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The solution of the unsteady Euler equations by a sixth-order compact difference scheme combined with a
fourth-order Runge-Kutta method is investigated. Closed-form expressions for the amplification factors and
their corresponding dispersion correlations are obtained by Fourier analysis of the fully discretized, two-dimen-
sional Euler equations, The numerical dissipation, dispersion, and anisotropic effects are assessed. It is found
that the CFL limit for stable calculations is about 0.8. For a CFL number equal to 0.6, the smallest wavelength
which is resolved without numerical damping is about six-eight grid nodes. For phase speeds corresponding to
acoustic waves, the corresponding time period is resolved by about 200-300 time steps. Three numerical
examples of waves in compressible flow are included: 1) sound propagation in a duct with linear shear, 2) linear
wave growth in a compressible free shear layer, and 3) vortex pairing in a compressible free shear laver perturbed

al two frequencies.

Introduction

ALCULATION of unsteady flows is of interest because

of the applications such as aeroacoustics, flow instabil-
ity. and direct simulation of turbulent flows. The present
paper addresses the numerical issues of simulation of unsteady
flows using standard high-order schemes, namely, compact
difference for spatial discretization and Runge-Kutta method
[or time marching.

In Ref. 1, Lele presented various forms of compact differ-
ence schemes for applications such as interpolation, filtering,
and evaluating high-order derivatives. In previous work,” Yu,
Tsai, and Hsieh concentrated on the solution of the Euler
equations using various combinations of the compact differ-
ence (CD) schemes and the Runge-Kutta (RK) methods, and
the numerical characteristics were assessed by Fourier analysis
of a fully discretized, one-dimensional wave equation. The
researchers found significant improvement of the numerical
accuracy by using the fourth- or sixth-order compact differ-
ence schemes compared to the conventional second-order cen-
tral difference scheme. In addition, an increase of the order
of the RK time marching enlarges the Courant-Friedrichs-
Lewy (CFL) limit for stable calculations.

In this paper, we report a further study of the numerical
characteristics when using the sixth-order compact difference
(CD6) scheme combined with a fourth-order Runge-Kutta
method (RK4) to solve the two-dimensional Euler equations.
For multidimensional simulations, anisotropic effects, in ad-
dition to the dissipation and dispersion errors, must be as-
sessed to estimate the accuracy of the numerical scheme. In
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contrast to the one-dimensional case, however, no similarity
transformation is available to decouple the two-dimensional
Euler equations. Consequently, we here apply Fourier analysis
directly to the fully discretized, two-dimensional Euler equa-
tions. As a result, closed-form expressions for the amplification
factors are derived and used to assess the numerical accuracy
in terms of dissipation, dispersion, and anisotropic errors.

In the following sections, we first discuss the employed
numerical methods. The flow equations discretized by the
numerical method are then assessed by the Fourier analysis, in
which a closed form of the amplification factor is derived and
the dissipation, dispersion, and anisotropy effects are esti-
mated, Finally, to demonstrate the performance of the numer-
ical method, three numerical examples are included in the
present paper: sound waves in a duct with linear shear, linear
spatial wave growth in a compressible free shear layer, and
nonlinear roll up of a compressible free shear layer, In all
cases, the numerical simulations show favorable comparison
in the linear regime to the correspending solution of the com-
pressible Rayleigh stability equation. For the nonlinear wave
motions, the numerical solutions show crisp resolution of the
vortex roll up and pairing.

Numerical Method

The two-dimensional Euler equations in Cartesian coordi-
nates can be cast into a vector form:
aQ dE OF
Lt =S o R
dr  dx  dy
where @ is the unknown vector and E and F are inviscid fluxes
in the x and y directions, respectively. A RK4 method is
applied as the temporal discretization and a CD6 scheme is
applied to the spatial discretization.
The adopted RK4 method has been used by Jameson et al.?
to solve the flow equations. The algorithm is given by

(1
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The superscripts 1, 2, and 3 denote intermediate steps of the
RK method. R’ is the numerical value of 3E/dx + aF/dy
calculated from the flow properties at step {. The algorithm is
fourth-order accurate for nonlinear equations and is suitable
for the calculations of unsteady flows.

