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Abstract

The present paper reports the development of the least-squares finite-element method for simulating compressible
buoyant flows at low Mach numbers. We propose a div—curl-grad formulation with unknowns including vorticity,
velocity, heat fluxes, temperature and pressure variation. The formulation 1s proved to be elliptic such that permmssi-
ble boundary conditions become self-evident for a well posed flow problem. In contrast to conventional approaches,
the present method evades the predicament of the ‘singularity’ problem of low-speed flows and no special treatment
or artificial boundary condition is needed. Moreover, the assembled coefficient matrix is symmetric and positive-
definite: its inversion is implemented by an element-by-element jacobi conjugate gradient method. As a numerical
example, we calculate two-dimensional compressible buovant flows inside a square enclosure at various Rayleigh
numbers. For Rayleigh number one million, four secondary vortices were found embedded in the primary vor-
tex. Due to sigmficant temperature variations, the fluid flows are highly compressible in the interior. Along the
walls, however, the flows are incompressible. The Nusselt number-Rayleigh number correlation deduced from the
numerical result compared favorably with previously reported data.

1. Introduction

Perhaps the most neglected flow problem in finite-element simulations is the compressible buoyant
flows at low Mach numbers, which on the contrary have been intensively studied using finite differ-
ence /volume methods. Because of heat addition, low-speed flows become compressible due to temper-
ature and density variations. For example, motions of hot gases of a fire arise due to heat addition by
combustion in an otherwise quiescent fluid in the presence of gravity. As another example, low-speed
flows inside a chemical vapor deposition reactor are compressible due to strong heat radiation. Although
the flow speed is slow, one must employ the compressible flow equations to simulate such flows. How-
ever, it is well known that the conventional methods, which can handle high-speed compressible flows
easily, fail miserably when applied to these low-speed compressible flows.

The difficulty stems from two major issues: (1) the so-called ‘singularity’ problem of the low-Mach-
number compressible flows, and (2) the lack of viable iterative methods for solving low-speed flows
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implicitly. In what follows, these two difficulties are briefly illustrated as the background of the present
work.

1.1. Singularity problem for low-speed flows

In the setting of the mixed Galerkin method., it is well known that the incompressible Navier-Stokes
equations have the so-called ‘singular” behavior. The singularity stems from the exclusion of pressure
as an unknown in the continuity equation. It has been explained [1] that the continuity equation is a
kinematic constraint instead of an equal-footing governing equation such as the momentum equations.
And pressure is the Lagrange multiplier of the system. In order to construct a stable and existing
solution, pressure, i.e. the Lagrange multiplier, and the velocities, i.e. the solution of the governing
equations, should be defined in different function spaces. Without observing this fact, instead treating
them equally will render the equation set analytically singular.

According to Zienkiewicz and Wu [2] the numerical manifestation of this singularity can be illustrated
by the structure of the linear algebraic system for the discretized flow equations:

(g ﬁ)(;)"@) (1)

where u is the unknown vector of velocities for all grid nodes and p is that for pressure. With proper
discretization, the matrix K is usually positive-definite. The upper half of the linear algebraic system, 1.e.
Ku + Ap = f |, represents the discretized momentum equations for every grid node and the lower part
is that of the continuity equation. Due to the null diagonal of the global coefficient matrix, such systems
are often singular. It has been shown that a necessary condition for the matrix to be invertible is that
the number of ¥ must be larger than that of p. It should be emphasized, however, this condition is not
sufficient.

For compressible flows, additional unknowns such as temperature and density are included. Pressure i1s
related to temperature and density through the equation of state. Therefore, pressure could be eliminated
from the flow equations as has been practised commonly in computing high-speed compressible flows.
As a result, the abovementioned singularity problem ceases to exist; indeed, for high-speed compressible
fAows numerical difficulty of such nature never emerged.

For low-Mach-number compressible flows, pressure is rather uniform through out the whole flow field.
Therefore, pressure can be considered as a small variation superimposed on a constant background
such that the derivative of the constant background pressure can be dropped off. In this case, the
pressure variation becomes the primitive unknown to be solved. In addition, as will be illustrated in
the following section, the equation of state at low Mach numbers becomes a reciprocal correlation
between temperature and density and the pressure variation is not directly related to them. As such,
one cannot eliminate the pressure variation from the list of unknowns. Similar to the incompressible
flows, the pressure variation does not appear in the continuity equation and the singularity problem
emerges again. This situation can be illustrated by the following linear algebraic system,

K, A A; u S
K, .uBisiips Tne|riz ot fiublo, (2)
et Clsu () 4 /3

where p' is the pressure variation and T is the temperature. The upper part of the system, i.e. K u +
AT +A,p' =f, and K;u + BT + B,p' = f ., are the discretized momentum and energy equations for
all grid nodes and the lower part, i.e. Ksu + CT = f,, is that of the continuity equation. A diagonal null
appears and the singularity problem is of concern.

Various methods were developed to overcome this ‘singularity.” One approach is to ensure that the
coefficient matrix with a null diagonal submatrix is not singular. In the setting of the mixed Galerkin
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finite-element method, it has been quite clear that only certain combinations of the approximation
functions for velocities and pressure are acceptable for stable solutions. i.e. the LBB condition [3] must
be satisfied. Einset and Jensen [4] used the mixed Galerkin method and solved a low-Mach-number flow
inside a chemical vapor deposition furnace. The final coefficient matrix of the mixed Galerkin method
is usually non-symmetric; its inversion is not trivial.

Alternatively, in the same spirit of the non-equal-footingness of the flow equations, a fractional step
procedure was proposed by Chorin [5]. In this method, one first calculates an intermediate velocity
field by solving the momentum equations while ignoring the continuity equation. This intermediate
velocity field is then corrected by the mass conservation constraint. The correction step was interpreted
as a projection of velocities to a mass conservation function space and is usually facilitated by solving
a Poisson equation. Essentially, by doing so, one introduces extra terms into the global matrix (2) to
remove the the diagonal null and the singularity is resolved. It should be emphasized, however, due to the
complexity of the method, error analysis is not available. Nevertheless, guided by engineering heuristics
various computer programs were developed for low-Mach-number flows [6-9]. They are mixtures of the
mixed interpolation and fractional step procedure. Usually, a staggered grid is employed, which, to some
extent, is similar to the mixed Galerkin method. In the same spirit of the fractional step, the governing
equations were solved sequentially. In addition to the lack of basic theory, the accuracy of the projection
method is questionable [10] due to the employed artificial boundary conditions for pressure when solving
the Poisson equation.

The abovementioned methods were designed on the premise that pressure must be included as a
primitive variable. One can bypass the pressure and therefore the singularity problem by using the
vorticity-velocity formulation. Essentially, by taking a curl of the momentum equations, the pressure
derivatives are eliminated. Based on this approach, Ern et al. [11] developed a three-dimensional solver
for low-Mach-number flows. The difficulty of this approach is the uncertainty of the boundary condition.

