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Abstract

In this paper, we review the basic principles of
the method of space-time conservation element and
solution element for solving the conservation laws
in one and two spatial dimensions. The present
method is developed on the basis of local and global
flux conservation in a space-time domain, in which
space and time are treated in a unified manner. In
contrast to the modern upwind schemes, the ap-
proach here does not use the Riemann solver and
the reconstruction procedure as the building blocks.
Therefore, the logic and rationale are considerably
simpler. The present approach has yielded high-
resolution shocks, rarefaction waves, acoustic waves,
vortices, ZND detonation waves and shock/acoustic
waves/vortices interactions. Moreover, since no di-
rectional splitting is employed, numerical resolu-
tion of two-dimensional calculations is comparable
to that of the one-dimensional calculations.

1 Introduction

Recently, Chang and coworkers [1-9] have reported
a new numerical framework for solving conservation
laws, namely, the Method of Space-Time Conserva-
tion Element and Solution Element, or the CE/SE
method for short. This method is distinguished by
the simplicity of its conceptual basis — flux conser-
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vation in space and time. The method has been il-
lustrated in the context of conservation laws in fluid
dynamics. In describing the present method, the
original reports took the most direct approach. That
is, starting from the basic integral equations, the al-
gebraic details and the mathematical analyses were
presented in a systematic way, such that all infor-
mation needed to implement a computer program
was provided. That approach made it clear that the
present method was developed from fundamentals.
It is not an incremental improvement of a previously
existing method.

The CE/SE method, however, can also be de-
scribed in a more intuitive manner by focusing on its
unique space-time discretization. The essence of the
method may be grasped from a simple delineation
of the inherent space-time geometry. With it, the
rigorous algebraic details and mathematical proofs,
though not superfluous, take on more of the flavor of
confirming the intuitively obvious facts. In this re-
view, the CE/SE method will be illustrated by the
geometric approach. For mathematical details, the
reader is referred to the original papers.

In addition, we wish to take a somewhat com-
parative approach in this review, to clarify the dif-
ferences between the CE/SE method and tradi-
tional schemes. In particular, we wish to pique
the interest of readers familiar with the modern up-
wind schemes. Toward this end, we shall place the
present method into the context of the projection-
upwinding-evolution approach advocated by van
Leer [10,11].

In this introduction, to assist the reader in get-
ting a flavor of the present method, particularly
in its role as a tool to solve initial-value problems,
several remarks which will be fully explained later
are given here: (i) Although the differential form is
also considered, the main emphasis of the present



method is on solving the integral form of the trans-
port equations in the space-time domain. (ii) The
present method was designed to conserve space-time
flux locally and globally. Conventional finite-volume
schemes, however, concentrate on the spatial flux
calculation; temporal evolution is usually treated by
finite-differencing or semi-integration. The unified
treatment of space and time in the present method
cannot be overemphasized. (iii) For isentropic flows,
the present method can be used to construct explicit
solvers that are non-dissipative (neutrally stable) for
all Courant numbers <1. Also, these solvers are
two-way time-marching schemes, i.e., each forward
marching scheme can be inverted to become a back-
ward marching scheme. In other words, the march-
ing variables at the (n—1)th time level can be deter-
mined in terms of those at the nth time level. (iv) A
zigzagging marching strategy in the space-time do-
main is employed, such that flow information at each
interface separating two conservation elements can
be evaluated without interpolation or extrapolation.
In particular, no Riemann solver is needed in calcu-
lating interfacial fluxes. (v) The flow solution struc-
ture is not calculated through a reconstruction pro-
cedure. Instead, the gradients of flow variables are
treated as independent unknowns, and they are not
influenced by the flow properties in neighboring ele-
ments at the same time level. This is in full compli-
ance with the flow physics of the initial value prob-
lem. (vi) For flows in multiple spatial dimensions, no
directional splitting is employed. The two and three-
dimensional spatial meshes employed by the present
method are built from triangles and tetrahedrons,
respectively. Note that triangles and tetrahedrons,
respectively, are also the simplest building blocks for
two- and three-dimensional unstructured meshes.

At first glance, the special features of the CE/SE
method, such as the staggered mesh and the treat-
ment of flow gradient values as unknowns, may seem
cumbersome. Closer examination, however, shows
that they are requirements for a faithful discrete
counterpart to the conservation laws. The resulting
schemes are simple and yield accurate results. As a
concrete illustration of these features, a FORTRAN
program is listed in the appendix. It is a CE/SE
solver for an extended Sod’s shock tube problem [12],
in which the shock tube problem is extended by im-
posing a non-reflecting boundary condition at each
end of the computational domain.

The challenge of the non-reflective boundary con-
dition is no less difficult than that of capturing the
shock and the contact discontinuity. First, the flow

under consideration is subsonic throughout and the
treatment of the non-reflecting boundary condition
for a subsonic flow is more difficult than that for
a supersonic flow. Second, this difficulty is ex-
acerbated by the existence of a shock and a con-
tact discontinuity, which must be allowed to exit
the domain without reflection. We remark that
traditional non-reflective boundary conditions, such
as the characteristics-based, the radiation (asymp-
totic), and the buffer-zone conditions, are based on
the assumption that the flow is continuous. In spite
of these difficulties, the present solver is capable of
generating highly accurate non-reflecting solutions
using a uniform time-step size from the beginning
of time-marching (refer to Sec. 6 for a full discus-
sion of the numerical result). The main loop in this
CE/SE program contains only 39 FORTRAN state-
ments. A single “if” is used to identify the time-
levels at which to activate the boundary conditions.
The program contains no other Fortran conditional

statements such as “if”, “amax”, and “amin” that

are used so often in programs of modern upwind
methods.

Computer programs based on the CE/SE method
have been developed for calculating flows in one
and two spatial dimensions. Numerous results
were obtained [13-22], including various shock tube
problems, the ZND detonation waves, the implo-
sion and explosion problem, shocks over a forward-
facing step, acoustic waves, and shock/acoustic
wave interactions. The method can clearly resolve
shock/acoustic wave interactions wherein the differ-
ence of the magnitude between acoustic wave and
shock could be up to six orders. In two-dimensional
flows, the reflected shock is as crisp as the lead-
ing shock. From the evidence of these results, the
CE/SE method has proved to be a promising nu-
merical framework for solving fluid dynamics prob-
lems. In addition, Scott [23-27] has developed an im-
plicit steady-state version of the space-time method
for simulating steady-state incompressible flows, in-
cluding viscous boundary layers and developing pipe
flows.

The remainder of the paper is organized as fol-
lows. In Sec. 2, we present the general aspects of
the space-time methods. A new space-time inte-
gral form of conservation laws will be described. In
Sec. 3, a brief review at the conceptual level of the
modern upwind schemes is presented. In Sec. 4, we
present the CE/SE method for solving flow equa-
tions in one spatial dimension. In Sec. 5, the exten-
sions of the CE/SE method in two and three spatial



dimensions, without directional-splitting, are illus-
trated. In Sec. 6, numerical examples calculated by
the present method are shown. We then offer the
concluding remarks.

2 The Space-Time Methods

The conventional finite volume methods for simulat-
ing conservation laws were formulated according to
flux balance over a fized spaiial domain. As such,
the conservation laws state that the rate of change
of the total amount of a substance contained in a
fixed spatial domain V is equal to the flux of that
substance across the boundary of V. Let the density
of the substance be u and its spatial flux be f; then
the convectional conservation law can be expressed

i/ udV = — f-ds,
dt Jy S(V)

where S(V) is the boundary of V, and ds = do 7
with do and 7, respectively, being the area and the
outward unit normal vector of a surface element on
S(V). The finite volume methods concentrate on the
evaluation of the right hand side of Eq. (2.1). The
left hand side of Eq. (2.1) is usually discretized by
a finite difference method, such as the Runge Kutta
method.

(2.1)

Alternatively, an integration method for space-
time flux balance could be employed:

iy ta =
f udV| = ---/ di-/ f-ds.
v ¢ ( S(V)

This integration method, however, bears strong re-
semblance to the method of finite-differencing the
temporal derivative term. Algebraically, one can
always find its counterpart in the finite difference
methods. Therefore, we refer to this method as semi-
integration. Perhaps, the usefulness of this method
lies in depicting a clearer picture of the space-time
flux balance as compared to the methods of finite-
differencing the time derivative term.

(2:2)

As shown in Fig. 2.1(a), due to the fixed spatial
domain, the shape of the space-time Conservation
Elements (CEs) in one spatial dimension must be
rectangular. In addition, these elements must stack
up exactly on top of each other in the time direc-
tion, i.e., no staggering of these elements in time is
allowed. For equations in two spatial dimensions,
as depicted in Fig. 2.1(b), a conservation element is

a uniform-cross-section cylinder in space-time, and
again no staggering in time is allowed. This arrange-
ment results in vertical interfaces extended in the
direction of time evolution between adjacent CEs.
Across these interfaces, flow information travels in
both directions. Therefore, in calculating the in-
terfacial flux, upwind biasing (or a Riemann solver)
becomes necessary.

In the following subsections, we shall first state a
non-conventional integral equation for conservation
laws, in which space and time are treated in a uni-
fied manner. This space-time integral equation al-
lows a space-time geometry of the CEs in the present
CE/SE method which is different from that used in
the conventional finite volume methods and shown
in Fig. 2.1. As a result, the present CE/SE method
is able to capture shocks without using a Riemann
solver.

In Secs. 2.2 and 2.3, we shall discuss the non-
dissipative property of the isentropic conservation
laws. In Sec. 2.4, the breakdown of the non-
dissipative property due to the entropy increasing
processes will be discussed. We then conclude this
section by posing several criteria for an ideal numer-
ical analogue of the conservation laws. For conve-
nience, the discussions in this section are based on
one-dimensional flow equations.

2.1 Governing Equations

The one-dimensional unsteady Euler equations of a
perfect gas can be expressed as

U, +F, =0, (2.3)
where
uy P
U=| u = pv |, (2.4)
us pE
fi v
F=| f | = pl+p |, (25)
fs (PE +p)v

with p, v, p, and E being the density, velocity, static
pressure, and specific total energy, respectively. By
definition, E = v?/2 + ¢, where ¢ is the specific in-
ternal energy. The equation of state is p = (y— 1)pe
with v being the specific heat ratio.

As shown in Fig. 2.2, let z; = z, and z; =
be the coordinates of a two-dimensional Euclidean



space Ey. Then Eq. (2.3) can be expressed as the
divergence-free conditions
m=1,2,3;

V .ﬁm = 0: (2'6)

where Am = (fm,tm), m = 1,2,3, are the space-
{ime mass, momentum, and energy current-density
vectors, respectively. Equation (2.6) is valid every-
where in E5 for continuous and isentropic flow solu-
tions. For flows with shock waves, we must use the
more fundamental form of the conservation laws:

f B -ds = 0,
S(R)

Here S(R) is the boundary of a space-time region
R, and ds = doii with do and i, respectively, be-
ing the area and the outward unit normal vector
of a surface element on S(R). Note that (i) because
Fim-ds is the space-time flux of k,, leaving R through
ds, Eq. (2.7) simply states that the total space-time
flux of h,, leaving R through its boundary vanishes;
(ii) all mathematical operations can be carried out
as though E, were an ordinary two-dimensional Eu-
clidean space; (iii) because S(R) is a simple closed
curve in Es, the “surface” integration in Eq. (2.7)
can be converted into a line integration [6], i.e.,

j‘{ f{,,,.d”szf " (fmdt — umdz) =0
S(R) S(R)

where the notation c.c. indicates that the line in-
tegration is carried out in the counterclockwise di-
rection; and (iv) Eq. (2.6) is valid only for smooth
flows, and it can be derived from Eq. (2.7) using
Gauss’ divergence theorem.

m=1,2,3. (2.7)

(2.8)

Here, we offer two remarks about Eq. (2.7): (i)
Unlike Egs. (2.1) and (2.2), the present formulation
does not impose any constraint on the shape of the
CEs in the space-time domain. This is a crucial
difference that, at the conceptual level, separates the
present method from the conventional finite volume
methods. (ii) Equation (2.7) must be satisfied over
any bounded sub-domain R of E5. As a result, if the
total space-time fluxes leaving R through a subset
of the boundary S(R) are known, the total space-
time fluxes leaving through the rest of S(R) can be
deduced. Perhaps, a marching scheme can be built
by a careful selection of the space-time geometry of
the CEs. In the following discussions, we offer some
thoughts about this envisioned marching scheme.

