equations associated with the dummy variables are introduced into
the governing equations to reconstruct an even-number unknowns /equations system.

Apparently, Egs. (30)-(36) are composed of three div—curl-grad systems; (30) and (31) are a div—curl
system for velocities; (32) and (33) are a div—curl system for vorticity and pressure; and (34), (35) and (36) are
a div—curl—grad system for the heat fluxes and temperature fluctuation. In the first system, (30) and (31), the div
and curl operators operate on three unknowns, &, v and w, and the system is composed of four equations. Here,
we introduce a new variable b, and the system becomes

V-V=0, (37)
Vo +VXV=42, (38)
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where the dummy variable ¢ satisfies the boundary condition ¢ =0 on I" By applying the divergence operator
to (38) and considering V-V X V=0 and V- {2 =0 we have

V=0 in {2, (39)
d=0 onl. (40)

Therefore, a trivial solution ¢ =0 is obtained. and the original system has not been changed.

The second div—curl set, (32) and (33), is constructed by four equations and four unknowns i.e. & 7, £ and p,
operated by the div and curl operators, and no dummy variable is needed.

The third div—curl—grad set, (34)—(36), has four unknowns (6. g, g, and ¢.) determined by seven equations.
Hence, four dummy variables and one equation are introduced into this system:

V-@=f, (41)
V8 +VX0=0, (42)
V-w=0, (43)
VXW+VW=0, (44)

where & and ¥ = (i, i/, i) are the dummy variables, and f is the right-hand side of the energy equation (see
Eq. (34)). As such, this subsystem has eight unknowns and eight equations. By applying a divergence operator
to (42) and considering V-V X @ =0, we have V>3 =0 inside the computational domain. Combined with the
prescribed boundary condition @ = 0 at [, we get =0, and the introduction of ¥ does not change the original
equations. Similarly, by applying a curl to (44), and considering VX V8 =V X Q =0, we have

VX (VX W¥)=0. (45)
We also know that
V-(Vx ) =0, (46)

With the boundary condition n X ¥ = 0, it can be shown that ¥ = (). Therefore, the introduction of ¥ does not
change the original system of equations.

Facilitated by the dummy variables. we now have sixteen equations and sixteen unknowns. In the Cartesian
coordinates, the first-order system of equations have the following form:

du  dv o dw
e e
dx - dy az

=90 (47)

d dw. du
L L (48)

ax ay dz

dg  du dw

ay Tz e ™ (49)
%*%‘%:f (50)
g :_? ¥= (51)

—+{=m (54)
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dg,.  dg, g
i + . ‘l' :-r{‘ ;

iy Ay dz (33)
A dg. g,
5y L6 iy (56)
dx iy dz
ad g, dq. —
j\_ dz oy =0, 57
ag g, dg,
bz T ax oy O 63
d difr, o
W O W (59)
ix iy dz
a6 dir, Al
ax | ay @z o (60)
ag  a iy
ay o e T4 (61)
a0 Ay Ay %4
oz ax  ay % 02
We then cast the equation set into a matrix form:
g, g dg .
A, T +A, EJ;.-+A-‘ H:_S‘ (63)
in which the unknown vector ¢ is defined as
g = v wy by E &P Gy G Ot Y T (64)
and § represents the algebraic terms in the right-hand side of the equations.
The coefficient matrices A . A, and A, are
(10 0000 0000 0000 0 O
oo o vLoo0o 0000 0000 00
0o -r000 0000 0000 00
0 1 o000 0000 0O0O0O0 00
00 0010 0000 0000 00
oo o000 0100 0000 00
0o 0000 -1000 0000 00
A = 0 0 0 001 O oo o0 0000 00 (63)
oo 0000 0010 0000 00 )
0o o000 ODO0OO0CO O1 00 00
oo 0000 O0O0O0OO0OS-1000 00
oo 0000 0001 0000 00
oo oo0oo00 O0OO0O0OO0OC OO0CIO 00
oo o000 0000 0000 01
0o 0000 0000 0000 -1 0
000 0 000 0000 0001 0 0/
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(01 00 0000 0000 000 0
Oo0 10 0000 O0O0CO0OO0C O0COO0O0
00 0 1 0000 0000 0000
-1 000 O0O00O0GC OO0OO0OO0O 0000
6000 o100 0000 O0O0O0O0
0o 00 0010 0000 O0O0O00O0
0000 0001 0000 0000
= 00060 -1 000 0000 0O0O0°O0 (66)
2 oooo 0000 O0O10O0 0O0O00
Ooooo0o 0000 0010 0O0©O0°0
0000 0000 0001 00 0 0
Oooo 0000 -1000 0000
0oo0o0o0o 0000 0O0O0OO0O O1 00
Oooo 0000 0O00O0 0010
Oo0o0o0o0o 0000 0000 0001
. 0000 OO0O0OO0O OO0OO0OO0O-1 020 0/
(0 01 00 0000 0D00 0 0 0)
0 =1 000 OO0oQ Q0O 000
1 0o 0oo0o0o 0000 0O0O0O0O O0OO0O0
o oo0o1p0 O00O0O0C O0COO0OO O0O00
o 0000 OI1I OO 0O0O0O0OO0O OCO0OO
o 0000 =1 000 0000 0O00O0
0 0 0 0 1 OO0 o600 0000 000
o o 0000 0010 0000 000 67)
3 o 0000 0000 O1 00 000
o 0000 0000 -1000 0200
0 0000 0001 0000 000
o 0000 0000 OOT1O 0O00O0
0 0000 0000 0000 010
60 0000 0000 0O00O0-=1200
o 0000 0000 0001 0 0 0
0 0000 0000 0000 00 1/
The characteristic polynomial of the system is
det(A A, +A,4, +4:1,)=0, (68)