Recently, one noteworthy progress of simulating the low-speed compressible flows is the precondi-
tioning methods by Merkle and Choi [12-14] and Turkel [15, 16] for both low-Mach-number flows and
all-speed flows. The method is an extension of the computational schemes for aeronautical flows. The
theory is based on the hyperbolic characteristic of the time marching method. The treatment is com-
posed of two steps. First, according to Chorin [17], a temporal derivative of pressure together with a
multiplicative variable j3, i.e. the pseudo-compressibility term, is added to the continuity equation. As a
result, the diagonal null in (2) is filled:

K, A A,
(K:-I Hl Bj \II
= 1 =
—_— ()
B At : ; ¥
joliolg M i - Jfri (3)
(0 1
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The pseudo-compressibility term removes the singularity of the coefficient matrix, and a hyperbolic time
marching for all equations becomes numerically viable even for incompressible flows.

Second, the propagation speed and damping effect of numerical waves are tuned up to speed up
calculations towards the steady state. This is necessary due to the wide differences between the eigen-
values, i.e. u, u + ¢, and u — ¢, of the jacobian matrix at low Mach numbers (1 < ¢). Numerically, the
large difference between the eigenvalues results in unacceptable condition numbers of the discretized
systems. This in turn makes the iterative methods for solving the algebraic system becoming drastically
exasperated. When the eigenvalues are scaled to be of the same order of magnitude by premultiply-
ing a preconditioning matrix to the equation set, the stability of this pseudo-time marching process is
ensured. However, this method is based on conditioning the convective terms, little discussion for the
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viscous terms was offered. In addition, since pressure becomes a primary unknown in this artificial sys-
tem, one must specify its boundary condition. Usually, dp/0n = 0 is used with n» as the normal vector
on the boundary. Similar to the projection methods, this pseudo boundary condition is derived based
on a boundary-layer type assumption. For Stokes flows and recirculating flows, this artificial boundary
condition poses significant error.

1.2, lterative methods for unstructured meshes

Discretization of multi-dimensional Navier-Stokes equations using implicit methods results in large
and sparse matrices to be inverted. Because the operator of the Navier-Stokes equations is not self-
adjoint, conventional methods render the coefficient matrix asymmetric and /or non-positive-definite. As
a result, the numerical inversion is a formidable task.

In the past, structured meshes were used as an integral part of the finite difference /volume methods.
Due to its inherently ordered fashion of the data structure, the global matrix could be factorized approx-
imately in either ADI or LU manner without increasing the bandwidth of the matrix. The structured-
mesh methods were usually employed in conjunction with time-marching techniques and the numerical
computation is guided by von Neumann stability analysis [18]. Generally, artificial damping is added to
suppress the numerical instability caused by the factorization error. As a result, tremendous success has
been obtained for large-scale simulations.

For unstructured-mesh methods, however. the coefficient matrix is no longer narrowly banded in an
orderly fashion. Therefore. it cannot be factorized in a useful way. Instead of von Neumann analysis,
one relies on the characteristics of the global matrix, such as the condition number, diagonal dominance,
symmetry and so forth, for the strategy of choosing a viable iterative method. Since the matrices are
often asymmetric and/or non-positive-definite, a robust iterative method which guarantees convergence
does not exist. When the number of degrees of freedom is small, one can use the direct solver. For large
multi-dimensional problems, however, the direct solver requires prohibitively large amount of Memaory
and CPU time.

Currently, the most promising iterative methods are conjugate gradient (CG) type methods: the bicon-
Jugate gradient method (Bi-CG) [19]. the biconjugate gradient stabilized method (Bi-CGSTAB) [20], the
conjugate gradient squared method (CGS) [21], the conjugate gradient residual method (CGR) [22] and
the generalized minimal residual method (GMRES) [23]. Note that, the fundamental strategy of the CG
methods is an efficient search for the minimum, i.e. the solution. For non-positive-definite matrices, the
existence of the minimum cannot be verified and the CG methods do not always provide the solution.
As such, the application of these methods is an art guided by experience. For asymmetric but positive-
definite matrices, the issues become the required computer memory and a robust preconditioning. For
example, 1o use the GMRES method, one needs to stores at least 20 to 50 global vectors. The method
usually takes hundreds of iterations for acceptable convergence. The efficiency of the calculations de-
pends on the preconditioning procedure which is usually based on the incomplete LU factorization or
the symmetric successive overrelaxation. Unfortunately, one has to design and tune up a special-purpose
preconditioner for each problem of concern—no universal preconditioning procedure is available.

Here, we provide a brief account of applications of CG methods in CFD. Einset and Jensen [4] used
CGS and GMRES methods for three-dimensional flows inside a chemical vapor deposition furnace. The
simulated problem has about 61 000 degrees of freedom. Howard et al. [22] employed Bi-CG, CGR and
CGS methods for solving a natural convection problem. They used about 10 000 degrees of freedom.
Chin et al. [24] used CGS and Bi-CGSTAB methods to solve driven cavity flows, rearward-facing step
flows and a channel flow. The largest problem has about 19 000 degrees of freedom. Strigberger et al.
125] used the GMRES method to solve a lid-driven cavity flow with the degrees of freedom about 6000.
Venkatakrishnan et al. [26] used GMRES method with various preconditioners to simulate transonic flows
over airfoils. The degrees of freedom were about 65 000. In general, the sizes of the reported simulations
were lower than 100 000 degrees of freedom. Also note that these are fully coupled calculations. For
fractional step type calculations, one can certainly solve larger problems. However, the generality of the
computer code could be sacrificed.
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1.3. The present work

The present work is an extension of the LSFEM developed by Jiang et al. [27-29]. In [27], div—curl-
grad formulations and their ellipticity for incompressible flows were derived. In [28], Jiang and Povinelli
showed that the LSFEM is optimal for elliptic problems in the sense that the global error is of the same
order as the approximation errors. In [29], the versatility of the LSFEM was illustrated for various flow
simulations.

The present work is part of an effort of using LSFEM to simulate chemically reactive flows. Previously,
we used the LSFEM for computing quasi-one-dimensional flames [30]. Later on, a LSFEM solver for low-
Mach-number flow was developed [31], in which the compressibility effect was employed as an unknown
and a direct solver was used. In this paper, we propose a new, first-order, vorticity—velocity—pressure
formulation for the low-Mach-number flows with veritable boundary consitions. In what follows, a brief
account of the present paper is provided

In Section 2, we present the detailed derivation of the first-order formulation for low-Mach-number
flows. Subsections included are the first-order equations, non-dimensionalization, the div—curl-grad sys-
tem, ellipticity and boundary conditions. In Section 3, the LSFEM and the JCG method for solving
the flow equations are elaborated. In the last section, we report the simulated results of compressible
buoyancy flows inside a square enclosure. Four Rayleigh numbers and three sets of mesh are considered.
The results are presented by contour plots and tabulated data.

