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SUMMARY

The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for
simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an
extreme. The conventional approach requires special treatments for low-speed flows calculations: finite
difference and finite volume methods are based on the use of the staggered grid or the preconditioning
technique, and finite element methods rely on the mixed method and the operator-splitting method. In this
paper, however, we show that such a difficulty does not exist for the LSFEM and no special treatment is
needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible
flow equations can be effectively solved. Two numerical examples are included to demonstrate the method:
driven cavity flows at various Reynolds numbers and buoyancy-driven flows with significant density
variation. Both examples are calculated by using full compressible flow equations.
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INTRODUCTION

In this paper, low-Mach-number, compressible, viscous flows are of interest. Low-speed flows
with significant temperature variations are compressible due to the density variation induced by
heat addition. For example, a significant heat addition occurs in combustion-related flow fields.
Inside a chemical vapour deposition reactor, strong heat radiation also results in significant
density variation. Although the flow speed is slow, one must employ the compressible flow
equations to simulate such flows. However, it is well known that the conventional methods, which
can handle high-speed compressible flows easily, fail miserably when applied to these low-Mach-
number flows.

In the past, because of wide applications of the low-Mach-number flows, the issue of the
efficiency and robustness of the calculations has been investigated. Most of the research, however,
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utilizes the finite difference and finite volume methods; few attempts have been made using the
finite element methods. Conventional finite difference and finite volume methods in solving
low-Mach-number flows can be divided into two categories: the pressure-based methods and the
density-based methods. The pressure-based methods have their root in the SIMPLE-type algo-
rithm." Essentially, a staggered grid has to be employed, i.e. the pressure and velocities are stored at
different nodes. In addition, one usually has to employ a pressure correction equation (or another
derived equation) instead of the original continuity equation when solving the equation set. This
approach, to some extent, is similar to the Galerkin mixed finite element methods? for incompress-
ible Navier—Stokes equations. In the Galerkin mixed method, different elements have to be used to
interpolate the velocity and the pressure in order to satisfy the LBB condition? for the existence
and stability of the discrete solution. Moreover, this approach results in an asymmetric, non-
positive-definite coeficient matrix which cannot be effectively solved by using iterative methods.

On the other hand, the density-based methods use the same nodes for the velocities and the
pressure. Merkle er al.** have successfully developed several density-based methods for both
low-Mach-number flows and all-speed flows. Theoretical discussion can be found in Turkel’s
work.® These methods are an extension of the computational schemes for high-speed, compress-
ible flows. All these aerodynamic codes were designed based on the hyperbolic characteristic of
the Euler equations; the viscous terms were assumed effective only in a small portion of the
domain and were interpreted as the damping of the numerical waves. When simulating low-
Mach-number flows, however, the flow field is no longer dominated by the inviscid flow. The
conventional aerodynamic codes encounter insurmountable slow-down. As a result, various
treatments have been developed to enhance the efficiency. These treatments stem from precon-
ditioning the Jacobian matrices of the convective terms in the flow equations to improve their
condition numbers. Usually, two steps are involved. First, according to Chorin,® one adds a time
derivative of pressure together with a multiplicative variable f, i.e. the pseudo-compressibility
term, to the continuity equation. As a result, numerically viable time derivative terms exist in
every equation even for flows at the low-speed (incompressible) limit. Consequently, based on the
inviscid terms of the flow equations, the resultant equations become hyperbolic, and a numerical
method for a hyperbolic system can be employed to advance the system in time.

Since the transient solution is not of interest, one can enhance the computational efficiency by
tuning up the propagation speed and damping effect of numerical waves so that the calculation
can reach steady state faster. This is done by premultiplying a preconditioning matrix to the
equation set. The eigenvalues of the convective-term Jacobian matrices are scaled to the same
order of magnitude. Therefore, the stability of numerical waves is ensured and the time marching
process is under control.

However, it is obvious that when low-Mach-number flows are of interest, the viscous terms
play an important role and the flow system is elliptic. When using the preconditioning technique,
one fabricates an artificial hyperbolic system in order to employ a time marching scheme to
advance the system to a steady state. In other words, the preconditioning method is based on
conditioning the inviscid part of the governing equations—one can find very limited discussion
for treatment of the viscous terms. It is not clear how one can apply the method to the low-speed
extreme such as Stokes flows.