The roots of the equation determine the type of the differential equation set. The left-hand side of (68) can be
written as

0
c
0
0

det

o aef

S o B o=k
A A 0 A
=(A]+ A3+ AY) (69)

Eq. (69) cannot be equal to zero for distinct real roots of A,, A, and A;, and the equation set is indeed elliptic.
2.5. Boundary conditions

Because the number of equations is even and the equation set is elliptic, the required boundary conditions are
standard. Tn addition, the equation set is first-order, and only Dirichlet boundary conditions are used. Facilitated
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Table 2

Haundary conditions

Conditions Flow equations Heat equations

Heuted u==w=>0 fi=0, Q,=0,=0
hottom n:f1=10 (=0

Insulated n=r=w=I( Q-n=0, (nx¥r=10)
walls h =10

Free n-V=0, 2, =Mag"' O-n=0, nx¥=0)
surface 2.=-M0" (d=0)

by the dummy variables. we have sixteen unknowns governed by sixteen equations. As such, eight boundary
conditions are required on each boundary. For the purpose of discussion. we divide the system of equations into
two groups: the flow equations, and the heat equations. On each boundary. four boundary conditions are
required for each group, In Table 2, we propose the permissible boundary conditions for the MB convection.

The outward normal vector of the boundary is denoted by n, and the tangential unit vector is 7= (7, 75) with
7, and 7, as the two orthogonal components. When used as a subscript, 7, and 7, denote the two mutually
orthogonal components of a tangential vector. For example, @, and @, denote the two tangential components
of O on the heated bottom.

For a typical MB flow, there are three type boundary conditions: (1) the heated bottom wall condition, (2) the
insulated vertical wall condition. and (3) the free surface condition. For each type boundary, we enforce the
known boundary conditions as listed in Section 2.1. In addition, we invoke the pseudo-boundary conditions of
the dummy variables to complement the system. For this reason, these null boundary conditions are put in
parentheses. For the Marangoni conditions on the free surface, we specify the vorticities by using the heat
conduction fluxes tangential to the free surface from the previous time step. This treatment is in accordance with
the flow physics that the flow motion is driven by the uneven distribution of the surface temperature. Therefore,
fore each time step. the semi-discretized governing equations (63) are elliptic and their boundary conditions are
illustrated.

3. The least-squares finite element method

The LSFEM is used to solve the first-order equations (63). The right-hand side vector S of (63) is an
algebraic expression of dependent variables to be solved, i.e.