2. Theoretical model
2.1. The first-order equations

Two-dimensional, compressible, viscous flow equations are of concern:

dp dp du v
HE+E}E (EJ’I) 0, (4)
“du+ Uﬂu+ﬂp d '26‘1: 2 ﬂu_'_ﬂv)" X ﬂ(ﬂ_ﬂq_@) (5)
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where p 15 the density; ¢ and v, the velocities in the respective directions; 7T, the temperature; and @,
the viscous dissipation. Physical properties such as the viscosity w. the conductivity k, and the constant
pressure specific heat C, are assumed constant throughout the flow field. Note that the coordinate system
is chosen so that the gravity is in the negative y direction,

In order to reduce the equations to a first-order system, new variables are introduced,

du dv

=t Q
oy’ (9)
duv  Ou

mza—ﬁr (10)
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where £, the dilatation is a measure the compressibility; @ is the vorticity; and, ¢, and g, are the heat
conduction fluxes in the respective directions. As a result, we obtain the following equations:

dp dp 3
¢¢}—I+u$+pﬁ—ﬂ, (13)
i du  dp 400 Ow
—— —_— e — = —— = s
G e dy  dx (3 dx dy ) (14)
df]n+ f3u+8;J 4Hﬂ+ﬂm (15)
— + pU — = = — | — pg,
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i dy dx  dy 3 dy dx  dx dy dx  dy
(16)
The alternative rule of partial differentiation for the heat conduction fluxes must be satisfied:
dg.  dq,
— — = =
dy  Ox (17)

This irrotational condition for the heat conduction fluxes is necessary for constructing the div-curl-grad
system to be presented in the next section. The above governing equations are closed by the equation
of state,

p = pRT, (18)

where R is the gas constant. Noted that 6 is introduced to facilitate the derivation and it will not appear
as a dependent variable in the final equation set.

2.2. Non-dimensionalization

The governing equations are non-dimensionalized by appropriate parameters:

=L W= — L

i _pﬁ'!:,? _UL’ _U‘x;‘
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where p.., Uy, T and L are reference values of density, velocity, temperature and a length scale. Note
that special care is taken in nondimensionalizing the derivatives of the pressure. Since we are interested
in the low-speed flows, the pressure distribution is rather uniform. Therefore, we consider pressure as
composed of a small vanations p’ and a uniform background p, i.e. p = p + p', where p = p..RT ..
The background pressure p then can be dropped out in the spatial derivatives. The pressure variation
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p' exists due to the flow velocities and, therefore, is non-dimensionalized by a reference kinetic energy
p~UZ. The background material for this derivation can be found in [32-34]. The non-dimensionalized
equations are

dp p

ua+u$+pﬂ=ﬂ1 (19)
uﬂr-+ uﬂ”+ﬂpx— LY il

Phax P dy dx Rel\3ax dy/° 20)
dx dy 8y Re 33y+-:':"r'.!: w26 Fr P (21)
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dx dy ox ay Re 3 dy dx Ox Oy
aq_r ﬂff}. {T = IJMI
N i =)
jusou  Gu
=55 (23)
ol O
~x oy’ (24)
Soar
s = peas (25)
el 0T
U= ey (26)
dgy gy 24
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Note that the superscript * has been dropped for convenience. The dimensionless numbers in the equa-
tions are defined as

[ 2 3
M= Fr=£, Razlfg.t :
yRT 2egl Vo
Pr= E, Re = ‘”"Ra Fr1 Pe = Re Pr,
o Pr
k C
e P

_pxC,.ﬁ T:E?

where M is the Mach number, Fr the Froude number, Ra the Rayleigh number, Pr the Prandtl number,
Re the Reynolds number, Pe the Peclet number, « the thermal diffusivity, and + the ratio of specific
heats. The temperature difference parameter e is defined as
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where T, and T, are the specified hot and cold temperatures in a thermal convection problem. In
addition, the non-dimensionalized equation of state is given by

1+yM?p' = pT. (29)

et (28)

2.3. The div—curl-grad formulation

For low-Mach-number flows (M < 1), the pressure derivative terms, the viscous dissipation terms and
the buoyancy term in the energy equation (Eq. (22)), become negligible. In addition, according to the
equation of state (Eq. (29)), the density and temperature become reciprocals of each other. With strong
heat addition, the temperature and, therefore, the speed of sound is high, the assumption of a small
Mach number can be widely applied to combustion phenomena and material processing procedures.
Specifically, for Mach number less than one tenth, the approximate formulation is regarded as very
accurate. This treatment is commonplace for low-Mach-number flows and can be found in [4, 32-34].

To proceed, the reciprocal correlation of temperature and density is used to obtain the following
cquation:

1
8p = —= OT.
p=—=5 0T (30)
Substituting it into the continuity equation (Eq. (19)), we get
aT aT
=T8.
U . +U By i (31)

Note that temperature was chosen as the primitive variable and density is replaced by the reciprocal of
temperature. Substituting the definition of g, and g,, i.e. (25) and (26), into (31), we get the following
algebraic equation for #:

_ Pe

9= T (tgy +vg,y). (32)

The left-hand side of Eq. (31) is the material derivative of lemperature, which can be substituted into
the energy equation (22), and we get
dg. g,
+ == -0 =0, 33

ax Oy (33)
Note that the pressure derivatives, viscous dissipation and the gravitational source term have been
neglected in (22) for low Mach numbers. This new form of the energy equation is a linear first-order
equation in terms of heat fluxes. The nonlinear convective terms are now absorbed into #. which is
actually an algebraic expression in terms of temperature, velocities, and heat conduction fluxes. i.c. Eq.
(32).

Similarly, we want to transform the nonlinear convective terms of the momentum equations into
algebraic expressions. To this end, the total pressure b is introduced:

b=p + E-I? (nr1 + u'?) . (34)

The convective terms of the momentum equations can be reformulated as

e du o b ve q.Pe,, .,

— — = — = ¥ -5
Pl =+ pu By e~ =~ T 573 (1 + v°) (35)

o ou. o b i gy P o

— —— T — i . 3ﬁ
puﬂr+pua},+ay i]y+ T+2T3 (1" + v°) (36)

To proceed, we introduce another new variable B = Re b — 4/30 and the first-order equations are
obtained for u, v, B, w, g,, g, and T
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These equations can be presented concisely by the notation of vector analysis:

V-u= P—; (ugx +vgy) (45)
V XE =0, (46)
V- @ =0], (47)
Vxw+yB=f, (48)
Vq= " (ugy+vgy), (49)
vxg=0, (50)
vT =Pegq, (51)

where the right-hand side vector f in Eq. (48) is defined as
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Note that all the right-hand sides are algebraic relations of unknowns, and they have nothing to do with
the classification of the equation set. The two-dimensional case is of concern, and the unknown vectors
are defined as

u = (u,v,0),
w = (0,0,w),
q= (ffn‘-']"_hm .