In the finite element methods, fewer attempts have been carried out on calculating low-Mach-
number flows. For flow fields inside chemical vapour deposition reactors, Einset and Jensen’
developed a low-Mach-number formulation which was then solved by Galerkin mixed method.
In developing the low-Mach-number formulation, Einsted et al. proposed a correlation between
the density and temperature based on the low-speed condition. The density in the governing
equations was then replaced by the temperature. The equation set was solved by a mixed method
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which results in an asymmetric, non-positive-definite coefficient matrix. Einsted et al. inverted the
matrix by the Conjugate Gradient Squared (CGS) method and the Generalized Minimal Residual
(GMRES) method. Hafez et al.?® proposed a unified approach for numerical simulations of
Navier—Stokes equations. In their work, the choice of the variables and the non-dimensionaliz-
ation strategy were carefully designed so that the formulation is valid for both compressible and
incompressible flows with heat transfer. The equations were then solved by a partial least-squares
procedure with artificial dissipation introduced into the system of equations. However, the
numerical method results in an asymmetric, non-positive-definite coefficient matrix. Therefore,
more work is needed to make the method applicable to large-scale calculations. Previously,
Lefebvre et al.***%5 used the LSFEM for simulating compressible and incompressible flows. They
have tried both linear and quadratic, triangular elements and successfully simulated the flows
with strong shocks.

Because the low-Mach-number flows are closely related to the incompressible flows, it may be
worthwhile to briefly review other treatments developed for the incompressible flows. In the finite
difference setting, Chorin® proposed to use a fractional step procedure to solve the incompressible
flow equations. Later on, it was pointed out by Schneider et al.® and Kawahara et al.'® that, by
using the fractional step procedure, the restrictions imposed by the LBB condition for mixed
formulation no longer apply. Various finite element schemes based on this procedure have been
successfully developed and applied to incompressible flows using equal-order interpolation.''*#
Other approaches, such as the Galerkin least-squares method proposed by Hughes et al.'® and
Sampaio,'® were shown to have similar effects. A wider interpretation of such schemes was
described by Zienkiewicz and Wu.'? In addition, the fractional step procedure has been extended
by Zienkiewicz and Wu to high-speed compressible Navier—Stokes equations'” and shallow
water equations.'®

In this paper, a set of first-order equations is proposed for the low-Mach-number flows, in
which the unknowns include variables such as the vorticity, the pressure variation and the
divergence of velocity. With proper non-dimensionalization, the magnitude of each term in the
governing equations, which depends on the Mach number of the flow field, can be clearly
discerned. As a result, a set of equations suitable for low-Mach-number flows is derived.

We employ the LSFEM as the numerical scheme to solve the low-Mach-number flows.
This approach is an extension of the LSFEM for incompressible flows which has been developed
by Jiang et al.'®~?! The LSFEM always leads to a symmetric, positive-definite matrix which
can be efficiently inverted by an iterative scheme such as the conjugate gradient method.
In the present paper, however, a direct solver is employed because the formulation and the
feasibility of the LSFEM for low-Mach-number flows are of interest instead of the computational
efficiency.

In the next section, we present the governing equations to be solved by the LSFEM. In
order to use simple C° elements, we convert the second-order transport equations to first-
order ones by introducing new variables into the equations. Then, the system of equations
is non-dimensionalized for low-Mach-number flows. In Section 3, the implementation of
LSFEM is elaborated in detail. The temporal derivative terms of the flow equations are
discretized by the Euler implicit method. Although the transient solution is not of interest,
the temporal derivative terms serve as a relaxation scheme for marching towards a steady
state. The non-linear terms are linearized by Newton’s method. The discrete equations are
formulated in an increment form which is then solved by the LSFEM. In the last section, two
numerical examples are presented: driven cavity flows at various Reynolds numbers and buoy-
ancy-driven flows at various Rayleigh numbers. Both cases are calculated by using the compress-
ible flow formulation.
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2. THEORETICAL MODELLING

2.1. Two-dimensional compressible Navier—Stokes equations

In the present work, two-dimensional, compressible, viscous flow equations are of concern:
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where p is the density, u and v are the velocities in the respective directions, 7 is the temperature
and @ is the viscous dissipation. Physical properties such as the viscosity y, the conductivity k and
the constant pressure specific heat C, are assumed constant throughout the flow field. Note that
the co-ordinate system is chosen so that the gravity is in the negative y direction. Equation (1) is
the continuity equation; equations (2) and (3), the momentum equations; and equation (4), the
energy equation.