2.2 Marching Forward and Backward

A time-marching scheme for solving the Euler equa-
tions is valid because the Jacobian matrix A =
OF /U has the real eigenvalues v and v &% ¢, where
c is the sonic speed. Because F, = AU,, Eq. (2.3)
can be diagonalized by multiplying it from the left
by the left eigenvector matrix M of A, i.e.,

MU, + MAM~'MU, =0, (2.9)
where M~! is the inverse of M. Let 8U = MU be
the characteristic variable vector. Then we have

U, + AU, =0, (2.10)
where A = MAM~™! is a diagonal matrix composed
of the eigenvalues a,, (m =1,2,3) of A. Eq. (2.10)
is the classical system of characteristic compatibility
equations, from which one can derive the Riemann
invariants along the characteristics.

From the solution of the Method Of Character-
istics (MOC), one knows that the flow solution has
a finite domain of dependence at a previous time
and is completely determined by it. One can cal-
culate the flow solution along the characteristics for
the whole space-time domain if the initial conditions
are specified at every point in space. Moreover, be-
cause the Riemann invariant is constant along any
characteristic without regard to the marching direc-
tion, given the flow solution at a certain time, one
can {race backward along the characteristics to ob-
tain the solution in the past. Thus, an ideal numer-
ical analogue of the Euler equations should be able
to march forward to obtain the flow solution at a
new time level, and from there march backward to
recover the solution at the starting time.

Moreover, because the marching procedure can be
initiated from any initial-data curve in the space-
time domain (as long as it nowhere has a charac-
teristic direction), the nature of the forward-and-
backward marching of the Euler equations is not lim-
ited to the time evolution. Therefore, an ideal nu-
merical analogue of the isentropic convection equa-
tions should possess no preferred marching direction
in the E, space, except insofar as grid-lines are se-
lected.

For flows in multiple spatial dimensions, one can
also derive the divergence-free condition, similar
to Eq. (2.6), and its integral form similar to Eq.
(2.7), as the governing equations. Although the
equations cannot be diagonalized as in the one-



dimensional case, the equation set is nonetheless hy-
perbolic. Therefore, the abovementioned forward-
and-backward marching nature is still valid.

2.3 Space-Time Inversion

Another important property of Eq. (2.3) is its in-
variance under space-time inversion. Let (z,,1,)
be a fixed point in Ej, and let 2/ = 2z, — z and
t' = 2t, —t. Note that (z/,t') is the image of (z,t)
and vice-versa under the space-time inversion with
respect to (z,,1,). By the coordinate transforma-
tion, Eq. (2.3) is equivalent to

U+ Fo =0. (2.11)

Let U°(z,1) be a smooth function of z and ¢, and let
U = U satisfy Eq. (2.3). Then the above invariance
property of Eq. (2.3) and the fact that F is function
of U imply that U = U°(2z, — z,2{, — t) is also a
solution to Eq. (2.3). This property of the smooth
solutions to Eq. (2.3) should be shared by an ideal
numerical analogue of Eq. (2.3).

We remark that a numerical analogue that is sta-
ble and also preserves the above invariance property
under space-time inversion must be non-dissipative,
or neutrally stable. This non-dissipative nature of a
numerical analogue of the convection equations re-
flects the fact that a smooth solution to Eq. (2.3)
does not dissipate with time. For the one and two-
dimensional scalar convection equations, this con-
clusion is established in [2, 5].

For flow equations in multiple spatial dimensions,
the invariance property under space-time inversion
is still valid. An ideal numerical analogue should
preserve this property, and it should be neutrally
stable.

2.4 The Shock Capturing Scheme

Two issues need to be addressed by a shock cap-
turing scheme : (i) the flow properties are not con-
tinuous across the shock, and (ii) the flow entropy
increases across the shock.

To address the first issue, an integral, rather than
differential, form of the governing equations must
be employed. Based on the conservation of mass,
momentum, and energy, the flow properties on one
side of a shock are determined by the flow properties

on the other side. Hence, flux conservation should
be the only principle used to relate the two distinet
flow states. Other methods, based on the differential
equations such as the MOC, should not be consid-
ered.

The second issue pertains to the fact that the evo-
lution of a flow with shocks is an entropy increas-
ing process, and it is irreversible. However, there is
no constraint built into the Euler equations for flow
solutions to obey the second law of thermodynam-
ics. Therefore, an additional constraint must be im-
posed when flows with shocks are modeled using the
Euler equations. In computational fluid dynamics,
this additional constraint can be conveniently imple-
mented by numerical treatment. For example, in a
finite-differencing setting, Lax [28] showed that the
discretized Euler equations must satisfy an entropy
condition in order to capture shocks successfully. Es-
sentially, an even-order artificial damping should be
added to the discretized equation such that spurious
oscillations near the shock can be suppressed and a
physically sensible solution can be obtained.

In Sec. 4, we shall present the method of adding
the artificial damping in the present scheme for cap-
turing shocks. We shall show that within any one
time step, the added artificial damping only influ-
ences the calculation of the flow gradient; the cal-
culation of the flow properties is not changed. In
addition, a specific parameter is employed to allow
direct control of the amount of the artificial damp-
ing. When the simulations of isentropic flows are of
interest, the artificial damping can be turned off.

2.5 An Ideal Numerical Analogue

From the above discussions, it is seen that a smooth
solution to the Euler equations, Eq. (2.3), has the
following important properties: (i) it does not dissi-
pate with time; (ii) its value at any point (z,1) has a
finite domain of dependence at an earlier time; and
(iii) it is completely determined by the initial data
at a given time. In the light of these properties, we
remark that (i) a solution to a dissipative numeri-
cal scheme will dissipate with time; (ii) the value of
a solution to an implicit scheme at any point (z,1)
depends on all the initial data and all the bound-
ary data up to the time t; and (iii) a scheme in-
volving more than two time levels requires the spec-
ification of the initial data at more than one time
level. Therefore, we conclude that an ideal numeri-
cal analogue to Eq. (2.3), in addition to having the



properties discussed in Secs. 2.2 and 2.3, should be
neulrally stable, explicil, and involving only {wo time
levels.

By adding an artificial dissipation term, an ideal
solver of Eq. (2.3) can be extended to model flows
with shocks. We want to emphasize that the artifi-
cial dissipation in an ideal numerical method should
occur only in shock capturing; without added arti-
ficial damping, there should be no other source of
numerical dissipation.

Furthermore, in an ideal Navier Stokes solver, the
above guidelines of modeling the Euler equations
should be applied to the discretization of the con-
vective terms of the Navier Stokes equations. We
note that, stripped of any added artificial terms, tra-
ditional numerical schemes are in general not free
from inherent numerical dissipation. For flows at
large Reynolds numbers, numerical dissipation may
overwhelm the physical dissipation and cause a com-
plete distortion of the solution. Because an ideal
analogue of Eq. (2.3) has no numerical dissipation,
when it is applied to discretize the convective terms
of the Navier Stokes equations, the Navier-Stokes
solver has the property that the numerical dissipa-
tion of its solutions approaches zero as the physical
dissipation approaches zero. &

3 Modern Upwind Schemes in
the Space-Time Domain

In this section, we consider the modern upwind
schemes, namely those developed based on the Go-
dunov scheme. In this context, we want to clarify the
differences between the CE/SE method and the con-
ventional shock-capturing schemes. The structure of
the modern upwind schemes will be described using
van Leer’s projection-upwinding-evolution formula-
tion. In this regard, Huynh [29] has given a par-
ticularly lucid description. In general, the upwind
schemes consists of three steps: (i) a projection or
reconstruction step, in which the flow property dis-
tribution within each cell is approximated by poly-
nomial curve fitting; (ii) an upwind step involving
the solution of a Riemann problem to calculate the
spatial fluxes at cell interfaces; and (iii) the tempo-
ral evolution step, in which the flow properties at
the next time step are determined by either finite-
differencing or by space-time flux conservation. Note
that a space-time splitting form of the conservation
laws, i.e., either Eq. (2.1) or Eq. (2.2), is employed

in the upwind schemes.

The original Godunov scheme employs the sim-
plest reconstruction — the piecewise constant func-
tion, the most computationally expensive upwind
scheme — the exact Riemann solver, and a simple
time-marching method — an averaging procedure.
Since the Godunov method is only first-order ac-
curate, all modern upwind schemes are endeavors to
improve the efficiency and accuracy of the method.
To this end, modern upwind schemes utilize higher
order reconstruction methods, more efficient Rie-
mann solvers, and various time marching schemes.
The basic structure of the modern upwind approach,
however, has not changed.

3.1 The Evolution Step

In the present paper, a second-order upwind scheme
presented by Huynh [29] is used to represent this
class of schemes. As shown in Fig. 3.1, the E; space
is divided into rectangular CEs. In each CE, the
known column matrix of flow properties U7 is lo-
cated at the center of the bottom boundary, and the
unknown to be solved for, U7+, is at the center of
the top boundary. The space-time flux conservation
over the CE using Eq. (2.2) can be expressed as

U;-‘“”A:: - UlAz

n+1/2 n41/2 i
+ETH AL -FIH 2 At = 0.

(3.1)

Since a second-order scheme is used, a linear distri-
bution of U and F along the respective boundary
segments is assumed. Therefore, as shown in Eq.
(3.1), the integration of the flow properties along the
respective boundary segment is equal to the values
at the midpoint multiplied by the length of the line

segment. In Eq. (3.1), the value of U7 is known, and

we need to evaluate F:fll}’: and F::ll ;’: to determine

U™ This equation serves to track the temporal
evolution of the solution, and thus forms the evo-
lution step in van Leer’s formulation. However, in
order to calculate F;'fll.f: and F;‘::’j’:, the use of Eq.
(3.1) must be preceded by a reconstruction step and

an upwind step.

Temporal evolution schemes other than Eq. (3.1)
could be used, in which, however, the picture of
the space-time flux conservation is less clear. For
instance, the Runge-Kutta (RK) method could be
used for time marching. In each intermediate RK
step, a reconstruction step and an upwind step are



performed to calculate the spatial fluxes. The unbal-
anced spatial flux is then used as the inhomogeneous
term in the RK method. After several intermediate
steps of the RK method, the flow solution at the new
time level is obtained.