Vorticity has only one component which is perpendicular to the two-dimensional plane and therefore
the its divergence-free condition is automatically satisfied; (47) is put inside a bracket.

Apparently, these equations are composed of div—curl-grad systems: (45) and (46) are a div—curl
system for velocities; (47) and (48) are a div—curl system for vorticity and scalar B; and, (49), (50) and
(51) are a div—curl-grad system for the heat fluxes and temperature. As such, we arrive at a system
with eight equations and seven unknowns. In the following section, we shall show that this seemingly
‘over-determined’ system due to the inconsistency between the number of the unknowns and the number
of equations can be casily circumvented by introducing one dummy variable and the resultant equation
set is elliptic and well-posed.

2.4. Ellipricity of the formulation

Since there are seven unknowns, the equation set cannot be classified by the ordinary method, which
usually requires an even number of unknowns to form complex conjugate eigenvalues for elliptic systems.
The first-order equations, i.e. (45) to (51), are composed of two div-curl systems and a div—curl-grad
system. The first and second div—curl sets are constructed by two equations and two unknowns, i.e. 1 — v
in (45) and (46) and @ — B in (47) and (48). The third div—curl-grad set, however, has three unknowns
I',q and g, determined by four equations. Therefore, we introduce a dummy variable « into the third
div—curl-grad system:

Pe
V- q == (ugx +vqy), (53)
rotg = 0, (54)
—curlk + 7T =Peg. (55)

The technique of introducing a dummy variable to facilitate the classification of the first-order partial
differential equations was originally due to Chang and Gunzburger [35]. The special notations rot and
curl are used to accomodate the two-dimensional formulation and they are defined as

dgy,  Ogy
rot g D ay (56)
K
T o ia (57)
K
ilx

Taking a rot of Eq. (55) leads to Ax = 0, because rot ¢ = rot 7T = 0. Thus, with an appropriate
boundary condition, the solution of x is a uniform constant in the computational domain. As a result,
the introduction of the dummy variable k does not change anything in the system. Facilitated by x, we
now have eight equations and eight unknowns:

Ju v Pe
o 3 =T (ugy +vgy), (58)
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where the right-hand side terms f; and f; are defined in Eq. (52). We then cast the equation set into a
matrix form: -

dg dq
Al— +A— =
i ‘3_p+s 0, (66)
in which the unknown vector g is defined as
q = (u,v,B,w,qx, qy, &, Ty (67)
and the right-hand side vector is
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The characteristic polynomial associated with the system is

dy
det (Al = E) = (), (71)

where dy/dx = A is the eigenvalues of the system and is the direction of the characteristic surface.
The first-order system is said to be hyperbolic if all eigenvalues are real. If all eigenvalues are complex,
tire system is elliptic. And if some are real and other complex, the system is considered as mixed type.
In [36], background material about the classification of the first-order system can be found. Here, the
eigenvalues can be obtained by the following procedure,

oo )
0 C 0
det(A; — AsA) =det 0 0 C 0
S ) B HEST
= (det C)* (72)
4
= (1 + ,1.3)

= (),

where the submatrix C is

1 =A :
C:(& 1). (73)

Thus, there is no real root for the eigenvalue; indeed, the equation set is elliptic.

2.5. Permissible boundary conditions

Because the system of such equations is elliptic, the required boundary conditions are those for a
standard boundary value problem. Since the equation set is first-order, only Dirichlet boundary condi-
tions are permissible. Facilitated by the dummy variable k, we have eight unknowns governed by eight
equations. Therefore, on each boundary we need four boundary conditions. For the purpose of discus-
sion, we divide the system of equations into two groups: the flow equations, Egs. (58)-(61); and the heat
equations, Egs. (62)-(65). On each boundary, each group requires two boundary conditions. We propose
the following boundary conditions in Table 1.
where the outward normal vector for the boundary is denoted by n and ¢'s are the specified distributions
of the flow variable. Without losing generality, the symmetry condition is assumed to be with respect
to the x axis. Note that for certain combination, a null boundary condition for the dummy variable «
is invoked in order to make the proposed system well posed. It should be emphasized, however, this is

Table 1

Boundary conditions

Conditions Flow equations Heat equations

Wall u=v=_0 T'=c gxm=c
g-n=c, (k=0)

Specified R=cC, U=cC I'=c¢ gra=c

mlet (outlet) g-n=¢, (x=0)

Symmetry v=0 w=0 gy =0, (xk=0)
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only for the purpose of discussion, because the dummy variable is not used in the numerical solution.
These null boundary conditions are put in parentheses.

In the conventional vorticity-velocity methods, there has been endeavors to derive the wall conditions
for vorticity. For projection methods and the preconditioning methods, one always needs to impose
artificial boundary condition for pressure. Here, we have shown that, since only two boundary conditions
are required from the flow equations, no wall boundary condition for vorticity or pressure is needed
because the noslip condition (14 = v = 0) is enough to make the system well posed. Similarly, no boundary
condition for vorticity or pressure is needed for specified inflow or outflow.

For heat equations, there are two types of boundary conditions: (1) specified temperature condition;
and, (2) specified heat flux condition. For the first case, it is necessary to impose an accompanying
consistency condition for heat flux tangential to the wall, i.e. g x n = g, = ¢, where ¢q. is the projection
of g in the direction tangential to the boundary. For two-dimensional equations, this cross product
results in a scalar relation. This tangential heat flux condition can be deduced from the specified wall
temperatures. Although not shown in the present paper, this boundary condition for tangential heat
fluxes is crucial for accurate solutions. We shall address this issue in our future publication.

For the specified-heat-flux boundary condition, we activate a null boundary condition for  in addition
to the specified normal heat flux. Note that « is a predetermined constant over the whole flow field and
the adoption of this pseudo-boundary condition poses no theoretical difficulty.

3. The least-squares finite element method

As mentioned in the previous section, the dummy variable x is not included in the numerical solution.
Therefore, the first-order system of eight equations and seven unknowns are solved by the LSFEM. A
vector form of these equations are considered,

'-’3"?
ay y

where each entry of the right-hand side vector § is a nonlinear algebraic equation of seven dependent
variables to be solved, i.e.