To solve the second-order transport equations, the least-squares method requires the use of
undesirable C! (derivative continuous) elements. In order to employ C° elements, we introduce
new variables into the flow system, including the divergence of velocity, the vorticity and the heat
conduction fluxes. As a result, a set of first-order equations is obtained:
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where the variable 6 is the divergence of the flow velocity, w is the vorticity and g, and g, are the
heat conduction fluxes in the respective directions. They are defined as
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In addition to the above equations, we also need a constraint for the heat conduction fluxes that
satisfies the alternative rule of partial differentiation:

0q. 04,
S 14
dy 0x 0 (9

The above governing equations, equations (6)-(14), are closed by the equation of state,
p=pRT (15)

where R is the gas constant. Note that equation (15) is an algebraic correlation between
thermodynamic properties of the fluid flow. This correlation could be enforced by replacing the
density in the transport equations by a combination of temperature and pressure as was done by
Einset and Jensen.” In this paper, however, we weakly impose the equation of state at each grid
node. We shall illustrate the treatment in the following section.

2.2. Non-dimensionalization

To proceed, the governing equations, equations (6)—(15), are non-dimensionalized by appropri-
ate parameters:
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where p.,, U, T, and L are reference values of density, velocity, temperature and a length scale.
Note that special care is taken in non-dimensionalizing the derivatives of pressure. Since we are
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interested in the low-speed flows, the pressure distribution is rather uniform. Therefore, we
consider the pressure profile is composed of small variations p' imposed on a uniform back-
ground, such as p = p + p’. The background pressure p then can be dropped out in the spatial
and temporal derivatives. The pressure variation p’ exists due to the flow velocities and, thus, is
non-dimensionalized by a reference kinetic energy p,,UZ. This treatment is similar to that for
incompressible flows. Therefore, as a rule of thumb, the formulation proposed here is applicable
for M <03, in which M = 0-3 is the conventional lower bound for the compressible effect
starting to be effective due to the flow speed.
The non-dimensionalized system of equations can be expressed as
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Note that the superscript * is neglected in the equation set for convenience. The dimensionless
numbers in the equations are defined as
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where M is the Mach number, Fr, the Froude number, Ra, the Rayleigh number, Pr, the Prandtl
number, Re, the Reynolds number, Pe, the Peclet number, «, the thermal diffusivity, and y, the
ratio of specific heats. The temperature difference parameter ¢ is defined as

AT T,-T.
T T

€ (25)

where T, and T, are the specified hot and cold temperatures in a thermal convection problem.
Note that, for low-Mach-number flows (M < 1), the pressure derivative terms, the viscous
dissipation terms, and the buoyancy term in the energy equation, equation (19), become
negligible. In addition, the non-dimensionalized equation of state is imposed to close the
equation set,

1 +9yM?*p = pT (26)

For M < 1, the density and temperature become reciprocals of each other which is similar to that
proposed by Einset and Jensen’ and Hafez et al.?®

3. THE LEAST-SQUARES FINITE ELEMENT METHOD

3.1. The first-order system

The first-order system of equations, equations (16)—(24), can be cast into a vector form,
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where q = (p, u, v, T, 0, ®, 4x, 4y, p')". To proceed, the time derivative term in equation (27) is
discretized by the Euler implicit method, which leads to a first-order accuracy in time. In addition,
the discretized time marching term is formulated in a delta form: Ag(Aq/At), where
Aq = q"*' — q", and the superscript n denotes the previous time step. The non-linear terms of the
governing equations, including the convection and source terms, are then linearized by Newton's
method in the following fashion:
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Note that the same treatment is also applied to the non-linear terms differentiated with respect
to y.