=800 Qs Gig) 15 1Bseny 16 (70)

where . j=1,-... 16 are the dependent variables. The nonlinear terms are linearized by Newton’s method in
the following fashion:

| & ."}.\‘ \ i
‘,-:"' I s+ z (—') L\Aq_f : (71)

=l t'iqj

where the superscript 7 denotes the previous Newton's method step and m + 1 is the current step. Ag, = ¢ -

" is the increment of the flow variables in each Newton’s iteration. After manipulation. we obtain a new set of
equations in vector form ready for finite-element discretization,

qu s Am f.ﬂtﬁq

ax T2 ay

m

g

ag" dA d
A it A = A I £ - “I q ] q " ( q
1] q | fAx

+A;’5—+A3 +A

" e ALy |J'II: —’
A % 2 3 9z +8%=0, (72)

To proceed. the governing equations are cast into the following operator form:

LAg=f, (73)
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where the linear operator L is defined as
o a il
= m+‘ (P J:r_+ m_ ;
L=Ay; +A]| e A oy Ay 9z (74)

The right-hand side vector is

. rH _iq: e r”q’“ n qu " =
I= A G 4 dy BT (75)
We then define the least-squares functional of the residual R = L Ag — f for admissible Ag as
qu)zf R'-Rd0. (76)
1
Minimizing the least-squares functional J(Ag) with respect to Ag leads to
3J(Ag)=10. (77)
That is
f (L3Ag)' - (LAg—f)d2=0, (78)
2
where & denotes the variation of the function. Let 8Ag = v, and (78) can be writlen as
f (Lv)'(L Ag)d2 = f (Lv)'fdo. (79)
7] 2

To employ the finite element method, the computational domain is decomposed into N, elements and the
element shape functions @’s are introduced. The discretized solution in each element Ag(r. x. v.7) can be
expressed as

N

"

Agi(t x. v.2) = 2, Blx, , DAQ (1), (80)

=1

where N, is the number of nodes per element and the (AQ, (1)) are the nodal values of Ag. The test function v is
chosen as

vix, v.2) = Pix, y. 2, (81)
where I is the identity matrix. Substituting (80) and (81) into (79) gives the linear algebraic equation
K"AQ=F", (82)
where AQ denotes the global nodal values of Ag(x, v), and the final global matrix is
N,
K" =2, (K" (83)

a=1

m

That is, the global matrix K" is assembled from the element matrix (K™)°, which is defined as

(Kj.';r=L (L®)" - (LP)d. (84)
The final right-hand side vector F™ is assembled from the element vector (F["), which is given as

FTY = L (L) - fdn (85)
An important feature of the least-squares finite element method can be observed in (79) and (84), i.c. the matrix
is symmetric, In addition, as long as the solution exists, the global matrix is also positive-definite.

The JCG method [26] is employed to invert the coefficient matrix. The method is an efficient and
straightforward approach for inverting a symmetric, positive-definite matrix. As long as the solution exists, the
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numerical convergence of the JCG method is guaranteed. Because the Jacobi preconditioning procedure consists
of modifying only the diagonal terms of the global matrix, the preconditioned global matrix does not suffer from
any fill-in and the whole procedure can be implemented n an element-by-element fashion such that no global
matrix need to be stored and fine-grain parallelization is straightforward. We consider this merit of the LSFEM
specially attractive for large-scale calculations.

4. Results and discussions

The numerical results reported here are the simulated MB flow in square containers. The flow features of the
MB convection depend on the aspect ratio of the containers (A,) and the Marangoni number (M, ). A is defined
as the ratio of the horizontal distance between the opposite walls to the depth of the liquid layer. As shown in
Fig. 1. the configuration consists of four insulated vertical walls. a heated bottom surface, and a flat free surface.
Fig. 1 also illustrates the specified boundary conditions,

In the present paper, we want to recapture the unusual MB planforms in small containers reported by
Koschmieder and Prahl [3]. Here, four cases are reported: the two, three, four and five-cell MB convection. A
mesh of 51 X 51 X 19 is used. The mesh is uniform in the x and y directions, and is clustered near the free
surface in the z direction. For different cases, the aspect ratio A, are different and the mesh is adjusted
accordingly. Although not shown, we have conducted the mesh refinement study for the four-cell case by
doubling the mesh size in each coordinate direction. Essentially, we have obtained the same numerical solution.