A CD6 scheme is used to spatially discretize the inviscid
fluxes. According to Hermite's generalization of the Taylor’s
series, one can write

Wy + 3ul

1
= E (U .2+ 2_81_{,'; P= 280 — )+ @[h ﬁ} (3)

where u is any flow property, the prime represents a spatial
derivative, and A is the step size. The present treatment of the
transverse and downstream boundary conditions is similar to
that in Ref. 2, namely, the fourth-order compact scheme is
used at locations one grid node away from the boundary, and
a third-order one-sided biased difference scheme is used at the
boundary. The one-sided difference scheme incorporates the
method of characteristic (MOC) type nonreflecting boundary
condition.>® In addition, the numerical grids are stretched
near the boundaries to enlarge the computational domain and,
as a consequence, the nonreflection effect is enhanced. The
application of the CD6 scheme with the aforementioned
boundary conditions involves the inversion of a scalar tridiag-
onal matrix. The inversion of the matrix incurs little penalty in
terms of CPU time.

Fourier Analysis

Fourier analysis of a two-dimensional, finite difference
scheme assumes that the solution is periodic over an infinite
domain with the spatial period equal to the computational
domain (L, and L,) in the x and y directions, respectively. The
computational domain is decomposed into K, and K, grid
nodes in the x and y directions, respectively. The harmonic
content of the discretized equation is limited to the number of
grid nodes used in the computational domain. A discrete
solution @) at a location (/, j) and time (1) is a linear combi-
nation of K, times K, wave modes. Fourier analysis is per-
formed by substituting each wave mode of the discrete Fourier
expansion into the discretized Euler equations to calculate the
amplification matrix G(p,q), which is defined as

Q" Y (p.q)=G(p,a)Q"(p.q) 4)

where @ denotes the Fourier component of the object function
Q and p and g are the wave numbers in the x and y directions,
respectively. The amplification factors ol the numerical
scheme are given by the eigenvalues of G, which can simply be
obtained by diagonalization of G. The procedure is repeated
for all wave modes, and the amplification factors over the full
spectrum of the wave numbers are obtained. In this process,
we map the function @ defined by the spatial coordinates x
and y on the domain of [~ L,/2, L./2]and |- L,/2, L,/2] to
the wave number range on [—, ] for both p and g. Because
ol symmetry properties, the results of the Fourier analysis
need only be presented in the first quadrant of the (p,q)
plane.

To proceed, the generalized form of the amplification ma-
trix. G for the RK4 method can be expressed as

1 | 1

) = Z4+=Fr -7+ — 7" 5
G=lid g Big B toy %
where [ is the identity matrix. Z is the Fourier component
of the spatial discretization applied to the convective terms
(—dE/dx — aF/dy) in the wave number space. To evaluate

Z, we expand the inviscid fluxes £ and F by the chain rule,
such as

OE _OE3Q 30

ax 80 ax | ox
aF _OF3Q _ 30
ay  aQ ay  ay

(6)

where 4 and B are the Jacobian matrices of the inviscid fluxes.
Because the analysis is linear, we linearize Eq. (6) by assuming
that 4 and B are constant. In Ref. 2, the discrete Fourier
transformation of d@/dx and dQ /Ay are given by

F(@) e L [4 sin( p) cos(p) + 56 sin( p)]Ati
ax/) T 12[2 cos(p) + 3]Ax

90N, _
F(.ay)_ %=

where i =+ — 1 and F(dQ /dx) is the Fourier transformation
of the spatially discretized @ /dx and is defined as —Z,. Asa
result, Z can be represented as

(7
_ [4sin(g) cos(g) + 56 sin(g)]Ad

12[2 cos(q) + 3]Ay

Z=AZ,+BZ, (8)

Combination of Egs. (3), (7), and (8) then gives an expression
for the amplification matrix in terms of p and g.