After manipulation, we obtain a new set of equations in vector form ready for finite element
discretization,
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Note that the coefficient matrices Ag, A; and A, in equation (29) are different from those in
equation (27) due to linearization by Newton’s method, and we distinguish them by dropping
the . The coefficient matrix for the time marching term A, can be expressed as
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The coefficient matrices A, and A, for spatial derivatives are given as
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The source vector is
S = (0,0, p/(2eFr), pu(y — 1)M?/(2¢Fr), 0,0, 0,0, 0, 0)" (33)

As mentioned above, we are interested in the steady-state solution. Here, the time derivative
terms are purposely included in the transport equations for two numerical advantages. First, the
employment of the time marching method can enhance the convergence rate by providing
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a flexible control of At to maintain a uniform CFL number over the computational domain.
Second, we use the increment of flow properties Aq over each time step as the dependent variable
so that the final converged, steady-state solution is independent of both the initial condition and
the numerical convergence history. This practice is rather commonplace in finite differ-
ence/volume methods, and it poses no problem for application to the finite element method.

3.2. Least-squares method and discretization
For convenience, we rewrite the governing equations in the following operator form:
LAq=f (34)

where the linear operator L is defined as

0 0
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To proceed, we define the least-squares functional of the residual R = LAq — f for admissible Aq
as

J(Aq) =J. RT-RdQ (37)
Q
Minimizing the least-squares functional J(Aq) with respect to Aq leads to
8J(Aq) =0 (38)
That is,
J (L6Aq)"-(LAq — f)dQ =0 (39)
Q

where & denotes the variation of the function. Let Aq = v, and equation (39) can be written as
J (Lv)"(LAq)dQ = f (Lv)"£dQ (40)
0 Q

To employ the finite element method, the computational domain is decomposed into N, ele-
ments and the element shape functions @;’s are introduced. The discretized solution in each
element Agj(t, x, y) can be expressed as

N,
Agi(t, x, y) = Z D;(x, y)(AQu (1)) (41)

where N, is the number of nodes per element and the (AQ;(t))° are the nodal values of Aq. The test
function v is chosen as

vix, y) = @i(x, )1 (42)

where I is the identity matrix. Substituting equations (41) and (42) into (40) gives the linear
algebraic equation
K"AQ = F” (43)
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where AQ denotes the global nodal values of Aq(, x, ), and the final global matrix is

Ne
K'= ) (K" (44)

e=1

That is, the global matrix K" is assembled by the element matrix (K"), which is defined as
K= [ w0y o) 3)
The final right-hand-side vector F" is assembled by the element vector (F})", which is given as
() = L (LO,)"-£dQ (46)

An important feature of the least-squares finite element method, which can be observed in
equations (44) and (45), is that the final global matrix is symmetric. In addition, in the neighbour-
hood of the solution (that is, if a unique solution exists) the global matrix is also positive-definite.
As a result, an iterative method, such as the conjugate gradient method, can be used to effectively
invert the matrix. As long as the solution exists, the numerical stability of the iterative solver 1s
guaranteed. However, since this is the first attempt to investigate the low-Mach-number flows by
the LSFEM, the formulation and the feasibility of the LSFEM for such flows are of primary
concern. Thus, the results in this paper are obtained by a direct solver.

3.3. Weakly imposed conditions

In this work, the equation of state is weakly imposed at every grid node of the computational
domain. This weakly imposed treatment is formulated based on the least-squares approach. In
other words, we define a global least-squares functional as a combination of the least-squares
weak statement for the equation of state and the LSFEM for the differential equations, equa-
tion (37), such as

Ja=Jg+ Ig
N

—Ja+ Y [1+M2AP + p) — (T + pAT + TAD)J? (47)
i=1

where Jg, is the least-squares functional of the differential equations and is defined in equa-
tion (37). Iq is the least-squares functional for the equation of state. Taking a variational of the
functional Jg with respect to the corresponding variables and minimizing it, we obtain

N,
=8Ja+2Y [1+yM*Ap' + p')— (pT + pAT + TAp))i

i=1

[yM26Ap' — (pSAT + T5Ap)); (48)
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where the original variational statement for the governing equations 8J, is defined in equations
(38)—(40). The final weak statement can be expressed as

where [ 0] is a null vector and [o;] is a diagonal matrix with its entries &; as prescribed
coeflicients of the corresponding conditions. In practice, large values of o; are used to enforce the
equation of state. This weakly imposed treatment is naturally compatible with the LSFEM
employed for solving the transport equations. Alternatively, we could treat the equation of state
as part of the governing equations and straightforwardly apply the LSFEM to it. The effect will
be the same except that, in this case, the equation of the state is imposed at the Gaussian points of
each element instead of the grid nodes. Finally, we like to note that the weakly imposed treatment
1s also suitable for enforcing complex boundary conditions which otherwise could not be easily
implemented.