Si=85{d1,qne-q1) E=1,2,,01,8 (75)

where g;,j =1,..., .7 are the dependent variables. These non-linear terms are linearized by Newton's
method in the l'-:rllﬂwmg fashion:

gk Loty Z ({}ﬂ ) Ag;, (76)

il

+8=0, (74)

where the superscript n denotes the prcvinuq iteration step and n + 1 is the current step. Ag; = q;“‘ q;
is the increment of the flow variables in each Newton's iteration. After manipulation, we obtain a new
set of equations in vector form ready for finite-element discretization,

.4.:: iq +A" diq A? Liq AH L}i{? AIE ﬂ-l? S.H == (??j
Ox o P ay Iy

To proceed, the governing equations are cast into the following operator form:

LAg=F. (78)
where the linear operator L is defined as
" ‘} n ‘:}
L=Aj+A] o +A} 35y (79)

The right-hand side vector is

f _ _AI '}q A" ﬂq _ s (Hﬂ}
i

Ay dy
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We then define the least-squares functional of the residual R = L Aq — f for admissible Ag as

J(Aq) = fﬂ R'-Rdf. (81)
Minimizing the least-squares functional J(Ag) with respect to Ag leads to
8J(Ag) =0. (82)
That is,
5 (L§Aq)' -(LAg—F) df2 =0, (83)

where & denotes the variation of the function. Let 8Aq = v, and Eq. (83) can be written as

f (Lv)"(L Ag) df? = f (Lv)"f da2. (84)
] il

To employ the finite element method, the computational domain is decomposed into N, elements and
the element shape functions @;’s are introduced. The discretized solution in each element Agj(t,x,y)
can be expressed as

-J"'rl ]

Agi(t,x,¥) =) Di(x, y)(AQ (1)), (85)

=l

where N, is the number of nodes per element and the (AQ ;(r))° are the nodal values of Ag. The test
function v is chosen as

vix,y) = &i(x, ), (86)

where I 1s the identity matrix. Substituting Eqs. (85) and (86) into (84) gives the linear algebraic equation
KJ'I &Q :F.I‘r:‘ {H?}

where AQ denotes the global nodal values of Ag(x,y) and the final global matrix is

N

K= (K2). (88)

That is, the global matrix K" is assembled from the element matrix (K"), which is defined as
Ky = [ @)@, (89)
0.
The final right-hand side vector F" is assembled from the element vector (F7)¢, which is given as

(Fi) = fj 3 (L&;)" - f di2. (90)

An important feature of the least-squares finite element method can be observed in Eqs. (84) and (89).
That is, the final global matrix is symmetric. This symmetry is obtained by the self inner product of L
in Eq. (89). In addition, as long as the solution exists, the global matrix is also positive-definite,

For inverting the matrix, we used the JCG method [37], which is considered as an efficient and straight-
forward approach for inverting a symmetric, positive-definite matrix. Because the Jacobi preconditioning
in the JCG method consists of modifying only the diagonal terms of the global matrix, the preconditioned
global matrix does not suffer from any fill-in. In this way, significant savings of computer memory can
be obtained and no numerical accuracy is compromised. Therefore, in the present calculations, we only
store the global vectors for the unknowns, unknown increments and the geometric data. We consider
this merit of the LSFEM especially attractive for large scale calculations.
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4. Results and discussion

The numerical example is the simulation of buoyancy-driven gas flows in a square enclosure. As shown
in Fig. 1, the configuration consists of two insulated horizontal walls and two vertical walls at different
temperatures, Ty, and T.. Fig. 1 also illustrates the specified boundary conditions. This problem has been
extensively studied based on the incompressible flow equations with Boussinesq approximation, which
is appropriate only for small temperature differences between Ty, and T.. In practice, however, a large
temperature difference is frequently encountered, and the compressible formulation must be employed.
Previously, Chenoweth and Paolucci [38] used a SIMPLE type method and performed an in-depth study
of the flow field. As a result, heat transfer correlations are deduced and reported, including relationships
between Nusselt number, Rayleigh number, aspect ratio of geometry, temperature difference and so
forth. By using the preconditioning method, Choi and Merkle [14] also successfully calculated the flow
lield. Their results compared favorably with Chenoweth’s data.

Flow features of the buoyancy-driven cavity flow depend on Rayleigh number Ra, Froude number Fr,
the aspect ratio of the cavity and the temperature difference parameter e. For the present study, four
Rayleigh numbers, Ra = 107, 10%, 10° and 10° are considered with a temperature difference parameter
€ = (.6, i.e. Ty/Te = 4. In all four cases, the Froude number and the aspect ratio are unity. For grid
refinement study, three meshes were used: 33 x 33, 65 x 65 and 129 x 129. In all three meshes, grid lines
were clustered near all four wall to resolve high gradients of the flow properties near walls. However,
the grid stretching is moderate with the ratio by /hmin = 3.7 for all calculations.

There are two loops of iterations: the outer loop updates the coefficient matrices and source terms, i.e.
Eq. (76), by Newton’s method; while the inner loop solves the variable increment Ag by inverting the
global matrix using the JCG method. Fig. 2 shows a typical numerical convergence of the inner iterations
by the JCG method. The case shown here is Ra = 10" with the 129 » 129 mesh. In all calculations, we
used bi-quadratic shape functions and the integration is done by using a two-point Gauss quadrature.
Fig. 2 shows that the error drops to be lower than the sixth decimal digit in about 300 JCG iterations.
For the present calculations, the specified criteria for stopping the inner iterations are error < 1077
or 300 iterations, whichever is satisfied first. The error in the JCG method is defined as the marching
distance of the CG method divided by the absolute value of the global unknown vector.

Fig. 3 shows a typical convergence of the outer loop by Newton’s method for the same case. In about
six iterations, the magnitude of Aqg reduces about seven orders of magnitude. Since the criterion of the
inner iteration by the JCG method is set at 1077, the convergence of the outer iterations levels off at
approximately the same order of magmtude. Fig. 3 also shows a quadratic convergence, which 1s a typical
characteristic of Newton’s method.

Fig. 4 shows the comparison of the present result with previous data reported by Chenoweth et al.
138]. The x-axis is the Rayleigh number in a logarithmic scale and the y-axis is the Nusselt number. Flow

q y =U=¥=0

=T, T=T

qr =ysSy=a q;,’, SU=V=0

1 ¥
q y =SU=SvY=0

X

9

Fig. 1. Schematic of natural convection inside a square enclosure.
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Log10(Error)

0.0 100.0 200.0 300.0
No. of Step of CG Method

Fig. 2. A typical convergence history of inner iteration by the JCG method (Ra = 10°, 129 x 129 mesh).
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Fig. 3. A typical convergence history of outer iteration by Newton's method (Ra = 10°, 129 x 129 mesh).

with large Rayleigh number results in enhanced heat transfer by natural convection and, therefore, a
larger Nusselt number is obtained. For all twelve calculations with four Rayleigh numbers and three
meshes, favorable agreement were obtained. Only slight improvement was found for solution using the
fine mesh. Fig. 5 shows comparison of the predicted heat flux on the cold wall for the case of Ra — 100 by
using three different meshes. A slight discrepancy can be observed for solution between the 33 x 33 mesh
and the other two meshes. For 65 x 65 and 129 x 129 meshes, the solution is essentially same; a mesh-
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20.0 ; :
|
| 0 33x33 i
15.0 | O 65x65 1
& 129x129 |
—— Chenoweth et al, !
2 10.0 |
i |
i
50t
0.0 .
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Log 10 (Ra)

Fig. 4. The ¢companson of the calculated Nusselt numbers with Chenoweth and Paolucci’s correlation.