There are three loops of iterations: (1) the outer loop is the time marching part: (2) the intermediate loop
updates the coefficient matrices and source terms by Newton’s method; and (3) the inner loop solves the
variable increment Ag by inverting the global matrix using the JCG method. Typically, it takes about 50 to 100
time-marching steps to converge about four order of ¢" —g¢" ', where n denotes the time step. Further
convergence is generally much slower. After about 50 to 100 time steps, the numerical method usually has
already caught the MB patterns. Within each time step, we perform Newton's method about three to five times

=g =0
Free Surface $ '"“qr'

N=-Maql™!

Insulated Walls
/ usv=w=¢ (or )=0
z ‘ / /q'(or q):a

Heated Bottom usvmw=g§=o
3] sq! :q’ =0

Fig. 1. A schematic of the computational domain.
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to update the coefficient matrices and the source vector. For each Newton’s step, it typically takes about 300 to
500 JCG steps to invert the coefficient matrix.

To start the calculation, we initialize the temperature field by the initial condition used in [16]:

O(x, .2, 0) = &lx, ¥)z(2—2) (86)

The field e(x, y) is the superposition of all Fourier modes supported by the employed numerical mesh. The
magnitude of e(x, y) is set to be one thousandth. All other flow properties are initialized by zeros. As time
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Fig. 2. The Marangoni—Benard convection in a square container with two cells for M, = 87 and A_ = 5.68. (a) The pattern; (b) the velocity
vectors on the free surface; (c) the temperature contours on the free surface; and (d) the vertical vorticity contours on the free surface.
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evolves, the numerical procedure will pick up the most unstable mode and suppress others. In addition, we
usually start our calculations with very low M, and gradually increase the M, until the onset of the flow
convection. Gradually. the numerical calculations converge to the selected planforms.

Fig, 2 shows the numerical solution of a two-cell MB convection. Four plots are shown: (2a) the MB
planforris; (2b) the velocity vectors on the free surface; (2¢) the temperature contours on the free surface: and
(2d) the contours of the vertical vorticity on the free surface. The planform (2a) shown here is actually the
smoothed contour plot of the velocity profile just beneath the free surface. The surface topology represents the
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Fig. 3. The Marangoni-Benard convection in a square container with three cells for M, =95 and A, = 6.18. (a) the pattern: (b} the velocity
vectors on the free surface; (¢) the temperature contours on the free surface; and (d) the vertical vorticity contours on the [ree surface.
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velocity distribution: the bulge-up portions represent the rising flow motion and the valleys are the downward
flow. For M, = 87 and A, = 5.68, two triangular MB cells are obtained. The simulated pattern is identical to that
reported by Koschmieder et al. [3].

Al the centers of the triangles, temperature is hotter and therefore the surface tension is smaller as compared
to the area along the walls and the diagonal valley. where the temperature is colder. Accordingly, this
unbalanced surface tension force results in flow motions from the hot region to the cold region; i.e. from the
center of the MB cell to the cell boundary. To replenish the hot region, hot fluid is dragged up from the bottom
of the container. and therefore the MB convection is sustained. As shown in Fig. (2¢), the coldest spots on the
free surface is the higher-left and lower-right corners, where the cold fluid is pushed downward to be heated up.

(c) (d)

Fig. 4. The Marangoni—Benard convection in a sguare container with four cells for M, =95 and A, = 6.36. (a) The pattern; (b) the velocity
vectors on the free surface: (c) the temperature contours on the free surface; and (d) the vertical vorticity contours on the fres surface.
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It is interesting to note that without the effect of the vertical walls, the vertical component of the vorticity (£ is
null everywhere. This situation has been pointed out by Thess in [16]. Fig. (2d) shows the distribution of ¢ on
the free surface, and indeed all the variations are in the vicinity of the vertical walls. This is another indication
that our calculation has been fairly accurate. We remark that the numerical calculation automatically selected the
orientation of the diagonal valley. For a slightly different initial perturbation (e.g. different combination of
Fourier modes) the diagonal valley could change to the other diagonal direction. Nevertheless, the pattern of
triangular MB rolls is repeatable.