4. RESULTS AND DISCUSSION

4.1. Lid-driven cavity flow

As shown in Figure 1, the fluid in the cavity is driven by the moving top at a uniform velocity.
Since the flow is isothermal, the buoyancy terms in the y-momentum and energy equations are
neglected. This problem has been regarded as a benchmark for incompressible flow calculations.
Previously, Ghia et al.*? reported detailed results of driven cavity flows at various Reynolds
numbers using fine uniform meshes.

In this paper, we calculate this flow by using the compressible formulation to demonstrate the
stability of the numerical scheme at the incompressible limit. Four Reynolds numbers, 100, 400,
1000 and 5000, are considered. In all four cases, 25 x 25 bilinear elements clustered near the lid are
used. Note that there are two mathematically singular points at the two upper corners of the flow
field. Since we use linear elements for the calculations, it is implicitly assumed that the flow

T=1
U_8=Qt=

u=0

=0 =0

=0 §=0

0 gy =10

gy =0 T=1
T=1

‘u.=\‘..l'=9=q==0
T=1

Figure 1. Boundary conditions and computational mesh for the lid-driven cavity flow
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properties varied linearly in those two corner elements, i.e. the velocity varies linearly between the
no-slip wall and the driving lid in the neighbourhood of the two singular points.

The boundary conditions of the flow field are illustrated in Figure 1, including the no-slip
conditions, u = v = 0 =0, and the isothermal conditions T = 1, g, (or g,) = 0. Note that the
divergence of velocity is set to be null on the wall (8 = 0). This condition can be derived by
imposing u = v = 0 to the continuity equation at a steady state.

Figure 2 shows the convergence rates of the four calculations. Within 20 time steps, all four
calculations reach machine accuracy. Note that we started the calculation with Re = 100 with
quiescent fluid as the initial condition. The calculation of Re = 400 is based on the solution of
Re = 100 as the initial condition, and so on. Therefore, the calculation of the Re = 400 case
reaches the convergence faster than that of the Re = 100 case. Velocity vectors of the four cases
are shown in Figure 3, in which a large primary vortex near the centre along with secondary
recirculations around corners are shown. Figure 4 shows the comparison of the calculated v and
v at the vertical and horizontal centrelines with Ghia's data. Favourable agreement is observed.

\
\

1 | ] | 1 1 |

4 8 12 4 8 12
No. of Time Steps No. of Time Sleps

(b) Re = 400

(a) Re = 100

|
4 8 12 ) 8 12
No, of Time =ieps No. of Time Sters
(¢) Re = 1000 (d) Re = 5000

Figure 2. Convergence rates of lid-driven flows in terms of averaged temporal increments of density, temperature and
velocities (Q = p, u, v, T): (a) Re =100, (b) Re = 400, (c) Re = 1000, (d) Re = 5000
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Figure 3. The calculated velocity vectors of lid-driven cavity flows: (a) Re =100, (b) Re =400, (c) Re = 1000,
(d) Re = 5000
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Figure 4. Comparison of the velocity distributions along the vertical and horizontal centrelines with Ghia's d_ala for
Reynolds numbers 100, 400, 1000 and 5000 (symbols are Ghia's data and the curves are the present calculations)

Figure 5 shows the comparison of the streamlines of the Re = 5000 case with Ghia’s result. With
very coarse mesh (25 x 25), the LSFEM catches most of the flow features obtained by Ghia, in
which a very fine mesh is used (257 x 257). This outstanding accuracy of the LSFEM is due to the
fact that the order of accuracy of the vorticity (w), the divergence of the velocity (), as well as the
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(a) calculated (b) Ghia's

Figure 5. Comparison of the calculated streamlines of driven cavity low with Ghia's result at Re = 5000: (a) calculated,
(b) Ghia's
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Figure 6. Boundary conditions and computational mesh for the buoyancy-driven flow

heat conduction fluxes (g, ,) are the same as that of the primitive flow variables such as velocity
and pressure.