10 |
|
0.8 |r
|
0.6
}
i ——=- 33x33
—— 6565
—— 120x129
0.2 |
0.0 - :
0.000 0.010 0.020 0.030

Right Heat Flux

Fig. 5. Mesh refinement caleulations (Ra = 109).

independent solution is obtained. For self-consistency test, we integrated ¢, along the heat conducting
walls to check the global energy balance. The differences between the integrated heat fluxes of the hot
wall and cold wall are tabulated in Table 2. The data are presented in percentage with respect to the
averaged values.

Errors of the global energy conservation for all calculations are less than one percentage. Perhaps this

is the reason that good agreements were found in Fig. 4 for all meshes. The global heat transfer effect
is relatively insensitive to the mesh size.

Table 2

Errors of overall heat transfer(%)

Ra Mesh 33x 33 H5x 65 129x 129
10° 0.040 0.009 0.006

10 0.165 0.133 0.132

10° 0.630 0.500 0.475

109 0.316 0.223 0.210
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In Figs. 6-9, simulated flow fields for different Rayleigh numbers are presented; Fig. 6 is the velocity
vectors, Fig. 7 1s the streamlines; Fig. 8 1s the 1sothermal contours; and, Fig. 9 is the vorticity contours.
All contour plots presented here are obtained by using the 129 x 129 mesh. Velocity vectors, Fig. 6, show
that for large Rayleigh numbers, the flow motion is most vigorous in the vicinity of walls. In Fig. 7, the
streamlines are obtained by plotting constant contours of the stream function ¢. The distribution of ¢
is obtained by solving the following equations by the LSFEM.
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Fig. 6. Velocity vectors of the simulated flow fields: (a) Ra = 10°; (b) Ra = 10*; (¢) Ra = 107; {d) Ra = 10,




5T Yu et al. / Comprt. Methods Appl. Mech., Engrg. 137 (1996) 59-58 77

(c) (d)
Fig. 7. Streamlines of the simulated flow fields: (a) Ra = 10°: (b) Ra = 10* (c) Ra = 10" (d) Ra = 10°.

Since this is a post-processing procedure, u, v and T are known throughout the flow field. To close the
equation system, ¢ = () along all walls is imposed.

It 1s well known that the Boussinesq approximation displays a fully antisymmetric flow field with
respect to the center of the cavity. The present calculation based on the compressible formulation shows
an asymmetric flow ficld which has been observed experimentally. For Ra = 10° and 10¢, a shift of the
vortex center towards the cold wall is observed. At Ra = 10° and 10°, secondary rolls embedded in the
primary eddy are observed. Note that for Ra = 10°, four secondary vortices are observed. Although not
shown, it is interesting to note that only two embedded vortices were resolved if the 33 x 33 mesh was
used. The result of the 65 x 65 mesh is about the same as that of the 129 x 129 mesh. No previously
reported results showed such resolution. This is probably due to the merits of the LSFEM: (1) no artificial
boundary condition for pressure is used: (2) no added artificial damping is employed; and (3) first-order
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Fig. 8. Contours of constant temperature of the simulated flow fields: (a) Ra = 10°; (b) Ra = 10% (¢) Ra = 10% (d) Ra = 10",

S

derivative variables such as vorticity and heat fluxes are discretized in the same order of accuracy as
velocities, pressure and temperature.

In Fig. 8, isothermal contours show steep temperature gradients near heat conducting walls. For
the case of large Rayleigh number, the overall heat transfer is enhanced by fluid motion. In vorticity
contours, Fig. 9, it is obvious that the distribution of vorticity profiles along walls is quite complex. In
general, vorticity and its derivatives along walls cannot be predetermined. Fig. 10 shows the contours
of the compressibility effect 8 for the four cases. # is of interest for physical interpretation and it can
be calculated by using Eq. (32) in a post-processing procedure. Note that, # is null along walls. That
is, the flow is incompressible on walls even though the flow field inside the enclosure is compressible,
This can be easily verified by inspecting Eq. (32), in which one can clearly see that the noslip condition
results in the incompressible wall condition. For lower Rayleigh number case, the compressible region is
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Fig. 9. Contours of constant vorticity of the simulated flow fields: (a) Ra = 107 (b) Ra = 10* (¢) Ra = 10°: (d) Ra = 10%,

larger than that of higher Rayleigh number case, and the centers of the compressible regions are away
from walls. For high Rayleigh number flow, the compressible region is restricted near the lower-left and
upper-right corners with steep gradients to both vertical and horizontal walls. This is the reason for
clustering the grid nodes near all four walls instead of just the two heat conducting walls.

For quantitative presentation, Figs. 11-16 show distributions of velocities, heat fluxes and temperature
along the central lines and walls for flow fields of four different Rayleigh numbers. For high Rayleigh
number flows, steep gradients developed near walls. In Figs. 13 and 14, for Rayleigh number 10° case, the
distributions of heat fluxes along vertical walls have kinks near the lower-left and upper-right corners of
the square enclosure. This phenomenon has also been observed for incompressible flow calculation using
the Boussinesq model for buoyancy effect. The data presented in Figs. 11-16 are selectively tabulated
in Tables 3-8 for easy access.
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Fig. 10. Contours of constant compressibility #: (a) Ra = 10°; (b) Ra = 10* (c) Ra= 105 (d) Ra = 10°,

Table 3

Velocity « profile along the vertical centerline

Y Ra = 10° 10 10° 108

1 000K (OO0 (00000 WEELLEY 0LOOCCKD
0.98500 0.02775 0.03861 (0.03306 0.02540
0.96863 0.05457 007587 0L.06578 005365
0.95077 0.0S000 011101 0.09709 0.08338
0.93129 0.10352 0.14318 0.12550 011186
0.91002 0.12456 0.17141 0.14914 0.13503
(LB86R2 0.14253 0.19469 0. 16603 0.14852
0.86150 0.15683 0.21207 0.17434 0.14929
(L8337 (. 16650 0.22264 0.17289 0.13704
0.80373 0.17205 0.22573 0.16152 0.11414
0.77083 0.17189 0.22085 0.14134 0.08478
0.73494 0.16593 0.20786 0.11476 0.05378