In the space-time setting of Eq. (3.1), a possibility
of solution discontinuity must be allowed between
U7t and U?. Its exact location, however, is un-
clear. In Huynh’s approach, the solution is assumed
to be continuous within the lower half of each CE.
As such, if (U;)? is known, (Uy)} can be obtained
by assuming

(F.); = A} (U.)] (3.2)

and
(U;);' = (F,): , (3.3)

Here (i) A} is the matrix A (which is a function
of U) evaluated with U = U7, and (ii) Eqgs. (3.2)
and (3.3) are the numerical analogues of the relation
F. = AU, and the differential equation, Eq. (2.3),
respectively. It follows from Eqs. (3.2) and (3.3) that
one can use the second-order Taylor polynomial to

calculate U:Illﬁ

At Az
n+1/2
U7 Elja = U + (U] 5 £ (UL)] =

(3.4)

if the value of (U;)} is known. This leads to the
reconstruction step in the upwind schemes.

3.2 The Reconstruction Step

As a common practice in upwind schemes, flow prop-
erties at neighboring nodes are employed for a poly-
nomial curve-fit to calculate (U;)}. The difficulty
with such a procedure has always lain in fitting a
polynomial curve across a possible solution discon-
tinuity, which results in spurious oscillations. To
suppress the spurious overshoot of (U)}, scheme
developers introduced predetermined constraints to
the flow distribution, based on the expected nature
of the solution. Van Leer [10, 11] suggested that the
reconstruction procedure must preserve the mono-
tonicity of the flow property distribution. An exten-
sion of this idea is the Total Variational Diminishing
(TVD) method [30]. Another approach is the Es-
sentially Non-Oscillatory (ENO) method [31] based
on a strategy of stencil nodal selection. In general,
these complex procedures are combinations of limit-
ing the slopes of the flow properties and sharpening
the jump conditions whenever a shock is detected.

Usually, these methods are effective in suppressing
oscillations near shocks.

The drawback of these complex procedures is that
the special properties, such as monotonicity, are not
universal, and they are not prescribed by the con-
servation laws. For example, due to the existence of
a source term, the flow field of a detonation wave
is not monotonic nor does it display a TVD prop-
erty. In this case, one must resort to other ideas to
constrain the slopes.

3.3 The Upwind Step

Once (U,)}' is determined, the flow property distri-
bution inside a CE can be expressed by the Tay-
lor polynomial, Eq. (3.4). As such, flow proper-
ties at the immediate two sides of a cell interface,

n+1/2 Tin41/2
(UHU?)R and (Uj+1;2)1.' can be calculated. Re-

fer to Fig. 3.2.

n+1/2 +1/2 .
Note that (UJ'+1/?)R and (U;l+1f2)5 are dis-

tinct states, and one must reconcile the two states
to yield a unique interfacial flux for the temporal
evolution calculation described by Eq. (3.1). The
simplest approach is to average the two states. This
approach, however, leads to central differencing the
spatial flux terms in Eq. (3.1), and results in numer-
ical oscillations for flows with shocks.

In the Godunov scheme, flow properties in each
cell at ¢ = {" are assumed constant. By using U7}
and U}y, as the initial values, one can set up a Rie-
mann (shock tube) problem at the interface of two
adjacent CEs. With the aid of the known solution
(a function of z/t) to this classical problem, the flux
passing through the interface can be obtained by an
integration over the time interval t" < ¢ < t"*! at

T =2Zi4/2-

In the second-order modern upwind schemes, a
distribution of the flow property inside each CE ex-
ists. Thus, inside a CE, the characteristics associ-
ated with the varying flow properties interact with
one another. As such, the flow physics at the in-
terface is much more complex than that of the Go-
dunov scheme. In this case, there is no known ana-
lytical solution. As a result, it becomes a formidable
task to calculate the evolution of the interfacial flux.
When faced with this difficulty, the usual approach
is to consider only the left and right interface mid-

. nt1/2 n+1/2
point values, (U:‘HN)L and (Ui-i-l;’Z)R' and use



them to yield a unique value for the flux at that
same point in the space-time domain. The calcula-
tion is usually based on the combination of left and
right fluxes with upwind biasing, and the procedure
is usually termed as an approximate Riemann solu-
tion. The idea of tracking the temporal evolution of
flow solution at the interface, such as is used in the
Godunov scheme, is discarded.

What is actually involved in practice is the use of
the characteristic-based techniques. In the classical
MOC, to march one step forward along a character-
istic, one has to assume that the characteristic can
be approximated locally as a straight line segment
with its slope (an eigenvalue of A) either explicitly
determined by the initial flow states (a first-order
linearization), or iteratively determined by the com-
bination of the initial flow state and the final flow
state (a second-order linearization).

In the approximate Riemann solver, a similar pro-
cedure is performed, in which the coefficient matrix
A and its eigenvalues are evaluated based on a spe-
cially chosen “averaged flow state.” Following this,
the flux calculation can be performed based on the
characteristic-value splitting. In the modern upwind
schemes, the efficiency and accuracy of the approx-
imate Riemann solver hinge on a careful choice of
this averaged flow state. As an example, we refer
the reader to [29] for a detailed discussion of the lin-
earization procedure in Roe’s flux splitting scheme
[32] based on the “Roe state.”

The drawback of this treatment is that the order
of accuracy of the resultant scheme is usually less
than the order of the polynomial employed in the
reconstruction. This is because the flux calculation
is based on an approximated Riemann problem, in
which the flow property variation inside each CE is
not directly taken into account in calculating the
interfacial flux. In addition, the linearization pro-
cess in the flux splitting also involves approximation.
For these reasons, modern upwind schemes are often
referred to as high-resolution instead of high-order,
even when a third- or fourth-order polynomial was
used in the reconstruction.

Moreover, the logic of the upwind biasing is largely
based on the characteristic-value splitting, which is
sensible only when it is used to describe the space-
time evolution of a smooth flow. The application of
this method in a situation without space-time evo-
lution and with the possible existence of a shock is
difficult to justify.

In addition, the above characteristics-based tech-
nique is applicable only to flows in one spatial di-
mension. For flows in multiple spatial dimensions,
the MOC is more complex and has its own in-
herent space-time geometries. Therefore, it is not
amenable to any numerical method using a predeter-
mined lattice stencil in the space-time domain. As
a result, directional splitting is employed for solving
flow equations in multiple spatial dimensions. This
practice causes deterioration of numerical resolution
in multi-dimensional flows. Furthermore, because
source terms have no preferred direction, the direc-
tional splitting approach poses significant difficulties
in constructing an approximate Riemann solver.

3.4 Summary of Distinguishing Fea-
tures

To recapitulate the distinguishing features of the
modern upwind schemes, we provide the following
remarks: (i) In the reconstruction step, the flow
structure is estimated by a curve fit among neigh-
boring cells. The use of a polynomial curve fit over
a possible solution discontinuity at cell interfaces is
theoretically unjustifiable, and also leads to spurious
oscillations. A priori knowledge of the flow solution,
such as a TVD property, is then used to suppress
these oscillations. (ii) The need to solve the Rie-
mann problem in the modern upwind schemes is due
to the choice of a fixed spatial mesh in the space-
time domain as shown in Fig. 2.1. As a result of the
choice, flow information propagates in both direc-
tions through the interface, and the upwind-biasing
becomes necessary in calculating the interfacial flux.
(iii) Only the flow properties immediately adjacent
to an interface are used to calculate the interfacial
flux. Due to the variation of the flow properties
inside each CE, the actual evolution of the inter-
facial flux is much more complex. (iv) Given two
distinct flow states in contact, the calculation of the
interfacial flux is carried out by using characteristics-
based splitting, which is valid only for describing the
space-time evolution of a smooth flow. (v) For flows
in multiple spatial dimensions, directional splitting
is used to implement one-dimensional characteristic
flux splitting. This practice causes deterioration of
numerical resolution and difficulties in solving con-
servation laws with source terms.



4 The CE/SE Method in One
Spatial Dimension

In the setting of evolution and reconstruction,
the following distinguishing features of the CE/SE
method result in a simpler and more consistent nu-
merical flow model: (i) A space-time discretization is
chosen for the flux conservation such that there is no
Riemann problem to be solved at the cell interface.
(ii) To avoid imposing predetermined constraints on
the flow solutions such as monotonicity and TVD,
the flow properties and their gradients are treated
as unknowns. For smooth flows, the unknowns are
completely determined by flux conservation, and the
resultant numerical procedure can march forward
and backward in time. (iii) For flows with shocks,
an adjustable artificial damping is added to the dis-
cretized equations such that the numerical entropy
condition is satisfied.

In the following, we shall first discuss the prelim-
inaries of the CE/SE method. We then present the
evolution step for calculating flow properties, the
reconstruction step for obtaining the flow property
gradient, and the shock capturing method for resolv-
ing shocks.

4.1 Preliminaries

In Fig. 4.1, we illustrate the nodes, denoted by dots
(filled circles), where the unknowns are located. The
space and time intervals between neighboring nodal
lines are respectively denoted by Az/2 and Af/2.
There is a Solution Element (SE) associated with
each node (j,n). Let the SE(j,n) be the interior
of the space-time region bounded by a dashed line
depicted in Fig. 4.2. It includes a horizontal line
segment, a vertical line segment, and their immedi-
ate neighborhood. Between SEs, discontinuities are
allowed. As will be shown immediately, for the Eu-
ler equations, Eq. (2.3), which have no source terms,
the actual size of the neighborhood does not matter.
However, for other equations with source terms, be-
cause these sources may be distributed over the en-
tire computational domain, solution elements must
be constructed such that they can fill the entire do-
main. In this case the neighborhood may be chosen
such that a SE looks like the rhombus depicted in
Fig. 4.8(b). Inside a SE, the flow properties are as-
sumed continuous.

Within a SE, the flow property vector U and

the flux vector F are approximated by their dis-
cretized counterparts U* and F*. Since a second-
order scheme is desired, piecewise linear distribu-
tions U* and F* are assumed. For (z,t) in SE(j, n),
we assume that

U*(z,t;4,n) =
U7 +(U2)} (z—zj) + (U] (¢ —1")  (41)
and

F*(z,t;7,n) = _

(F); +(Fz); (z —z;) + (Fo)j (t —1").

Here F7 is the column matrix F (which is a function
of U) evaluated with U = U?.

(4.2)

The expansion coefficients (Uy)7, (F:)} and (Fo);
in Egs. (4.1) and (4.2) will be expressed as functions
of the independent unknowns U7} and (U;);‘ of the
present scheme by assuming Egs. (3.2) and (3.3),

and
(F,);‘ = A7(U,)}, (4.3)

which is the numerical analogue of the relation F; =
AU,. Furthermore, because h,, = (fm,tm), m =
1,2, 3, we shall assume that for m=1,2,3,

g:n(’::t;j:“) = (fr;a(z!t;js n),u,'ﬂ(z,t;j.n)), (4-4)

where u}, and f;, m = 1,2,3, are the components
of the column matrices U*® and F*, respectively.

At this juncture, note that: (i) In an alternative
approach to be presented in Sec. 4.3, the differential
condition Eq. (3.3) is not assumed. Rather it arises
naturally as a result of flux conservation and Egs.
(4.1) and (4.2). (ii) Hereafter, the components of the
column matrices U?, (U)7, (Us)], F7, (Fz); and
(F.);, will be denoted by (um)], (Ums);, (¥me)],
(fm);', (fm,);.l and (fm,);.', m = 1,2, 3, respectively.