To diagonalize G, and thus to obtain its eigenvalues, i.e.,

the numerical amplification lactors of the adopted numerical
scheme, we perform a similarity transformation of G, namely

1
T-'GT =1+ T‘lZT+;{T“ZT)3
+1(T“ZT)5+ L{T"ZT’}" &)
6 24

The matrices T ! and T which diagonalize & are given by

1 0 0 —1/¢?
0 61 — 0
-l.= 1
T 0 aNZ  BNZ  1/(V2pc) (10

0 —a/NZ —B/v2 1/(V2pc)
10 p/V2e) p/(V2¢)
0 B /N2 —a/V2

T= = = 11

0 —a BNZ —BN2 an
0 0 pc/NZ  peh2

whiere p is density, ¢ is the speed of sound, & = Z, /(Z2 + Z2)",
and §=Z,/(Z} + Z})". The fth row of T~!is the fth left
eigenvector of G, corresponding to the eigenvalue g;. Finally,
the amplification factor g;is

| 1 1
= =R — e

where /=1, ..., 4 and A, is the {th eigenvalue of the matrix
Z,A + Z,B which is also diagonalized by T-!and T, and are
given by

M=Zu+ Zy
MN=Zau+ Zy
(13)
MN=Zau+ Zy+ ((Z;.’ 4 Z_s)l.":

N=Zau+ Zy - (22 + 21"
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Equation (13) shows that there are only three distinct amplifi-
cation factors representing three kinds ol numerical waves
propagating in the dispersive numerical medium, namely, gy 2
g5, and g, waves, As shown in Eqgs. (12) and (13), g, ; repre-
sents the numerical waves simulating the flow velocity. Specif-
ically, the velocity vector (1, v) is modulated by a inner prod-
uct with the vector (Z,, Z,) due to the spatial discretization.
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CALCULATIONS OF WAVES IN FLUID FLOWS

The numerical wave is further modulated by substituting the
inner product into Eq. (12) for the RK4 method to obtain the
amplification factors. Similarly, g; and g, waves are the nu-
merical counterparts of the acoustic waves superimposed on
the flow motion. Unlike the flow velocity waves, however, the
acoustic waves propagate in all directions from a moving
source and the phase speed ¢ is modulated by the factor
(Z2 &= Z2y.

The amplification factors can be written in the form

2(p,q) = lg(p,g)ler?d (14)

and we can make the following interpretations:

1) Artificial dissipation: The lgi(p.q)| represents the nu-
merical amplification, i.e., when lg | = 1, the scheme is un-
stable. For calculations of unsteady flows, we want lg| to be
less than and close to unity to ensure numerical stability with
minimum artificial dissipation. We will show lg(p,q)l
against p and ¢ to illustrate the artificial dissipation.

2) Artificial dispersion: The a( p,q) represents the artificial
dispersion. We will show contours of constant « hereafter to
indicate phase velocities which in turn are used to estimate the
artificial dispersion.

3) Artificial anisotropy: Certain directions of wave propa-
gation will be favored by the numerical scheme. Changes of
the flow direction (z and v) allow us to assess the anisotropy
of ¢,,. For the simulated acoustic (gs.4) waves, the flow
velocity is turned off when assessing their isotropy.

Figure 1 shows the artificial dissipation of three different
numerical waves represented by lg;sl, lgsl, and lg4l. To
obtain the numerical values, u, v, and ¢ are specified. Here, u
is set to be equal to v and the flow velocity is at 45 deg to the
coordinate axes. The magnitude of the flow speed is set to be
equal to ¢, i.e, M = 1. As shown in Fig. 1, there is negligible
dissipation of lg; .| and lgsl. On the contrarv, lgsl shows
significant dissipation at moderate wave numbers. The min-
ima of |gy 14! are 0.98, 0.51, and 0.99, respectively. There-
fore, acoustic waves propagating along the same direction as
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Fig. 1 Dissipation ol the CD6-RK4 scheme for CFL = 0.6.
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the flow motion suffer from the worst dissipative error. For
lower speed flows (M = 1), the dissipation effect is less severe
and the minimum of |g;| is larger than 0.51. As a contrast, for
supersonic flows, more dissipation in the flow direction is
anticipated as compared to that shown in Fig. 1. As a result,
we defined the critical CFL number by

CFL( = ma.xl IZ‘-H = 'Z."“ -+ c(z“-’ + le}',_l

At
—_——— 15
NAx? + Ap? 43

For this case, CFL, is 0.6. In Fig. 1b (dissipation of g;),
there is negligible dissipation in the low wave number region,
i.e., p,g = =/3. This region corresponds to waves with wave-
lengths greater than six grid nodes. Note that little dissipation
is also observed in the other three corners of the same plot.
For example, for p,g =« which is wave resolved by two grid
nodes (or even-odd wave) in both the x and y directions, there
is essentially no artificial dissipation. Later on, we shall show
that these waves are undesirable due to significant dispersive
errors. Although not shown, it is noted that for CFL, greater
than 0.8, lgi(2,q)! becomes larger than unity at certain p and
¢ and the calculation is numerically unstable. Therefore, the

|Zu + Zyy — (22 + Z0)"1) x

=]

¢ esforu=vandc= u?+y?