0.69577 0.15378 0.18694 0.0B8525 0.02614
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¥ Ra = 10° 10¢ 10° 108
0.65304 0.13511 0.15868 (L.O5687 0.00627
0.60641 0.10970 0.12416 0.03331 ~0.00378
0.55552 0.07744 0.08496 0.01653 0.00537
0.50000 0.03850 004282 000566 ~0.00175
0.44448 —0.00262 0.00256 —0.00254 0.00174
0.39359 ~(L04057 —0.03286 =0.01171 ~0.00127
0.34696 ~0.07404 ~(.06459 —0.02351 —0.01332
0.30423 ~0.10216 —0.09307 —0.03764 ~0.03161
0.26506 —(.12434 —(.11785 ~0.05296 — 005005
022917 ~0.14026 ~(1.13788 —0.06793 —~0.06378
0.19627 —0, 14980 —(L15199 ~(L0S0E4 ~0.07073
0.16613 —(.15301 ~(.15924 ~0.05000 —0.07047
0.13850 —0.15010 —(L15915 ~(.09413 —0.06385
0.11318 —0.14143 —0.15178 ~ 009269 —0.05336
0.08998 —(1.12747 —0.13766 —0.08590 ~0.04201
0.06872 ~(. 10880 ~0.11767 ~0.07451 —-0.03170
0.04923 —~0.08605 ~(LOA284 —0.05943 —0.02300
0.03137 —0.0598Y9 —(1.06429 ~0.04154 —~0.01549
0.01500 —~0.03099 =(L03304 -0.02154 —0L00818
0.00000 0.00000 AELEV] 000000 (L0000
Table 4

Velocity v profile along the horizontal centerline

X Ra = 10° 107 10° 10°
0.00000 0.00000 0.00000 (L0000 0. 0O000
0.01500 0.02601 0.06269 0.12068 0.17838
0.03137 0.05124 0.12028 0.21629 0.28123
0.04923 0.07532 0.17100 0.28093 0.30510
0.06872 0.09783 0.21287 0.30981 0.26473
0.08993 011833 0.24388 0.30196 0.19169
0.11318 0.13637 0.26224 0.26251 0.11659
0.13550 0.15147 0.26682 0.20282 0.05580
16613 0.16316 0.25759 0.13748 0.01423
0.19627 0.17100 0.23596 0L.07942 ~0.00819
0.22917 0.17458 0.20487 003604 —0.01494
0.26506 (0.17351 0.16838 (LOOBES -0.01256
(0.30423 0.16747 0.13083 ~(L00529 ~0.00756
0.34696 0.15612 0.09587 -0.01078 ~0.00328
0.39359 0.13911 0.06570 =0.01174 =0.00111
(144448 0.11595 0.04082 —0.01085 ~0.000349
0.50000 0.08592 0.02014 ~ 0026 000041
(L.55552 0.05131 0.00260 —-0.00733 ~0.00081
0.60641 0.01582 —0.01389 ~(.00523 —=0.00106
(0.65304 ~0.01949 =0.03201 —-0.00320 0.00002
0.69577 —-0.05350 ~0.05347 —0.00199 0.00251
(.73494 —0.054N) =0.07909 =0.00315 0.00543
0.77083 —-0.11234 ~0.10874 —0.00913 0.00724
(.80373 ~0.13450 —0.14117 ~0.02300 0.M543
(LE3387 —-0.15019 -0.17382 ~0.04755 ~0.00160
0.86150 ~0.15850 —0.20306 ~ 008398 =0.01560
(1L.58682 —0.15884 —=0.22458 ~0.13032 004115
(.91002 ~0.15097 —0.23401 ~0.17988 —0.08491
(0.93129 —~0.13498 -0.22749 ~0.22100 ~(.14941
0.95077 -0.11124 —0.20214 —~0.23840 —0.22235
0.96863 —0.08033 ~0.15617 -0.21622 ~(.26583
(L.98500 —0.04298 ~().OE8R2 ~0.14060 —(.21647
1.00000 0.00000 0.00000 0.00000 (OO0
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Table 5

Temperature profile along the top insulated wall

X Ra = 107 107 10 10®
0.00000 160000 1.60000 160000 160000
0.01500 1.58663 1.58712 1.58234 1.56896
003137 1.57205 1.57311 1.56343 1.53724
0.04923 1.55617 1.55795 1.54352 1.505%
0.06872 1.53890 1.54164 1.52289 1.47563
0.08998 1.52012 1.52421 1.50172 1.44718
0.11318 1.49974 1.50568 1.48019 1.42082
(0, 13850 1.47763 1.48612 1.45845 1.39701
0.16613 1.45368 1. 46558 1.43671 1.37556
0.19627 1.42774 1.44419 1.41531 1.35573
(.22917 1.39963 1.42207 1.39461 1.33868
026506 1.36914 1.39940 1.37486 1.32318
030423 1.33595 1.37631 1.35627 1.31007
0.34696 1.29963 1.35290 1.33890 1.29879
0.39359 1.25954 1.32912 1.32292 1.28912
0.44448 1.21470 1.30477 1.30842 1.28123
0L50000) 1.16361 1.27918 1.29519 1.27437
(.55552 1.10910 1.25318 1.28371 1.26884
060641 1.05489 1.2269%6 1.27380 1.26407
0.65304 1.00054 1.19855 1.26450 1.25964
0.69577 0.94595 1.16614 1.25475 1.25521
0.73494 0.89125 1.12824 1.24322 1.25089
0.77083 0.83681 1.08375 1.22830 1.24615
(LB0O3T3 0.78310 1.03201 1.20789 1.24086
(.83387 0.73065 0.97300 1.17933 1.23495
0.86150 0.67998 0.90732 1.13946 1.22764
0.88682 0.63155 0.83616 1.08451 1.21587
0.91002 0.58571 0.76127 1.01131 1.19209
0.93128 0.54270 0).68466 0.91758 1.14328
0.95077 0.50264 (.60846 0.80368 1.04947
0.96863 0.46555 (1L,53460 0.67382 0.89032
0.98500 (0.43138 0.46472 0.53567 0.66018
100000 0.40000 0.40000 0.40000 0.40000
Table 6
Temperature T profile along the bottom insulated wall

X Ra = 109 104 10° 10
000000 160000 1.60000 160000 160000
(LO1500 1.57059 1.52996 1.43504 1.26622
0.03137 1.53851 1.45388 1.26157 0.96758
0.04923 1.50353 1.37187 1.08975 0.76437
0.06872 1.46541 1.28456 0.93391 0.65989
(0.08998 1.42393 1.19329 0.80649 061718
0.11318 1.37885 1.10021 0.71404 0.60264
0.13850 1.33002 1.00824 0.65391 0.59821
0.16613 1.27733 0.92092 0.61775 0.59676
0.19627 1.22079 (.84188 (.39688 0.59641
0.22917 1.16058 0.77398 0.58449 0.59625
0.26506 1.09708 0.71861 0.57635 0.59711
0.30423 1.03092 0.67545 0.57005 0.59940
0.34696 0.96302 0.64284 0.56470 0.60292
00.39359 0.89457 0.61837 0.55926 0.60390
0.44448 0.82692 0.59941 0.55351 0.60131
0.50000 0.76146 0.58336 0.54732 0.59440