Figs. 35 show similar results for three, four and five-cell MB convection for the corresponding M, and A .
The patterns are combinations of triangles. squares, and wedge-shapes. Similar to the two-cell case, all patterns

,

rrrs

/:

:

e
L %

7
.
=zl

=

s it/
LY -\ AT
g pr g # -
——
—W’

——
——

. e

i * i
N / /

(d)

Fig. 5. The Marangoni—Benard convection in a square container with five cells for M_ =85 and A, = 8.48. (a) The pattern; (b) the velocity
vectors on the free surface; (¢) the temperature contours on the free surface; and (d) the vertical voriicity contours on the free surface,
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at the center of
container

at the center of

MB cells close to wall

Fig. 6. The temperature contours on thrée vertical cross sections for the 4-cell case.

are repeatable with slightly different initial perturbations. The orientation of the pattern of three-cell case.
however, could be different. Again, in all patterns, the centers of the MB rolls. where the fluid is drawn upward
from the bottom, are always hotter than the valleys, where the colder fluid is pushed downwards to be heated up.
The coldest regions of the flowfields are always at the intersections of several valleys. All these patterns have
been observed in the laboratory by Koschmieder and Prahl [3]. Due to the existence of the vertical walls, these
patterns are quite different from the general conception of the hexagonal MB convection usually observed in the
containers with very large A .

To show the three-dimensional features of the flow fields, we plot vertical sections of the temperature profiles
and velocity vectors for the 4-cell case. Fig. 6 shows three temperature profiles in the vertical sections: one
crosses the center of the container, one crosses the center of a MB cell and the last one is close to the wall. For
the 4-cell case. the coldest spot on the free surface is at the center of the container. These vertical cross sections
show that the constant temperature contours of colder regions always have smaller opening on the free surface.
However, the constant temperature contours of hot regions have larger openings on the free surface. This pattern
is consistent with the simulation results shown by Thess [16]. Fig. 7 shows the velocity vectors of a vertical
section crosses the center of two MB cells. It is obvious that there are two upwardly rising stream at the centers
of the two cells, The colder fluid flows downward along the walls and the centerline to form several
recircnlation bubbles.

The critical Marangoni numbers M, _ for all these cases, i.e. 5.68 = A = 8.4, lies between 80 and 85, which is
consistent with the data reported by Koschmieder and Prahl [3]. For each A . the M,_is obtained by starting the
simulation with a small Marangoni number. Before the onset of the MB convection, the imposed perturbation
always diminished as time progressed. We then increased the Marangoni number by a small number (usually 2
lo 5) and ran the simulation again. We repeated the procedure until the imposed perturbation grew as time
progressed and we knew that we had the onset of the MB convection and the critical Marangoni number for the
specified A . For a Marangoni number close to the critical number for the onset of the convection, the flowfield
was very unstable and changed randomly and it took a long time and many iterations for us to discern whether
the perturbation was actually growing and reaching a certain pattern. This was a laborious and time consuming
task. In this paper, we are contented with the unusual patterns oblained by the numerical simulations. In future
work, we shall pursue detailed analysis of the transient phenomena.

"E 3 ‘:;:..a;' /5 ﬁ, ’.}}
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Fig. 7. The velocity vectors on a vertical cross section across the centers of two MB rolls for the 4-cell case.
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5. Concluding remarks

In this paper. we reported the simulations the three-dimensional Marangoni—Benard convection based on the
LSFEM. The continuity equation, the Stokes equations, and the time-marching energy equation are solved
simultaneously. Dependent variables such as vorticity and heat conduction fluxes are introduced to reduce the
flow equations to be first order. These first-order equations are composed of several div—curl—grad systems.
Facilitated by dummy variables, we show that the first-order equations are elliptic. As a result, the required
boundary conditions for the MB flow problems were illustrated. This is crucial for the present calculations,
because the coupling of the momentum equations and energy equation as well as the driving force of the whole
flowfield depend on an accurate model of the boundary condition.

The equation set is solved by the LSFEM, in which the coefficient matrix is always symmetric and
positive-definite. The inversion of the coefficient matrix is carried out by the JCG method, in which the
computation is element-by-element and no assembly of the global matrix is needed. The MB convections in
small square containers with two, three, four and five-cell MB convections are simulated. The obtained patterns
are identical to that reported by Koschmieder and Prahl. The critical Marangoni numbers for all these cases are
also consistent with their data.
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