CFL, limit is 0.8 and a value between 0.5 and 0.7 is recom-
mended for accurate calculations. Although the current calcu-
lation assumes that the Mach number is unity, it is noted that
the stability criterion remains approximately the same for
other flow speeds.

Figure 2 shows constant o contours by which numerical
phase velocities can be interpreted. The phase velocity vectors
point in the direction normal to the contours. The distance
between the consecutive contours is an indication of the mag-
nitude of the phase velocity; an increase of the distance is a
decrease of the phase velocity and vice versa. Fieure 2a shows
the phase velocities of the g, » waves, i.e., flow velocity waves.
In this case, the llow direction is 45 deg. The region in which
the phase velocities are correctly simulated by the numerical
scheme is circumscribed by a dashed line. Outside this region,
the phase velocities are in erroneous directions. Similar to the
dissipation error, there is little dispersive error for p,g = n/3.
To assess the anisotropic effect, Fig. 2b shows the phase
velocities of the g, > waves at 22.5 deg to the x axis. Inside the
dashed line, the waves are well resolved. Again, in the low
wave number region (p,q = 7/3), there is little dispersive
error. Figures 2c¢ and 2d show the phase velocities of the
simulated acoustic waves superimposed on the flow stream at
45 deg.

]

d) ayforu=vandc= u?+v?

Fig. 2 Dispersion of the CD6-RK4 scheme for CFL = 0.6.
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Fig. 3 Dispersion characteristics of the acoustic waves using the
CD6-RK4 scheme for CFL = 0.6.

Perhaps it is helpful to temporarily turn off the flow veloc-
ity to observe the acoustic velocities alone as shown in Fig. 3.
Theoretically, the propagation of the acoustic waves is
isotropic and is depicted by circular contours of constant a.
Again, the well-resolved region is circurnscribed by a dashed
line; outside the dashed line, acoustic waves propagate in the
wrong directions with erroncous magnitude. For long wave-
lengths (at least six grid nodes), little preference of the propa-
gation direction of the acoustic wave is observed; there is no
evidence of any anisotropic error. Outside the circumscribed
region, however, the figure shows an increase of separation
between contours along the coordinate axes to a maximum,
followed by a decrease. This indicates that the acoustic waves
of moderately high wave numbers propagate too slowly along
the numerical grid lines. At very high wave numbers, the
acoustic waves travel in the opposite direction than they
should.

As was discussed earlier, the CD6-RK4 scheme has no dissi-
pative effects at the high wave numbers. However, significant
dispersive and anisotropic errors are associated with these
wave numbers. Throughout the course of 2 numerical simula-
tion, these high-wave-number waves propagate with erroneous
directions and phase speeds, and will eventually destroy the
solution. Therefore, it is appropriate to impose a small
amount of high-order artificial damping to filter out these
waves, at the same time keeping the resolution at low wave
modes intact. The eighth-order artificial damping, defined as

A.D. Zg [—tps— g+ 8ty — H;_g)

— 28U 2+ Wy—2) + 56(u 41 + 1 1) — T0U;] (16)

is recommended. In the present applications, = 0.003 is used.