0.55552 0.70415 0.56924 0.54100 0.58681
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Table 6 (continued)

X Ra = 109 10° 10° 108
0.60641 0.65795 0.55650 0.53459 0.57887
(.65304 0.62010 0.54425 052789 0.57443
0.69577 0.58847 0.53213 0.52061 057179
0.73494 056153 0.52004 0.51266 0.57058
0.77083 0.53815 0.50797 0.50390 0.56871
0.80373 0.51754 0.49591] (L.49457 0.56438
0.83387 0.49913 (L48397 (L 48480 0.55730
0.86150 0.48252 0.47219 047463 0.54682
0.88682 0.46743 0.46065 0.46432 0.53415
0.91002 0.45365 0.44939 0.45414 0.51913
0.93128 0.44102 0.43850 044412 0.50371
0.95077 0.42942 0.42802 0.43381 0.48539
0.96863 041877 0.41805 0.42294 0.46410
(L.98500 0.40898 0.40871 041170 0.43669
100000 0.40000 0.40000 0.40000 0.40000
Table 7

Heat conduction g, distribution along the left hot wall

I 4 Ra = 1P 10¢ 10° 10"
1.00000 0.03362 0.01039 0.00372 0.00150
0.98500 0.03363 0.01041 0.00375 0.00154
0.96863 0.03368 0.01048 0.00383 0.00167
0.95077 0.03376 0.01062 0.00400 0.00196
093128 0.03390 0.01085 0.00430 0.00240
0.91002 0.03411 0.01120 0.00477 0.00298
0.88682 0.03444 0.01173 0.00544 0.00363
0.86150 0.03491 0.01248 0.00631 000430
(.83387 0.03556 0.01350 0.00741 0.00498
0.80373 0.03647 0.01484 0.00869 0.00565
0.77083 0.03768 0.01658 0.01016 000633
0.73494 0.03926 0.01873 001179 0.00703
0.69577 0.04129 0.02135 0.01358 0.00777
0.65304 0.04383 0.02443 0.01552 0.00859
0.60641 0.04692 002800 0.01761 0.00955
055552 0.05057 0.03204 0.01987 0.01070
0.50000 0.05473 0.03652 0.02235 0.01206
044448 0.05890 0.04097 0.02489 0.01353
0.39359 0.06255 0.04493 0.02735 0.01497
0.34696 0.06562 0.04835 0.02974 0.01636
0.30423 0.06810 0.05121 0.03204 0.01766
(1.26506 0.07004 0.05352 0.03423 0.01893
0.22917 007148 0.05529 0.03626 0.02017
0.19627 0.07250 0.05654 0.03809 0.02144
0.16613 0.07319 0.05731 0.03970 0.02271
(0.13850 007361 0.05765 0.04103 0.02405
0.11318 0.07385 0.05765 0.04198 0.02544
(.08998 0.07396 0.05738 0.04252 0.02693
0.06872 0.07400 0.05695 0.04259 0.02837
0.04923 0.07399 005646 0.04220 0.02941
0.03137 0.07397 0.05603 0.04146 0.02957
0.01500 0.07395 0.05573 004066 0.02876

000000 0.07394 0.05563 0.04029 0.02797
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Table 8
Heat conduction g, distribution along the right cold wall
Y Ra = 10° 104 10° 10
10000 0.07890 0.05130 0.03439 0.02670
0.98500 0.07896 0.05150 0.03486 0.02778
0.96863 0.07914 0.05198 0.03558 0.02826
0.95077 0.07939 0.05257 0.03612 0.02720
093128 0.07967 0.05315 0.03634 0.02555
0.91002 0.07992 0.05365 0.03625 0.02402
0.88682 0.08007 0.05399 003585 0.02280
0.86150 0.08005 0.05413 0.03521 0.02163
0.83387 0.07978 (.05402 0.03442 0.02073
0.80373 0.07916 0.05366 0.03353 0.01975
0.77083 0.07811 0.05298 0.03258 0.01900
0.73494 0.07652 0.05194 003153 001814
0.69577 0.07430 0.05048 0.03038 0.01743
0.65304 0.07135 0.04857 0.02906 001647
0.60641 (L.OGTSE 0.04616 0.02761 0.01566
0.35552 (.06294 0.04321 0.02596 0.01440
(0.50000 0.05741 0.03971 0.02412 0.01338
(.444458 0.05158 0.03592 0.02223 0.01187
(L39359 0.04617 0.03222 0.02043 0.01085
(.34696 0.04131 0.02865 0.01876 0.00945
0.30423 0.03707 0.02523 0.01714 0.00861
0.26506 003348 0.02199 (.01554 0.00750
0.22917 0.03053 0.01897 (0.01395 0.00698
0.19627 0.02819 0.01621 0.01237 0.00607
0.16613 0.02639 0.01375 0.01080 000554
0.13850 0.02505 0.01165 0.00927 000506
0.11318 0.02410 0.005996 000780 0.00456
0.08998 0.02345 0.00867 0.00644 0.00399
0.06872 0.02304 0.00775 0.00525 000329
0.04923 0.02280 0.00717 0.00433 0.00235
0.03137 0.02267 000683 0.00374 0.00136
0.01500 0.02261 0.00667 0.00344 0.00070
0.00000 0.02260 0.00663 0.00336 0.00054
1.0 ' - .
P
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Fig. 11. Velocity u distribution along the vertical centerline.
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Fig. 12. Velocity v distribution along the horizontal centerline.
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Fig. 15. Heat flux g, distribution along the left hot wall.
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Fig. 16. Heat flux g, distribution along the right cold wall.

5. Concluding remarks

In this paper, we have reported the development of a LSFEM for simulating compressible, viscous
buoyant flows at low Mach numbers. In order to use the LSFEM. the flow equations are reduced to first
order by introducing variables such as vorticity and heat conduction fluxes. In the vector analysis notation,
the first-order equation set is cast to two div—curl and one div—curl-grad systems. The classification of
the equations is facilitated by introducing a dummy variable and we proved that the system is elliptic.
As such, the required boundary conditions become veritable and the formulation is suitable for LSFEM
solution. Since the coefficient matrix of the LSFEM method is always symmetric and positive-definite,
the inversion of the coefficient matrix was carried out by an element-by-element JCG method. As
an numerical example, buoyancy-driven flows inside a square enclosure are calculated. The LSFEM
crisply resolves the the asymmetric flow features of the compressible buoyant flows, which cannot be
obtained b solving the incompressible flow equations with the Boussinesq model. For Rayleigh number
one million, four secondary vortices were observed embedded in the the primary vortex. The accuracy
of the simulated result was verified by comparing the calculated Nusselt number with Chenoweth’s data,
by a mesh refinement calculation and by the energy conservation check. The present result indicates
that the LSFEM is a viable method for calculating multi-dimensional, low-Mach-number, compressible,
buoyant flows.
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