4.2 The Evolution and Reconstruc-
tion Steps

For smooth flows, the calculations of U} and (Uz)}
are determined by requiring fluxes to be conserved
over space-time Conservation Elements (CEs). As
depicted in Figs. 4.3(a) and 4.3(b), two CEs, de-
noted by CE_(j,n) and CE4(j,n), are associated
with every mesh point (j,n). A glance over Figs. 4.1,
4.2, and 4.3 reveals that the set of CE4 (7, n) over all
mesh points (j, n) do not overlap among themselves
and can fill the entire space-time computational do-
main.



For each (j,n), the following discrete analogue to
the space-time flux conservation, Eq. (2.7), is im-
posed:

}{ Rt -ds=0, m=123, (45)
S(CE_(j.n))

and

ht -ds=0, m=1,23. (4.6)

fig(cE‘l' (im))

According to Figs. 4.2, 4.3a, and 4.3b, we have
the following observations: (i) The edges CB and
CD of CE_(j,n) lie in SE(j — 1/2,n — 1/2); (ii)
The edges AB and AD of CE_(j, n) lie in SE(j, n);
(iii) The edges ED and EF of CE4(j,n) lie in
SE(j +1/2,n—1/2); (iv) The edges AD and AF of
CE4(j,n) lie in SE(j,n). As a result, with the aid
of the numerical counterpart of Eq. (2.7), and Egs.
(3.2), (3.3) and (4.1)-(4.4), we conclude that Eq.
(4.5) leads to three relations involving the indepen-

dent unknowns U7, (U.)7?, U;’:H:, (U,);':Ilg, and
Eq. (4.6) leads to another three relations, involving
U?, (U7, U;"+1‘;:' and (U,);-‘;;f:. Assuming that
the unknowns at the mesh points (j —1/2,n—1/2)
and (7 +1/2,n—1/2) are given, the six components
of U? and (U;)} can be determined by the above six
relations. In the following, it will be shown that the
procedure for solving these relations can be divided
into two sequential steps: an evolution step followed

by a reconstruction step.

Note that the space-time flux of A* leaving
CE_(j,n) through AD and that leaving CE4(j, n)
through AD are evaluated using the same unknowns,
ie., U} and (U;)}. Thus, these two space-time
fluxes are each the negative of the other. As a result,
a combination of Eq. (4.5) and Eq. (4.6) imply that

ht -ds=0, m=1,2,3, (4.7)

where CE(j,n) (see Fig. 4.3(c)) is the union of
CE_(j,n) and CE4(j, n). Here, as explained above,
the fluxes of h?, leaving CE(j,n) through CD, CB,
ED, and EF can be evaluated in terms of U?7'/2

jx1/2
n—-1/2
and (U.)7; ;’2.

The flux of ft';’n leaving BF, however, is a function
of U} only. This conclusion can be reached from
the following observations: (i) dt = 0 along BF, (i)
BF lies in SE(j, n), (iii) u;,,, m = 1,2,3, is linear in
z on BF, and (iv) the mesh point (j,n), i.e., point

10

A, is the mid-point of BF. As a matter of fact,
with the aid of Eq. (2.8), it can be shown that the
flux of h?, leaving CE(j,n) through BF is simply
(um)7Az. In other words, Eq. (4.7) implies that

U7 can be determined explicitly in terms of U;‘;ll}':
and (Ug ;;:;: This is the evolution step for the

present marching scheme.

After obtaining U}, F} and A7 can be deter-
mined because they are functions of U7 only. As a
result, by applying either Eq. (4.5) or Eq. (4.6) (only
one of these two equations is independent after Eq.
(4.7) is used), one can obtain a system of three linear
equations with the three unknowns being the three
components of (U;)}. In other words, (U.)} can be

determined in terms of U}, U;.‘;Il;g, and (U,):;;;;
by solving either Eq. (4.5) or Eq. (4.6). This is the

reconstruction step of the present marching scheme.

Recall that the reason leading to the decoupling
of the evaluation of U} from that of (U,)} is that
the mesh point (z;,1") is located at the mid-point of
BF. For a space-time mesh with non-uniform spa-
tial mesh intervals, the above decoupling can still
be achieved, with some modifications in the proce-
dure. We shall explain these modifications using a
special nonuniform-spatial-interval mesh. From this
description, the reader can easily infer the modifi-
cations required for a general nonuniform-spatial-
interval mesh.

Consider the space-time mesh depicted in Fig. 4.4.
Here, we assume that the spatial mesh intervals to
the right and the left of the vertical mesh line j =0
are separately uniform and have the lengths Az and
Az', respectively. Spatial mesh intervals are sepa-
rated from one another by solid vertical mesh lines.
Each spatial mesh interval is divided into two sub-
intervals of equal length by a dashed vertical line.
For this space-time mesh, non-uniformity of spa-
tial intervals occurs around the mesh line j = 0.
Thus, we are interested in the marching scheme
solving for Ug and (U;);. Note that the mesh
point (0, n) is not located at the intersection of mesh
lines. Instead, it is located at the mid-point of BF
(see Fig. 4.5). Refer to Figs. 4.4-4.6 for the mesh
point (0,n) and its associated SEs and CEs (for
n=1/2,3/2,...). As a result, in this case too, Uj
can be calculated by using Eq (4.7) only. Once Uj
is obtained, (U;); can be calculated by either Eq.
(4.5) or Eq. (4.6).



4.3 An Alternative Construction

As described in [6], the above CE/SE scheme for
isentropic flows can be constructed from a different
flux-balance perspective. In this construction, the
locations of mesh points (dots in Fig. 4.7) are iden-
tical to that in the original construction (refer to Fig.
4.1). The computation domain, however, is divided
into rhombic regions in the interior and triangular
regions at the boundary. Each region is associated
with a mesh point (j,n) and serves as a conserva-
tion element, as denoted by CE/(j,n) (refer to Fig.
4.8(a)). The solution element associated with point
(4, n) is the interior of CE'(j,n), and is denoted by
SE'(j,n) (refer to Fig. 4.8(b)).

For any (z,t) in SE'(j,n), U(z,t), F(z,t) and
RBm(z,t) are approximated by their discretized coun-
terparts: U*(z,t;j,n), F*(z,t;j,n), and E,"n as de-
fined in BEgs. (4.1), (4.2), and (4.4), respectively.
Here, the marching scheme requires that for each
mesh point (j,n), the space-time flux of h], leaving
the boundary of the space-time thombus CE/(j, n)
vanishes, i.e.,

j‘{ .k -ds=0,
s(CE'Gin))

By using Egs. (4.1), (4.2) and (4.4), we have, for
m=1,2,3,

Vb2, t:5,1) = (fme)] + (ume)},

for any (z,t) in SE'(j,n). By using Gauss’ diver-
gence theorem and the fact that the right-hand-side
of Eq. (4.9) is a constant within SE'(j,n), Eq. (4.8)
implies that

(fmz)] + (ume)} =0, (4.10)

ie., (U} + (F.)} = O, which is Eq. (3.3). Here,
however, Eq. (4.8) is not an imposed assumption as
it was in the original construction. Instead, it is the
result of the flux conservation condition Eq. (4.8).

m=1,23. (48)

(4.9)

m=1,2,3,

In the present construction, the interaction be-
tween two neighboring SE’s lies in the balance of
space-time flux over the oblique interface that sep-
arates them. Refer to Fig. 4.9. Note that distinct
flow states exist along the two sides of the inter-
face. As would be done in the derivation of the
Rankine-Hugoniot relation, we impose the space-
time-flux-balance condition across the interface, i.e.,
the space-time flux leaving CE'(j — 1/2,n — 1/2)
through B’C’ should be the space-time flux enter-
ing CE'(j,n) through BC.
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In order to avoid the ambiguity of a double-valued
function, SE's are defined such that an interface sep-
arating two rhombic CE's does not belong to any of
the two adjacent SE's. As depicted in Fig. 4.9, the
values of h?, along BC and B'C" are evaluated using
information from SE'(j, n) and SE'(j—1/2,n—1/2),
respectively. Moreover, by using Eqs. (4.9) and
(4.10), and Gauss’ divergence theorem, we have

f( Reods=0, m=1,23, (411
S(AABC)
and
f ki -ds=0, m=1,23 (412
S(AA'B'CY)

Equation (4.5) follows immediately from Eqgs. (4.11)
and (4.12) and the interface flux balance condition.
Similarly, Eq. (4.6) can also be obtained. As a result,
the marching scheme constructed using the alterna-
tive approach is identical to that constructed with
the original approach.

Note that, as a result of Eq. (4.11), the flux of A,
leaving AABC through the oblique line segment BC
is balanced by the flux of A}, leaving AABC through
the horizontal line segment AB (where dt = 0) and
the vertical line segment AC (where dz = 0). It
follows that, in general, flux integration along an
oblique line segment can be turned into an equiv-
alent and simpler problem that involves only flux
integration along a horizontal line segment and a
vertical line segment.

4.4 Special Features of the CE/SE
Method for Isentropic Flows

We conclude the discussion of the CE/SE method for
isentropic flows by the following remarks: (i) Since
the space-time fluxes at the interfaces of CEs cancel
each other, the local conservation conditions, Egs.
(4.5) and (4.6), lead to a global conservation condi-

tion
){"(W)

where V' is the union of any combination of CE4s
and CE_s. Similarly, as a result of Eq. (4.8), Eq.
(4.13) is also valid in the alternative construction
if V' is the union of any combination of CE’s. (ii)
The present marching scheme is a two-level explicit
scheme. Only one set of initial conditions at a single

(4.13)



time level is needed to start the computation, and
the numerical solution is completely determined by
the initial conditions. This is in full compliance with
the flow physics. (iii) Backward marching schemes
can also be constructed using Egs. (4.5) and (4.6).
For each mesh point (j,n), they also imply

ke, -ds =0, (4.14)

-ﬁ(CE+(j—112,ﬂ+l/2))

and

ke, -ds=0. (4.15)

f‘i(CE_(j+l;'2,n+l{2])

Note that the rectangular space-time regions to
the left and the right of the mesh point (j,n) de-
picted in Fig. 4.10 are CE4(j — 1/2,n + 1/2) and
CE_(j + 1/2,n + 1/2), respectively. Previously,

we noted that Egs. (4.5) and (4.6) show that U}
and (U;)} are determined in terms of U;‘i_ll ;22
(U;);';f{: Here, Eqgs. (4.14) and (4.15) show that

U? and (U;)} can be determined in terms of U;I;,{g

and (U,):Illﬁ In other words, the same set of local
conservation conditions that was used to construct
the forward-marching scheme can also be used to
construct the backward-marching scheme. (iv) Re-
call the invariance property of the Euler equations
under space-time inversion that was discussed in Sec.
1.2. Let

and

U = U%(z,1) (4.16)

be a smooth solution to Eq. (2.3). For this solution,
we have

o du°%(z,1)
Ur:Ul(I,t)E—a(z—‘, (417)
for any z and t. Previously, we showed that

U =U°(2z, — z,2t, — t) (4.18)

is also a solution to the Euler equations, Eq. (2.3).
For the above solution, Eq. (4.18), the spatial gradi-
ents of the flow properties can be expressed as
0U°(2z, — z,2t, — t) d(2z,—z)
02z, — z) dz "’
—US(2z0 — 2, 20 — 1) (4.19)

U.