Numerical Examples
Sound Waves in a Duct with Linear Shear

Our first example is that of a forced sound wave propagat-
ing in a two-dimensional duct with linear shear and constant
mean temperature. The corresponding linearized problem has
been addressed by Pridmore-Brown.® Previously, a similar
calculation was carried out by Hsieh” using another finite
difference scheme. For a constant mean temperature, the com-
pressible Rayleigh equation can be expressed as

d’h  2xM’ dp

it o, - M -@1p=0 ()

where M = M U(y), k = Miw /NT,, k =NT,/Mc, and T, is
the constant mean-flow temperature. M(y) is the local Mach
number of the mean flow: k and 1/ are the angular frequency
and the phase speed, both made nondimensional using the
speed of sound as reference velocity. Equation (17) is to be
solved subject to the boundary conditions

d
—‘a=0 at y=0 and y=1 (18)
dy

For a given angular frequency k, Pridmore-Brown® solved the
preceding eigenvalue problem using an asymptotic procedure
valid for small x. In this report, we numerically solve the
eigenvalue problem by using a finite difference method in-
stead. Briefly, by using second-order central difference ap-
proximations for the derivatives in Eq. (17) and second-order
forward and backward difference approximations in Eq. (18),
the problem is converted into a matrix eigenvalue problem of
the form

[AYof + KIALS + FALS + ElALf=0 (19)

where [4]; (i =0, ..., 3) are P x P coefficient matrices and
the elements of the column vector f represent the discrete
solution at the grid points. Equation (19) is a polynomial type
matrix eigenvalue problem. We used the standard QZ al-
gorithm to calculate the eigenvalues & (i=1,..., P). The
numerical convergence was checked by doubling the number
of grid nodes.

For the present comparison with the numerical simulation,
the Mach number distribution of the mean flow was taken to
vary linearly from null to a half across the stream. With
k = 2, the eigenvalue corresponding to the lowest mode of
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Fig. 4 Theoretical eigenfunction components p* and v’ for acoustic
waves in a duct with linear shear.,
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propagation was found to be x = 0.8427358. The streamwise
wavelength of the forced perturbation is then 1/x (about 1.19
channel heights). The streamwise length of the computational
domain was selected to be five channel heights and the whole
domain was subdivided into 200 x 40 uniformly distributed
grid nodes. The maximum magnitude of the perturbation was
taken to be one one-hundredth, Figure 4 shows the eigenfunc-
tion components corresponding to the pressure and velocity
perturbations as functions of y. These cigenfunctions in con-
junction with the prescribed frequency k were used as the
upstream perturbation for the computational fluid dynamics
(CED) calculation. Figure 5 shows the reconstructed eigen-
functions of p’ at two, three, and four wavelengths down-
stream of the forced perturbation. In the figure, the solid line
is the theoretical linear solution. Less than a 5% error is
observed at the farthest downstream location. We also observe
much larger pressure fluctuations near the lower wall; this can
be interpreted as refraction by the mean-flow gradient.

Linear Wave Growth in a Free Shear Layer

A free shear layer is composed of two flow streams in the
same direction but with different speeds, Small upstream per-
turbations are selectively amplified by the free shear layer and
grow exponentially in the linear regime. These spatially grow-
ing instability waves cause vortex roll up and merging at the
further downstream of the flow development.

The flow properties of the fast stream are used here as
reference scales and all properties have been nondimensional-
ized accordingly in the following equations. In addition, the
length scale is taken as 6/2 where & is the vorticity thickness
and is defined as

dU,
6= (Ulﬂl = U_‘__‘}/( )max [20]
d)’* !

where the star denotes the dimensional properties.

For a sufficiently large value of the Reynolds number, the
mean-flow pressure can be assumed uniform across the shear
layer and the mean-flow velocity in the transverse direction ¥
can, for the purpose of analyzing the unsteady motion, be set
to null. A reasonable model for the streamwise mean-flow
velocity distribution is provided by

. 1+ Rtanhy )
U y)y=——77" 21
(») =% (21)
where R = (Uy — Usg)/ (U + Usy) is commonly known as
the velocity ratio of the shear layer. For simplicity, the Prandtl

o —— Theoretical Solution
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O 2 wave lengths.

3 wave lengths

ﬁ%i o 4 wave lengths.
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Fig. 5 Reconstructed eigenfunction of p ' from the CDF results us-
ing the CD6-RK4 method for acoustic waves in a duct with linear
shear.