4.2. Buoyancy-driven cavity flow

The second numerical example is a buoyancy-driven gas flow in a square enclosure. As shown
in Figure 6, the configuration consists of two insulated horizontal walls and two vertical walls at
different temperatures 7, and 7,. This problem has been extensively studied based on the
incompressible flow equations with Boussinesq approximation, which is appropriate only for
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Figure 10. The calculated isothermal contours of buoyancy-driven flows at
10%, (¢} Ra
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Figure 9. The calculated streamlines of buoyancy-driven flows at (a) Ra
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Figure 11. The comparison of the calculated Nusselt numbers with Chenoweth and Paolucci’s correlation

(a) (b) (c)

Figure 12. The calculated solution of a hot cylinder inside a cold box for £ = 02 and Ra = 200: (a) the computational
mesh, (b) the calculated temperature contours, and (c) the calculated velocity vectors

a small temperature difference between vertical walls. In practice, however, a large temperature
difference is frequently encountered, and the compressible formulation must be employed.
Previously, Chenoweth and Paolucci?® used a pressure-based method and performed an in-depth
study of the flow field. As a result, heat transfer correlations in terms of Nusselt number, Rayleigh
number, etc., are deduced and reported. By using a density-based, preconditioning method, Choi
and Merkle* also successfully calculated the flow field. Their results compared favourably with
Chenoweth’s data.

Flow features of the buoyancy-driven cavity flow depend on Rayleigh number Ra, Froude
number Fr, the aspect ratio of the cavity, and the temperature difference parameter e. For
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the present study, four Rayleigh numbers, Ra = 10, 104, 10° and 10°, are considered with
a temperature difference parameter ¢ = 0-6, which represents 7;,/7. = 4. In all four cases, the
Froude number and the aspect ratio are unity. A 25 x 25 mesh clustered near the hot and cold
walls is used in all four cases. Figure 7 shows the convergence history of the four calculations.
Within 20 steps, all calculations reach machine accuracy.

Figures 8—10 show the velocity vectors, the streamlines and the isothermal contours of the four
cases. It is well known that the Boussinesq approximation displays a fully antisymmetric flow
field with respect to the centre of the cavity. The present calculation based on the compressible
formulation shows an asymmetric flow field which has been observed experimentally. For
Ra = 103 and 10%, a shift of the vortex centre towards the cold wall is observed. At Ra = 10° and
10, secondary rolls embedded in the primary eddy are observed. The accuracy of the numerical
results is verified by comparing the Nusselt number of the convective heat transfer of the whole
cavity with a correlation provided by Chenoweth and Paolucci®? (see Figure 11).

To further demonstrate the capability of the newly developed solver, another buoyancy force
driven flow is included. Figure 12 shows a hot cylinder immersed in a box of fluid. The box is
composed of two insulated horizontal walls and two vertical walls at a lower temperature. The
Rayleigh number is 200 and the temperature difference parameter ¢ is set at 0-2. As shown in
Figure 12(a), about 1000 quadrilateral elements are used. Figure 12(b) shows the temperature
contours of the flow field. Figure 12(c) is the velocity vectors, in which four primary recirculations
are observed. The calculations converge to machine accuracy in about 25 time steps.

5. CONCLUDING REMARKS

In this paper, we report the development of the LSFEM to simulate low-Mach-number,
compressible flows. A p—u—v-T-0-w-g,—g,—p' formulation is proposed for the full compress-
ible flow equations. A suitable non-dimensionalization strategy is developed for the low-
Mach-number flows. Two numerical examples were presented: a driven cavity flow at various
Reynolds numbers and buoyancy-driven flow at several Rayleigh numbers. Both cases were
calculated by using the full compressible formulation. The driven cavity flow poses as an
incompressible limit for the compressible flow solver. Nevertheless, the numerical scheme is
stable and the calculation reaches machine accuracy within a limited number of time steps.
For the driven cavity flows, the simulated result compared favourably with the benchmark
data by Ghia. For the buoyancy-driven flow, the compressible flow solver faithfully catches
the asymmetric flow features which were observed experimentally but cannot be obtained by
employing the incompressible flow equations with the Boussinesq approximation. The accuracy
is verified by comparing the calculated Nusselt number with Chenoweth’s data. The present result
indicates that the LSFEM is a viable method for calculating multi-dimensional, low-Mach-
number flows.
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