The present numerical analogue to the Euler equa-
tions, Eq. (2.3), also possesses the invariance prop-
erty under space-time inversion. Let (U°)}, and
(U$)? be given at all mesh points (j, n). Let
(U:)] = (U1)}

Up = (U] (4:20)
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be a solution to Egs. (4.5) and (4.6). With the aid
of the equations provided in the previous sections, it
can be shown that

up = (URRT
(U.); = —(UD3sf (4.21)

are also a solution to Eqgs. (4.5) and (4.6). Here,
(2jo — j,2n, — n) is the image of (j,,n,) and vice-
versa, under space-time inversion with respect to
(joymo) (see Fig. 4.11). Note that Egs. (4.20) and
(4.21) are the numerical counterparts of Eqs. (4.16-
17) and (4.18-19), respectively.

It has been shown by numerical experiments that
the present scheme is neutrally stable in the inte-
rior of the computational domain up to at least a
thousand time steps when the Courant number does
not exceed unity. In these numerical experiments
simulating a shock-tube problem, the computational
domain was allowed to grow with time, so that the
undisturbed fluid state could always be prescribed
at the computational boundaries as the exact solu-
tion. As a matter of fact, by using an analysis simi-
lar to that given at the end of Sec. 6 in [6], one can
show that the linearized form of the present numer-
ical analogue is neutrally stable when the Courant
number does not exceed unity. The above conclu-
sions are consistent with a remark made in Sec. 2.3,
i.e., a numerical analogue of the Euler equations that
is stable and also preserves the invariance property
under space-time inversion must be neutrally stable.
The Courant number mentioned above, denoted by
CFL, is defined at each time level n for 1D flow
computations as

([o7 |+ |7 [) At

FL=
¢ mja.x [ Az

where ¢ is the sonic speed. Analogous Courant num-
bers can be defined for 2D flow computations.

To summarize, the present numerical scheme pre-
serves the forward-backward marching nature and
the space-time inversion invariance property of the
Euler equations. The present scheme also meets the
requirements of an ideal numerical analogue set forth
in Sec. 2.4, i.e., it should be neutrally stable, explicit,
and involving only two time levels. The present
scheme can be considered as a nonlinear extension of
the a scheme, i.e., the inviscid (u=0) version of the
a-pt scheme described in [6]. Because the a scheme
is neutrally stable, generally one would expect that
a nonlinear extension of such a scheme is numeri-
cally unstable. The present scheme appears to be
an exception to this common wisdom.



4.5 The Shock-Capturing Scheme

The above marching scheme for isentropic flows can
be expressed as

Uj

—-1/2 -1/2
(U7 Ui/

n-1/2

(Us)j_v/a2

(U)i5a7) » (422)

J+1/2
and
(Uz)? =

H. (Un—uz Un—l,!z

n—1/2
i-1720 Ujaaf2: (Us)

j—1/2"

(U.)}517s ) (4:23)

Here H and H, are column-matrix functions. Their
explicit forms can be obtained from Egs. (5.20)-
(5.29) in [6] with the assumption that the viscosity
p = 0. In the construction of the shock-capturing
scheme, the local conservation condition, Eq. (4.7),
is again assumed. Because Eq. (4.22) follows directly
from Eq. (4.7), the former is incorporated into the
shock-capturing scheme without modification. As
a result, given the same U?;g; and (U,);‘;:;’.f,
the shock-capturing scheme shares with the non-
dissipative scheme the same zero-order terms on the
right sides of Egs. (4.1) and (4.2). In addition, the
shock-capturing scheme observes a global conserva-
tion condition that is also a direct result of Eq. (4.7),
i.e., for any space-time region that is the union of any
combination of the CEs of the type depicted in Fig.
4.3(c), the total flux of h},, m = 1,2,3, leaving its
boundary vanishes.

The shock-capturing scheme is obtained by mod-
ifying Eq. (4.23). To proceed, let

At n-1/2

n—1/2
U; # -Q—(U‘)jil,*‘z’

j+1/2 (4.24)

(U;)}iﬂ:uz =

ie., (U")_;.‘:l:1Jf2 is a first-order Taylor’s approximation
of U at the mesh point (j £ 1/2,n). Thus,

(us)? (U 4172 = (U)ioap
4 Az

is a central-difference approximation of U at the
mesh point (j,nr). In the shock-capturing scheme,
Eq. (4.23) is replaced by

(Uz)7 = (1 - 26)(H.)} + 2¢(UZ)5,

(4.25)

(4.26)

where (H.)} denotes the expression on the right
side of Eq. (4.23), and € is a real number. Note
that (UZ)? is defined in terms of a central-difference
approximation. Generally, numerical dissipation is
introduced as a result of using such an approxi-
mation. On the other hand, (Hr);‘ represents the
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solution from a non-dissipative scheme. The right
side of Eq. (4.26) is a weighted averaged of (H:)7}
and (UZ)? with the weight factor of 1 — 2¢ and 2¢,
respectively. Therefore, one may heuristically con-
clude that the numerical dissipation associated with
the shock-capturing scheme can be increased by in-
creasing the value of . This conclusion is verified by
numerical experiments. As shown in [6], the stabil-
ity domain of the shock-capturing scheme is defined
by

CFL<1 and 0<e<l. (4.27)

Note that Eq. (4.26) can also be expressed as

(U,);‘ = (H; );‘ + 2((DU)_',-‘, (4.28)
(U,);.‘ = (UL) + (2¢ — 1)(DU)J’-', (4-29)

where
(DU);-' = (U;);‘ - (H,);‘ (4.30)

According to Eq. (4.28), (U:)? for the shock-
capturing scheme is the sum of the non-dissipative
term (H.)? and the dissipative term 2¢(DU)?. The
latter provides the necessary entropy-increasing con-
dition within the stability domain defined by Eq.
(4.27). Also it is seen from Egs. (4.28) and (4.29)
that (U;)? reduces to (Hz)} and (U7)} in the cases
of e = 0 and € = 0.5, respectively.

We remark that there is a slight difference between
the shock-capturing scheme defined above and that
defined by Eqs. (4.24)-(4.28) in [6]. Hereafter, the
latter is referred to as the simplified shock-capturing
scheme. Both schemes assume Eq. (4.22). However,
Eq. (4.26) is replaced by

(U:)} = (1= 2¢)(HL)} + 2¢(UZ); (4.31)
in the simplified scheme. Here,
(HL); = (U2)] — (dU)f (4.32)
with
@y = 3 [l + i)
Ui YihE s

Az
Note that (dU)?is the difference of two numeri-
cal approximations to (U,);'_”z: (i) an average

of (U.)irifsand (U:);Ty/3, and (i) a central-
n-1/2

difference approximation in terms of U /,

U::ll;: Also, as a result of Egs. (3.2), (3.3), (4.24),

and



(4.25), (4.32), and (4.33), (H)} is a simple explicit

function of U?;;gand (U :;11;: On the other
hand, as explained earlier, the evaluation of (H:)?
requires the solution of a system three linear equa-

tions at each mesh point (j, n).

It follows from Egs. (4.31) and (4.32) that, in the
simplified scheme, Eqs. (4.28) and (4.29) should be
replaced by

(U.)} = (HZ)7 + 2¢(dU)7 (4.34)

and

(Uz)f = (U2)] + (2¢— 1)(dU)7, (4.35)

respectively.

The reader is reminded that Eq. (4.31) was orig-
inally derived [6] from a “natural generalization” of
the a — € sckeme, which is a solver for a scalar con-
vection equation with a constant convection speed
a. In a paper to be published, the conditions under
which (H.)} can be approximated by (HZ)7 will be
given.

By comparison with the shock-capturing scheme
defined by Eqgs. (4.22) and (4.26), the simplified
scheme is more computationally efficient. Yet the
numerical results are almost identical to those gen-
erated by the former except when € is very small
(<0.03). Note that the stability domain of the sim-
plified scheme is approximately

CFL<1 and 003<e<l. (4.36)

The two shock-capturing schemes described above
generally can capture shocks with high resolution
and without generating substantial numerical oscil-
lations near shock if 0.3 < € < 0.8. To further damp
out these oscillations, (Ug)%in Eq. (4.29) (which is
equivalent to Eq. (4.26)) and Eq. (4.35) (which is
equivalent to Eq. (4.31)) can be modified using a
weighting procedure [6]. Let

(U' ?ilfz - U?

O

(4.37)
Because (U’)7,,/, and U} are the numerical ana-
logues of U at the mesh points (j+1/2, n) and (4, n),
respectively, (Uz4)? and (Uz-)} are two numerical
analogues of U, at the mesh point (j,n), with one
being evaluated from the right and another from the
left. It follows from Eqgs. (4.25) and (4.37) that

(U = 5 (Ve +(U)], (439)
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ie, (Ug)7 is the simple average of (Uz4)? and
(U:-)}. The nonlinear weighting function is defined
as

Y S L T
|24 + |z [

W(z-,z4;a) (4.39)
where z_, z4, and a are real variables with
|z4] 4+ |z-| > 0 and @ > 0. Note that (i)
W(z—,z4;0) is the simple average of z_and z4, and
(ii) W(z—,z4;1) and W(z_,z4;2) are used in the
slope-limiters proposed by van Leer [11] and van Al-
bada et al. [33], respectively.

Recall that (umc4 )] denotes the m-th component
of (U,,-d:);-‘. Let

(uﬁu )? =W [(um!— );‘1 (ﬂm:+)?,a]

Then, as shown in [6], numerical oscillations near
shocks can be suppressed very efficiently if (UZ)7 is
replaced by (U¥)7, i.e., the column matrix formed
by (ume)}s m=1,2,3, if > 1.

(4.40)

4.6 Concept of Dual Space-Time
Mesh and Development of New
Implicit Solvers

In addition to being used in the Euler solvers de-
scribed in this section, the uniform space-time mesh
depicted in Fig. 4.1 was also used in the simplest
CE/SE scheme, i.e., the a scheme referred to ear-
lier. The latter is a solver for the pure convection
equation

(4.41)
where a is a constant convection speed.

The mesh depicted in Fig. 4.1 is staggered in time,
i.e., the mesh points that have the same spatial loca-
tion appear only at alternating time levels. In Fig.
4.12, the mesh depicted in Fig. 4.1 is superimposed
on another staggered mesh, with the mesh points of
the latter being marked by filled triangular symbols.
Hereafter, in this subsection, (i) the mesh depicted
in Fig. 4.1, with its mesh points marked by dots, is
referred to as the original mesh, (ii) the mesh with
its mesh points marked by triangles is referred to as
the alternate mesh, and (iii) the combination of the
above two meshes, i.e., that depicted in Fig. 4.12, is
referred to as the dual mesh. As shown in Fig. 4.13,
a CE of a mesh point marked by a triangle may co-
incide with a CE of another mesh point marked by
a dot.



Obviously, through a similar procedure, one can
construct the a scheme or any CE/SE Euler solver
using the alternate mesh. As a matter of fact, one
can even combine two independent a schemes, one
constructed on the original mesh, and the other on
the alternate mesh. This combined explicit scheme,
referred to as the dual a scheme, has two completely
decoupled solutions.

In [8], the construction of two implicit solvers for
the convection-diffusion equation

fu Ou  Ou

o % Mot
was described. These two solvers are referred to as
the a-p(I1) and a-p(12) schemes, respectively. Here
“I” stands for “implicit”, and is used to distinguish
these schemes from the explicit a-i scheme described
in [1, 4, 6].