Theoretical Envelope

In |t}

Fig. 6 Instantaneous distribution of |u ' | along the center line of the
free shear laver.

number is taken to be unity and the mean-flow temperature
distribution can then be obtained from the Buseman-Crocco
relationship.®

In this case, a shooting method was used to obtain the
spatial eigenvalues of the Rayleigh stability problem. The
mean-flow conditions are M, = 1.5, R =0.15, and T>= 1.85,
and the boundary condition is that p remains bounded as

¥— + oo, The solution provides a set of viable data of «; for

the corresponding w.

We choose the case of w=0.10101, with the corresponding
growth rate of ey = —0.012445, for the CFD calculation. The
chosen w and the corresponding eigenfunction components are
used as the imposed harmonic perturbation at the upstream
boundary. Note that the eigenfunctions are complex and,
therefore, the upstream perturbation is of the form,

¢ = 3. (¥) cos (wr) — d;(¥) sin (wt) (22)

where ¢ " represents « ', v', p’, or p’. Because there are four
governing equations, only four boundary conditions need to
be prescribed for the numerical simulation. The fluctuations
of other flow properties at the upstream boundary, e.g., tem-
perature, are automatically contained in the equation set. The
magnitude of the perturbation is set by specifying the trans-
verse maximum rms value of the streamwise velocity perturba-
tion, and this magnitude is taken to be one thousandth.

The computational domain is divided into a 700 % 70 mesh.
The flow domain along the streamwise direction covers about
six wavelengths of the imposed perturbation. The numerical
arid is clustered in the transverse direction near the center to
provide high resolution of the flowfield. Figure 6 shows an
instantaneous distribution of |« “| along the center line of the
shear layer. The abscissa is the normalized streamwise distance
and the ordinate is the normalized lu ‘| plotted in natural log
scale. As shown in the figure, the growth rate of the wave is
linear (in the log scale) and the envelope slope is within 3% of
the spatial growth rate (— ;) predicted by the linear stability
theory. Because the imposed upstream harmonic perturbation
is an eigenfunction of the linear spatial stability problem, the
linear exponential growth of the disturbance in the numerical
simulation starts from the very beginning of the computa-
tional domain; no transitional region is observed in the vicin-
ity of the upstream boundary.

Figure 7 shows the normalized modulus of the reconstructed
eigenfunction components » * and p’ at various downstream
locations compared to the corresponding prescribed quanti-
ties. Note that sach component has been normalized sepa-
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Fig. 7 Reconstructed eigenfunction components " and p * from the
CFD resulis for the compressible shear layer,

Linear Solution

In 5]

Fig. 8 Fourier coefficients of the unsteady motion in a compressible
free shear layer perturbed by the most unstable mode al a magnitude
of one thousandth.

rately here by its maximum value. It is obvious that the CD6-
RK4 finite difference method faithfully preserves the
functional shape of the original perturbation.

Rollup of a Compressible Free Shear Layer

The mean-flow conditions for the present calculation are
taken to be the same as in case 2, The angular frequency
of the imposed disturbance at the upstream boundary is
taken to correspond to the most unstable mode, however.

Thus, « = 0.389 which corresponds to a spatial growth rate
a; = —0.026067. First, a magnitude of one one-thousandth is
used to verify the linear growth (in the natural log scale) of the
instability wave. By doing so, two particular conditions in the
unstable angular frequency range, one corresponding to a
relatively long wave mode (case 2) with a moderate growth
rate and the other to the most unstable mode, are used 1o
demonstrate or assess the accuracy of the finite difference
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Fig. 9 Reconstructed eigenfunction components 1 " and p ' from the

CFD results for the free shear layer perturbed by the most unstable
mode.

Linear Solution

In |

Fig, 10 Fourier coefficients of the unsteady motion in a compress-
ible free shear layer perturbed by the most unstable mode at a magni-
tude of one hundredth.
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Fig. 11 Contours of constant vorticity of the simulated free shear
layer perturbed by the most unstable mode at a magnitude of one
hundred(h.

Fig. 12 Fourier coefficients of the unsteady motion in a compress-
ible free shear layer perturbed by the most unstable mode and ifs
subharmonic.

Fig. 13 Contours of constant vorticity of the simulated free shear
layer perturbed by the most unstable mode and its subharmonic.

scheme in simulating linear waves. Second, we increase the
magnitude of the perturbation to illustrate the vortex rollup.
Finally, the subharmonic of the most unstable mode is im-
posed in addition to the most unstable mode at the upstream
boundary. As in the single-frequency case, the transverse
structure of the upstream harmonic forcing is given by the
corresponding components of both the fundamental and sub-
harmonic linear eigenfunctions to ensure that no undesirable
perturbation is introduced into the system.