=0 (u20) (442

In the case that g = 0, both the a-u(71) and
the a-u(I2) schemes reduce to the non-dissipative
(explicit) dual a scheme. As a result, these two
schemes have the important property that their nu-
merical dissipation approaches zero as the physical
dissipation approaches zero. This property provides
better simulation of nearly inviscid flows (i.e., large-
Reynolds-number flows), and ensures that numerical
dissipation will not overwhelm physical dissipation.
Furthermore, as can be inferred from several discus-
sions in [6], the amplification factors arrived at by
a von Neumann analysis of the dual a scheme are
identical to those of the Leapfrog scheme. In other
words, for the special case yu = 0, the amplification
factors of the a-u(I1) and the a-u(I2) schemes re-
duce to those of the Leapfrog scheme.

In case that g > 0, both a-pu(I1) and a-u(I2)
schemes become implicit. This is consistent with
the fact that, for g > 0, the value of a solution to
Eq. (4.42) at any point (z,t) depends on the initial
data and all the boundary data up to the time ¢.
In other words, an implicit scheme should be used
to solve an initial/boundary-value problem, such as
one involving Eq. (4.42). This requirement becomes
more important as the diffusion term in Eq. (4.42)
becomes more dominant.

Furthermore, for both a-p(I1) and a-pu(I2)
schemes, the solution at the mesh points marked by
dots is coupled with that at the mesh points marked
by triangles if g > 0. Also, it was shown in [8] that,
in the pure diffusion case (i.e., when a = 0), the
principal amplification factors of both a-p(I1) and
a-pu(I2) schemes are identical to the amplification
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factor of the Crank-Nicolson scheme. Note that the
latter has only one amplification factor.

Finally, note that both a-u(I1) and a-p(12)
schemes are stable if the Courant number |v| =
la| At/ Az < 1. Also, both schemes have second-
order accuracy in space and time if v is held con-
stant. This is numerically confirmed in [8].

5 The Euler Solvers for Mul-
tiple Spatial Dimensions

5.1 The 2D Euler Solvers

In Sec. 4, it was established that there were only
two sets of independent marching variables, i.e., (i)
(um);-‘, m=1,2,3,and (i) (4me);,m=1,2,3, at
each mesh point (7, n), if Egs. (3.25, (3.3) and (4.1)-
(4.4) are assumed. As a result, it requires {wo sets of
conservation conditions, i.e., Eqs. (4.5) and (4.6) to
construct the 1D non-dissipative Euler scheme. As
a prerequisite to Eqgs. (4.5) and (4.6), two CEs, i.e.,
CE_(j,n) and CE,(j,n) are defined for each mesh

point (j,n).

The 2D CE/SE non-dissipative Euler solver [5, 7]
was constructed using the same set of design princi-
ples that was used to construct its 1D counterpart.
The differences between them stem entirely from the
fact that there is one more spatial dimension to be
considered in the 2D solver. In this section, only the
basic geometric structures of the 2D solver will be
described. For other details, the reader is referred

to [5].

The 2D unsteady Euler equations of a perfect gas
[5, 7] consist of four independent equations, m = 1,
2, 3, 4, instead of the three equations applicable to
1D flow. Also, in the 2D case, there are two spatial
components of the gradient of each un, (ie., tms
and umy, where z and y are Cartesian coordinates
for the 2D space). This is in contrast to the 1D
case, in which, for each u,,, there is only one spatial
component of the gradient of um (i.e., ¥ms).

In the development of the 2D non-dissipative Eu-
ler solver and its extensions [5], a set of equations
that is a natural 2D extension of Egs. (3.2), (3.3)
and (4.1)-(4.4) is assumed. As a result, there are
three sets of independent marching variables at each
mesh point (j, k,n) (see Figs. 5.1 and 5.2 for the lo-



cations of the mesh points. The reader is referred to
[5, 7] for the definitions of the spatial mesh indices
j and k). They are (um)] (u,,,,,)_;-"Jc and (Umy)j 5
,m=1,2 3, 4. It follows that it requires three
sets of conservation conditions (each set comprises
four conditions, corresponding to m =1, 2, 3, 4) at
each mesh point to construct the 2D non-dissipative
solver. Therefore, as a prerequisite, one must de-
fine 1hree conservation elements for each mesh point.
The construction of these CEs, which is the most in-
triguing part of the development of the 2D CE/SE
Euler solver, will be described in what immediately
follows.

Consider a spatial domain formed by congruent
triangles (see Fig. 5.1). The center of each triangle
is marked by either an empty circle or a filled circle.
The distribution of these empty and filled circles is
such that if the center of a triangle is marked by a
filled (empty) circle, then the centers of the three
neighboring triangles with which the first triangle
shares a side are marked by empty (filled) circles.
As an example, point G, the center of the triangle
ABDF, is marked by a filled circle while points 4, C
and E, the centers of the triangles ABFM, ABJD
and ADLF, respectively, are marked by empty cir-
cles. These centers are the spatial projections of the
space-time mesh points used in the 2D solver [5, 7].

To specify the exact locations of the mesh points
in space-time, one must also specify their temporal
coordinates. In the 2D CE/SE development, again
we assume that the mesh points are located at the
time levels n = 0 +1/2, %1, £+3/2, ..., with t =
n At at the nth time level. Furthermore, we assume
that the spatial projections of the mesh points at a
whole-integer (half-integer) time level are the points
marked by empty (filled) circles in Fig. 5.1.

Let the triangles depicted in Fig. 5.1 lie on the
time level n 0. Then those points marked by
empty circles are the mesh points at this time level.
On the other hand, those points marked by filled
circles are not the mesh points at the time level n =
0. They are only the spatial projections of the mesh
points at half-integer time levels.

Points A, C and E, which are depicted in Figs.
5.1 and 5.2(a), are three mesh points at the time
level n = 0. Point G/, which is depicted in Fig.
5.2(a), is a mesh point at the time level n = 1/2. Its
spatial projection at the time level n = 0 is point G.
Because point G is not a mesh point, it is not marked
by a filled circle in the space-time plots given in Figs.
5.2(a)~(c). Hereafter, only a mesh point, e.g., point
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G', will be marked by a filled or empty circle in a
space-time plot.

The conservation elements associated with point
G' are defined to be the space-time quadrilateral
cylinders GFABG'F'A'B', GBCDG'B'C'D’, and
GDEFG'D'E'F" that are depicted in Fig. 5.2(a).
Here (i) points B, D and F are the vertices of the
triangle with point G being its center (centroid) (see
also Fig. 5.1), and (ii) points A’, B', C', I, E’ and
F’ are on the time level n = 1/2 with their spatial
projections on the time level n = 0 being points 4,
B, C, D, E and F, respectively.

Point G’ is a mesh point at a half-integer time
level. For a mesh point at a whole-integer time-level,
the conservation elements associated with it can be
constructed in a similar fashion. As an example,
consider Fig. 5.2(b). Here points B’ (B"”), I' (I"),
J'(J"), K'(K"), D’ (D"), G’ (G") and C'(C") are
on the time level n = 1/2 (n = 1) with their spa-
tial projections on the time level n = 0, respec-
tively, being the points B, I, J, K, D, G and C
that are depicted in Fig. 5.1. Point C" is a mesh
point at the time level n = 1. By definition, the
conservation elements associated with point C* are
the quadrilateral cylinders C'J'K'D'C"J"K"D",
CFDJGfoCb‘DJJGﬁ'BH' and C.FB!IJJ’CHBH’I!;’J.”'

The CEs associated with point G’ and those asso-
ciated with point C"* are depicted in Figs. 5.2(a) and
5.2(b), respectively. The relative positions of these
six CEs in the global space-time mesh are depicted
in Fig. 5.2(c).

Recall that, in the development of the 1D non-
dissipative Euler solver, a pair of diagonally oppo-
site vertices of each CE4(j,n) (see Figs. 4.3(a) and
(b)) are assigned as mesh points. Furthermore, the
boundary of each CE4(j, n) is a subset of the union
of the SEs associated with the two diagonally oppo-
site mesh points of this CE. In the 2D development,
as seen from Figs. 5.2(a)-(c), two diagonally oppo-
site vertices of each CE are also assigned as mesh
points. In the following, we shall define the SEs
such that even in the 2D case, the boundary of a CE
is again a subset of the union of the SEs associated
with the two diagonally opposite mesh points of this
CE.

As an example, the SE associated with point
G' is depicted in Fig. 5.3(a). It is the
unjon of three vertical rectangles (i.e., G"B"BG,
G'"D" DG and G"F"FG), a horizontal hexagon (i.e.,
A'B'C'D'E'F') and their immediate neighborhood.



Note that points G, B”, D" and F" are on the
time level n = 1 and their spatial projections on the
time level n = 0 are points G, B, D and F, respec-
tively. As another example, the SE associated with
point C is depicted in Fig. 5.3(b). Again, it is the
union of three vertical rectangles (i.e., C"' D" D'C’,
C"'B"B'C' and C"J"'J'C"), a horizontal hexagon
(ie., K"D"G"B"I"J") and their immediate neigh-
borhood. Note that points C*/, D", B"" and J"
are on the time level n = 3/2, and their spatial pro-
jections on the time level n = 0 are points C, D,
B and J, respectively. The definition of the SE of
any mesh point at a half-integer (whole-integer) time
level is similar to the definition of the SE of the point
G'(c").

As depicted in Fig. 5.2(b), one of the CEs associ-
ated with point C"* is the space-time quadrilateral
cylinder C'D'G'B'C"D"G"B". Among the vertices
of this CE, only points C" and G' are mesh points.
From Figs. 5.3(a) and (b), it is seen that (i) three of
the faces of this CE, i.e., G'G"D"D', G'B'B"G" and
G'D'C'B' are subsets of the SE of point G, and (ii)
the other three faces, i.e., C"B"B'C', C"C'D'D"
and C"D"G"B" are subsets of the SE of point C".
As a result, by assuming that the flux of each hj,
(m =1, 2, 3, 4) is conserved over this CE, one can
impose four conditions involving only the indepen-
dent marching variables at the mesh points C" and
G’. Similarly, by using the flux conservation condi-
tions over the other two CEs associated with point
C", one can obtain eight other conditions that re-
late the independent marching variables at the mesh
points C*, I' and K'. Using the above 12 condi-
tions, the 12 independent marching variables, i.e.,
Um, Umz and Upmy, m = 1, 2, 3, 4, at the mesh point
C" can be determined in terms of the independent
marching variables at the mesh points G’, I' and
K'. Similarly, the independent marching variables
at the mesh point G’ (see Fig. 5.2(a)) can be deter-
mined in terms of those at the mesh points 4, C
and E. By considering the mesh point C" (G') as a
typical mesh point at a whole-integer (half-integer)
time level, the reader can understand how the 2D
non-dissipative Euler solver was constructed [5, 7).

The non-dissipative Euler solver is only one of sev-
eral 2D solvers described in [5, 7]. The latter docu-
ment includes the 2D extensions of all but one of the
1D solvers described in [6]. The only exception is the
2D extension of the 1D Navier-Stokes solver. This
will be dealt with in a separate paper. Also, because
of the similarity in their design, each of the 2D exten-
sions shares with its 1D version virtually the same
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fundamental characteristics. As an example, the 2D
non-dissipative Euler solver is neutrally stable, ex-
plicit, and involves only two time levels during a sin-
gle time step. It also preserves the forward-backward
marching nature and the space-time inversion invari-
ance property of the 2D unsteady Euler equations.
These are the same properties that characterize the
1D non-dissipative Euler solver.

The discussion of the 2D Euler solvers is concluded
with the following remarks:

1. Because (i) the spatial geometric structure em-
bedded in the CE/SE 2D space-time mesh is
constructed from triangles, and (ii) triangles
are the simplest polygon in the 2D space, the
CE/SE solvers described in [5] can easily be
modified and extended to solve flow problems
with complex geometries.

Several 2D CE/SE solvers using nonuniform
mesh have been developed [18-22]. Some of the
numerical results generated with these solvers
will be presented in Sec. 6.

Recall that the 1D non-dissipative Euler solver
can be constructed using an alternative perspec-
tive in which the CEs and SEs have the shape of
a rhombus (see Figs. 4.7-4.9). A similar alter-
native perspective can also be used to construct
the 2D non-dissipative Euler solver. In this con-
struction, the 2D counterpart of the rhombus
referred to above is a space-time region with 12
faces.

To visualize the region referred to in remark (c),
above, consider Figs. 5.3(a) and 5.4. Let points A’
and G be joined by a line segment A'G"”. Because
(i) points F' and A’ are at one time level, and (ii)
points F” and G” are at another time level, for any
point P on the line segment A’G” (see Fig 5.4), there
is one and only one point P/ on F'F* such that P
and P’ have the same temporal coordinates. One
face of the space-time region is generated by the line
segment PP" as point P moves from one end of A’G"”
to the other end. Note that, by its definition, the
intersection of this face and a plane of constant ¢
is a straight line. However, it can be shown that
the intersection of the face and a plane of constant
z (constant y) is a hyperbola on a y-t (z-t) plane.
Thus, in general, this face is not a plane. It isa “hy-
perbolic” surface. The same conclusion also follows
from the fact that (i) the face contains four points
A', G", F" and F', and (ii) generally one can not




find a plane in a 3D space-time that contains four
arbitrary points in this space-time,.

Similarly, one can generate the other eleven faces
which, respectively, contain the following quads of
points (i) 4’, G, B", B, (ii) C', G", B", B', (iii)
ct, G, D", D, (iv) E, G" D', D, (V) E',G", F",
F', (vi) 4, G, F, F', (vii) A', G,B, B, (viii) ', G,
B, B, (ix) C', G, D, I, (x) E', G, D, D’ and (xi)
E', G, F, F'. Because the boundary of the space-
time region is formed by 12 “hyperbolic” surfaces, it
may be referred to as a “hyperbolic dodecahedron”.

Point G’ is a mesh point at a half-integer time
level. Similarly, for a point at a whole-integer time
level, eg., the point C” depicted in Fig. 5.3(b), one
can construct a corresponding “hyperbolic dodeca-
hedron”. For the current space-time mesh, the hy-
perbolic dodecahedron associated with a mesh point
at a half-integer level and that at a whole-integer
level are images of each other under space-time in-
version. They are also congruent to each other. Note
that these hyperbolic dodecahedra are constructed
such that they can fill the entire computational do-
main without gaps or overlaps. Each of them plays
the roles of both a CE and a SE in the 2D case, just
as is done by a rhombus in the 1D case.

5.2 The Basis for a 3D Euler Solver

We indicate the discretization of space-time which
forms the basis for a 3D Euler solver currently under
development. The extension of the CE/SE method
to three spatial dimensions follows reasoning similar
to that used when extending the 1D solver to the 2D
case (see the previous subsection). In the 3D case,
the unsteady Euler equations of a perfect gas con-
sist of five independent equations, m =1, 2, 3, 4, 5.
There are three spatial components of the gradient
of each up, (i.e., Umz, Ymy and Upm,, where z, y and z
are Cartesian coordinates for the 3D space). When
piecewise linear variation with space and time are as-
sumed for the numerical solution, as is done in the
1D and 2D cases, and after the differential equation
is assumed valid at each mesh point, there remain
four sets of independent marching variables at each
mesh point. It follows that four sets of conserva-
tion conditions are required at each mesh point to
construct the non-dissipative 3D solver. Hence, four
conservation elements must be defined for each mesh
point. Just as a triangle was the polygon sharing its
bounding edges with three neighbors, so a tetrahe-
dron is the polyhedron sharing its bounding surfaces
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with four neighbors.

In the 2D case, referring to Figs. 5.1 and 5.2(a),
GFAB, GBCD and GDEF are the spatial projec-
tions of the CEs associated with G’. The CEs in
the 3D case can be constructed in analogous fash-
ion. Consider the tetrahedron ABCD with centroid
G, and the tetrahedron ABCP with centroid H,
depicted in Fig. 5.5. They share the face ABC.
The polyhedron GABCH is then defined as the spa-
tial projection of a CE associated with a point G'.
The CE is thus a right cylinder in space-time, with
GABCH as its spatial base. The point G is the spa-
tial image of the mesh point G’, which is displaced
temporally from G by half a time step.

In similar fashion, three additional CEs associ-
ated with the mesh point G’ can be constructed
by considering in turn three tetrahedra that share
with ABCD one of its other three faces. Thus the
numerical solution at G’ can be determined from a
knowledge of the solution at the four mesh points
(one of which is H) which are the centroids of the
tetrahedra sharing a face with ABCD. This forms
the basis of a non-dissipative 3D Euler solver.

Just as the structured mesh of Fig. 5.1 is obtain-
able by sectioning the parallelograms of Fig. 5.1 into
triangles, so it is possible to construct a structured
mesh of tetrahedra by sectioning a mesh of paral-
lelepipeds. Details of the construction will be given
in a future paper.

6 Computational Examples

6.1 Shock Tube with Non-Reflecting
Computational Boundaries

The CE/SE computational results for the extended
shock-tube problem described in Sec. 1 are presented
in this subsection.

Flow of an ideal gas with specific-heat ratio y =
1.4 is considered in an infinite shock-tube. The ini-
tial condition, at time t = 0, is (p,v,p) = (1,0,1)
if z < 0, and (p,v,p) = (0.125,0,0.1) if z > 0.
Here, p,v,p denote the density, velocity, and pres-
sure of the fluid, respectively. A uniform space-time
mesh with Az = 0.01 and At = 0.004 (correspond-
ing to a maximum Courant number of about 0.88)
is used over the computational domain defined by
—-05<z<05andt>0.



The numerical results are generated using the
FORTRAN program listed in the Appendix. The
program implements the 1D simplified shock-
capturing scheme (see Sec. 4.5). The settings € = 0.5
and o = 1 are used for the artificial dissipation pa-
rameters. Note that the results are obtained without
the need of any local mesh-refinement techniques or
any time-step tuning.

The non-reflecting boundary conditions used are

(i) Uy = U777 and (U.)} = (U);2)7 if (j,m)

is a mesh point on the right boundary, and (ii)

-1/2 n n=1/2 . . .
Uy = ;.'_!_11;2 and (U.); = (U’)j+1,{z if (j,n) is
a mesh point on the left boundary. The reasons
why such trivial extrapolations can serve so well
as non-reflecting boundary conditions in the CE/SE

method are explained in a separate paper [40].

Figs. 6.1-6.3 show the numerical solution (tri-
angular data points) compared with the analyti-
cal solution (unbroken line) at three different times,
namely, t = 0.2, 0.4 and 0.6. It is seen that ex-
cellent agreement is obtained between the numerical
results and the analytical solution. In particular,
as seen in Fig. 6.1, the shock wave discontinuity is
resolved almost within one mesh interval and the
contact discontinuity is resolved in four mesh inter-
vals. Fig. 6.2 shows that by ¢ = 0.4, the numerically
computed shock wave has passed cleanly through the
right boundary, with no spurious reflections. Simi-
larly, Fig. 6.3 shows that by t = 0.6, the contact
discontinuity has passed through the right bound-
ary, while the expansion region has partially passed
through the left boundary. Agreement with the ex-
act solution continues to be excellent.

6.2 Convection-Diffusion Examples

The CE/SE computations described in this sub-
section were originally presented in [8], where an
implicit CE/SE solver for the convection-diffusion
equation u; + au; — pugr = 0 (x > 0) was devel-
oped. The solver, termed the a-p(I1) solver and
previously referred to in Sec. 4.6, is an extension of
the a scheme, which is the solver for u; + au, = 0
referted to at the end of Sec. 4.4. See Sec. 4.6
for a brief discussion of how the construction of
the a-u(I1) solver ensures that numerical dissipation
does not overwhelm physical dissipation in large-
Reynolds-number flow computations. The examples
below help show that the scheme is accurate over the
whole Reynolds number range, from pure diffusion
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to convection-dominated solutions.

Pure Diffusion. We consider a special case of
the convection-diffusion equation with a = 0 and
# =1, in the domain 0 < z <1 andt > 0. The
initial/boundary conditions completing the prob-
lem specification are (i) u(0,t) = u(l,t) = 0 for
t > 0, (ii) u(z,0) = 2z for 0 < z < 0.5, and (iii)
u(z,0) = 2(1 — z) for 0.5 < z < 1. The solution
u(z,1) exhibits the diffusive decay of the initial saw-
tooth shape. An exact series solution is available, see
for e.g. p.15 of [34]. For the CE/SE computation,
uniform mesh intervals Az = 0.02 and A¢ = 0.005
are used. Fig. 6.4 shows the time-slice at ¢ = 0.05,
comparing numerical and exact solutions, and also
showing the error scaled with the peak exact value
at that time level. The maximum error magnitude
is seen to be about 0.5% of the peak solution value.
At t =1 (not shown), when the peak solution value
has dwindled to about 4 x 10~5, the maximum er-
ror magnitude is about 0.15% of the peak solution
value,

Boundary Layer, Re = 100. We next consider
the problem defined for the convection-diffusion
equation in the domain 0 < z <1 and ¢ > 0 by the
conditions (i) u(0,#) = 0 for ¢ > 0, (ii) u(1,t) = 1
for t > 0, and (iii) u(z,0) = z for 0 < z < 1. The
‘steady-state’ or time-asymptotic limit of the solu-
tion is u(z, 00) = [explaz/u) — 1] / [exp(a/p) — 1].
The case a = 1, u = 0.01 (i.e. Re = 100) is consid-
ered, which leads to a steady-state boundary layer
at z = 1. Uniform mesh intervals Az = 0.0025 and
At = 0.002 are used, so that the Courant number is
0.8. Fig. 6.5 shows the computed and exact steady-
state limits, together with the error. The boundary
layer is seen to be well resolved, with the maximum
magnitude of the error being about 1% of the solu-
tion peak.

6.3 Shock Wave in a Constant-
Temperature Bath

We next take up a flow problem proposed by Pember
[35]. Consider the one-dimensional Euler equations
with a special heat transfer term in the energy equa-
tion:

U +F.+H=0, (6.1)

where the flow properties U and the flux F are as
defined in Eqs. (2.4) and (2.5). The source term is
defined as H = (0,0, Kp(T' — T,))T. The function

of the source term is to force a constant tempera-



ture T, upon the whole flow field. The equilibrium
counterpart of the relaxation system is

dp

dpv

i} = 6.2
at i Oz 0, (6-%)
dpv . Opv® +p*

= A i L S 3
b 0, (6.3)

where the pressure p*(p) = (7—1)pe., with e, as the
internal energy of the gas at T'= T,. We conducted
the calculation with 201 grid nodes over the z in-
terval 0 < z < 1. The conductivity K in the flow
system was set be to 108, 1012, and 10'®. The re-
laxation time € = 1/K is under-resolved for all three
cases. Essentially, we get the same result for differ-
ent Ks. Figures 6.6(a)—(d) show the flow properties
at ¢ = 0.3. The flow field contains a right-moving
shock and a left-moving rarefaction. The numerical
solution is in agreement with that presented by Jin
[36]. For details of the treatment of source terms in
the present CE/SE method, we refer the reader to

[16].