Figure 8 shows the streamwise variation of the Fourier
coefficients of w * along the center line of the free shear layer
obtained by a spectral analysis of the numerical simulation.
This figure clearly shows the linear growth (in the natural log
scale) of the most unstable mode in the initial phase of the
flow development. The slope of the curve compares favorably
with the theoretical linear growth. At the further downstream
nonlinear stage of the flow development, higher harmonics are
generated as a prelude to the vortex rollup and, in addition,
the growth of the fundamental mode stalls, Figure 9 shows the
reconstructed distributions of «* and p * as compared to the
corresponding theoretical linear eigenfunctions at downstream
stations. For the streamwise location at 10 wavelengths, the
flow is weakly nonlinear and the disturbance shows some
deviation from the linear-theory prediction.

Figure 10 shows the streamwise variation of the the Fourier
coefTicients of u#' with the larger forcing magnitude of one
hundredth. The linear growth of the instability wave is now
limited to a region in the vicinity of the upstream boundary.
At the further downstream stations, the shear layer has rolled
up as can be seen in Fig. 11, where constant-vorticity contours
are plotted. The nonlinear redistribution of the unsteady vor-
ticity that occurs during the roll-up process alters the energy
transfer from the mean flow to the disturbance and is thus
responsible for the saturation of the instability-wave ampli-
tude seen in Fig. 10. In addition, at x = 160, all three har-
monic modes experience significant reduction. This is an indi-
cation of the onset of the strong nonlinear mechanism, in
which the background flow used for the eigenvalue problem is
severely distorted. Consequently, the flow energy is dis-
tributed to other Fourier modes, which are unrelated to the
original eigenvalue problem.

Finally, a two-frequency perturbation is imposed at the
upstream boundary. The magnitudes of both the fundamental

and its subharmonic are set to be one hundredth and the phase
difference between the two components were taken to be zero.
Figure 12 shows the streamwise variations of the Fourier coef-
ficients of # " corresponding to the fundamental (w), second
harmonic (2w), and subharmonic (w/2). The growth rates of
both the fundamental and its subharmonic accurately mimic
the theoretical results in the initial linear region. Compared to
Fig. 10, Fig. 12 shows an earlier appearance of the 2w har-
monie. This is indicative of an earlier rollup in this case.
Figure 13 shows the constant-vorticity contours for this case.
Due to the presence of the subharmonic, the vortex pairing
process has been initiated within the computational domain.

Concluding Remarks

In this paper, the performance of the CD6-RK4 finite dif-
ference method in simulating linear and nonlinear wave mo-
tions in shear layers has been investigated. The numerical
scheme is assessed in terms of the numerical dissipation, dis-
persion, and anisotropic effects and by numerical examples.

Fourier analysis of the fully discretized, two-dimensional
Euler equations led to closed-form expressions for the amplifi-
cation factors. Tt is found that there are three groups of
numerical waves propagating in the numerically dispersive
medium, namely, the flow velocity waves and two acoustic
waves superimposed on the flow velocity. Although only the
acoustic wave that propagates in the direction of the flow
velocity suffers from significant dissipation errors, all three
groups of waves suffer from dispersive errors at high wave
numbers. For the present scheme, the CFL number limit for
stable and accurate calculations is about 0.8. Under the CFL
limit, dissipation, dispersive, and anisotropic artifacts are neg-
ligible for wave numbers less than «/3 which corresponds to
waves resolved by more than six grid nodes.

Three numerical examples of waves in compressible flows
are presented: 1) sound propagation in a duct with linear shear
and constant temperature, 2) wave growth in a (wo-dimen-
sional, compressible free shear layer, and 3) vortex pairing in
a compressible free shear layer perturbed by dual frequencies.
The results compare favorably to the theoretical solutions for
linear wave motions. For nonlinear waves, the CFD results
provide crisp resolution of the appearance of higher harmon-
ics, modulation of wave modes, vortex rollup, and vortex
pairing.
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