6.4 Diffraction of a Shock Wave
around a Wedge

According to the experimental shadowgraph results
shown in [37], when a plane shock wave of M, = 1.3
is moving over the beginning of a finite wedge of
semi-vertex angle § = 26.565°, an ordinary Mach
reflection is generated. As the shock wave passes
the base, the flow separates to form vortex sheets at
the sharp corners. Further interaction produces an
increasingly elaborate pattern of shock waves, slip
lines and vortices.

As reported in [18, 21], this flowfield is simulated
using the CE/SE Euler solver. By virtue of the
symmetry in the solution, attention is restricted to
the upper half of the domain. The extent of the
computational domain is set based on an estima-
tion from Fig. 522 in [37]. The shock wave is at
2z = —0.5 at £ = 0. The numerical boundary con-
dition imposed on the vertical wall of the wedge is
described in [20]. Numerical solutions at eight time
levels (t = 0.725, 0.9075, 1.2125, 1.55, 1.825, 2.1375,
2.4875, and 2.9475), obtained by using two subdo-
mains with 321x89 and 209x34 mesh points, and
with At = 0.0025, are shown in Fig. 6.7. It should
be pointed out that the upper and lower walls of the
channel shown in the shadowgraphs of [37] are actu-
ally further apart than the top and bottom edges of
the shadowgraphs. Therefore some flow phenomena
that are seen in Fig. 6.7, in the region near the upper
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wall, are lost in shadowgraphs, especially at the 4th
time level. Comparisons of the computed solutions
with experimental pictures of [37] have shown an ex-
cellent agreement in general flow features except for
those phenomena induced by the effect of viscosity.
The shock waves, slip lines and vortices are captured
very well.

6.5 Implosion/Explosion of Polygo-
nal Shock Waves in a Box

The 2-D CE/SE Euler solver has been used in [22]
to solve a problem studied in [38], concerning the
implosion/explosion of a polygonal shock wave in a
square box. In addition to the early stage of the
implosion/explosion process, the later development
of the process, which was not studied in [38], is also
simulated in [22]. The computation further demon-
strates the robustness of the CE/SE Euler scheme
in handling discontinuous flows.

A uniformly distributed 241x241 grid is utilized
in the computational domain, which is a square de-
fined by =2 < z < 2 and —2 < y < 2. The initial
shock wave configuration is a polygon, the geomet-
ric center of which coincides with that of the square.
Inside the polygon is a low pressure region, with a
pressure ratio of 10 across the shock. The radius of
the circumscribed circle of the polygon is selected to
be 0.8y/3 for all shapes of the polygon. In the nu-
merical scheme, the two parameters € and « are set
to be 0.5 and 1 respectively, everywhere in the com-
putational domain for all cases, and the maximum
Courant number is always kept at a value of 0.9.

In one set of computations, the early flowfield is
studied for polygonal shock waves with initial shapes
of an equilateral triangle, a square, and a pentagon.
The density contour plots at different time levels are
shown in Fig. 6.8. Wave patterns similar to those
captured in Figs. 1-5 of [38] using a TVD method
on a 359x359 grid are clearly shown in the CE/SE
solutions, displaying detailed features such as Mach
stems and the newly-developed smaller polygons.

In another computation, the implosion/explosion
of a hexagonal shock wave is simulated until the re-
implosion of the shock wave is observed in the box.
More complex flow phenomena can be seen in the
density contour plots of Fig. 6.9, including the reflec-
tions of shock waves, shock-shock interaction, and
shock-contact surface interaction. It is interesting
to note that the shape of the contact surface cen-



tered at the origin of the box remains unchanged
even after the passage of shock waves.

6.6 Examples from Computational
Aeroacoustics

The CE/SE computational examples we describe in
the next two subsections were reported in [9] and
[15]. The investigations in [9] and [15] found the
CE/SE Euler scheme to be capable of handling the
complete spectrum of flows, from small-amplitude
linear acoustic waves, all the way to nonlinear or
even discontinuous waves (shocks). Through nu-
merical experiments in computational aeroacoustics,
the following salient properties of the CE/SE Eu-
ler scheme emerge: (i)The CE/SE scheme possesses
very low dispersion error and yields high resolution
results comparable to that of a high order compact
difference scheme, although nominally the CE/SE
scheme is only of 2nd order accuracy. (ii) In gen-
eral, the numerical non-reflecting boundary condi-
tion applicable to the CE/SE scheme is genuinely
multi-dimensional, and can be implemented in a sim-
ple and elegant way without resorting to the com-
plexities of characteristic forms or buffer zones. (iii)
The CE/SE scheme is both a CFD ( Computa-
tional Fluid Dynamics) and a CAA (Computational
Aeroacoustics) scheme, capable of handling contin-
uous and discontinuous flows. It thus represents a
unique numerical technique for flows where sound
waves and shocks and their interactions are impor-
tant.

It is well-known that in CAA, the non-reflecting
boundary condition plays a dominant role in the fi-
nal numerical results. In general, there are three
ways to impose the non-reflecting boundary condi-
tions, namely,

(i) to apply 1-D characteristic variables (Riemann
invariants) in the direction normal to the boundary,

(ii) to minimize spurious numerical reflections
from the boundaries by inserting a buffer zone with
increased numerical damping,

(iii) to apply an asymptotic analytical solution at
the boundaries.

In the new CE/SE scheme, none of the above
complex treatments of non-reflecting boundary con-
ditions is needed. Instead, a simple non-reflecting
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boundary condition is:

(um:)?'i,- = (Umy);",k =0, m=1,2,3,4,
while (um)7 ;. is defined by simple extrapolation from
the interior neighbors. In general, the consequent
reflection amounts to about 1% of the strength of
the incident waves.

6.7 Acoustic Waves Generated by a
Flat-Plate Loudspeaker

In our first example, a continuous wave problem is
considered. The physical domain is a rectangle, as
shown as in Fig. 6.10. A mesh of 200 x 200 nodes is
employed over a domain of length 300 in = and 200
in y. The background mean flow is a uniform one in
the x direction, with Mach number M = 0.5. The
mean flow is given by

ug = M, 1.4

v =0, po=1, P0=l: 7=
Y
where the subscript 0 identifies mean flow quanti-
ties. At the center of the inlet boundary, a small
vertical flat plate of size 1/10 of the height of the
domain is vibrating in the x direction, generating a

perturbation to the mean flow that is given by

u* = 0.01sin (-ﬂ-—t)
5

Fig. 6.10 illustrates the isobars at time { = 600. For
clear display, 800 uniform contour levels are used.
In Fig. 6.10, the well-known acoustic directivity pat-
tern of a flat plate loudspeaker is clearly seen, and
practically no reflection at the four boundaries is ob-
served.

6.8 Acoustic Pulse / Shock-Wave In-
teraction

In order to demonstrate the capability of the CE/SE
scheme to handle interactions of acoustic waves and
shock waves, we describe an example of a weak
acoustic pulse wave passing through a strong shock.
We use a mesh of 200 x 200 nodes. The domain
is centered at the origin (0,0), with an extent of
—100 < z < 100 and —100 < y < 100. A steady
oblique shock at a position along a diagonal of the
computational domain is precalculated to form part
of the initial condition for the computation. The



initial conditions of an isolated acoustic pulse are
superimposed on this precalculated shock to form
the initial condition of the given problem. The data
upstream and downstream of the shock are respec-
tively

g = 2.378056, vg =0,
pPo = 1 and Po= 07142857,
and
ug = 2.1017481, vy = 0.4062729,
po = 15807555 and po = 1.3713613.

A weak acoustic pulse propagating across a strong
shock is considered. An acoustic pulse, initially cen-
tered at (zo,¥0) = (—75,0), with initial data

ce—elz=0)+(y=30)’]

is superimposed on the mean flow, where the ini-
tial pulse amplitude ¢ = 0.001 and a = (In2)/9. It
is observed that the oblique shock strength is three
orders of magnitude larger than the initial ampli-
tude of the acoustic pulse. The pulse propagates in
all directions with the speed of sound, while being
carried downstream by the mean flow. During the
computation, the non-reflecting boundary condition
described above is enforced at all the four sides of
the computational domain.

For such an interaction between a weak ( linear)
wave and a discontinuous wave, the theoretical exact
solution is not available. However, the numerical re-
sults obtained with the CE/SE scheme demonstrate
physically plausible phenomena. Fig. 6.11 illustrates
the isobars at various time steps. At first, the acous-
tic pulse is blown downstream and propagates freely.
As the pulse collides with the strong oblique shock,
the shock is practically unaffected, while the acous-
tic pulse ring is distorted in its passage through the
shock, due to different speeds of sound and flow ve-
locities on either side of the oblique shock.

In other examples described in [9] and [15], the in-
teractions of a strong (i.e. nonlinear) acoustic pulse,
and of weak and strong vortical and entropy pulses
with a strong shock were computed. Currently, the
CE/SE method is being applied to benchmark prob-
lems in CAA, and has proved to be exceptionally
accurate.
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7 Summary and Conclusions

In the present article, we reviewed the method of
space-time conservation element and solution ele-
ment (the CE/SE method, for short) for the nu-
merical solution of conservation laws. We described
several CE/SE schemes for computing fluid flows,
and touched upon other CE/SE schemes and exten-
sions. Our descriptions emphasized the geometry of
the space-time discretization.

We examined salient general properties of solu-
tions to the Euler equations for time-dependent com-
pressible flow. From this, we arrived at requirements
for a scheme to be an ideal Euler solver. An ideal
solver for smooth flows must be neutrally stable, ex-
plicit and two-level, and must be such that the dis-
crete equations are invariant under space-time in-
version. The CE/SE non-dissipative Euler solvers
for isentropic flows meet all these requirements. In
the present article, we described the non-dissipative
1D and 2D Euler solvers in terms of the conserva-
tion of piecewise linear space-time fluxes over dis-
crete space-time volumes. Thus, given the space-
time discretization, the schemes have a simple spec-
ification in terms of flux conservation. When shock
waves are present in the solution, numerical dissi-
pation must be introduced into numerical schemes
in a controllable fashion, to model the irreversibil-
ity in the exact solution. We described the shock-
capturing 1D Euler solver, which is a modification
of the non-dissipative solver. The added numeri-
cal dissipation has a simple geometric description
and a straightforward generalization to the 2D case.
The Navier-Stokes solvers, not described here, re-
duce to the non-dissipative solvers when the physi-
cal viscosity vanishes, and hence the latter is never
overwhelmed by numerical dissipation.

We contrasted the structure and properties of the
CE/SE 1D Euler solvers with those typical of high-
resolution finite-volume upwind schemes. The key
strategies that enable the CE/SE schemes to avoid
the limitations of the upwind schemes are: (i) The
more general form of the conservation laws, i.e., the
integral form, is cast in a form in which space and
time are treated on an equal footing. This gives flex-
ibility in the shape of the space-time conservation
elements, which is useful for defining CEs when, for
e.g., sources are present in the CE. (ii) A staggered
space-time mesh is employed. This results in the
simplest stencil. It also obviates the need for in-
terpolation of fluxes at the interface between CEs.
Thus, there is no need for an approximate Riemann



solver. Hence, characteristics-based upwind-biasing
methods, which are complicated and strictly valid
only for smooth solutions, are avoided. There is thus
also no compromise in the symmetry of treatment
of the spatial fluxes. This also has implications for
flows in multiple spatial dimensions. For the com-
putation of such flows, upwind techniques must use
directional splitting with its attendant difficulties.
The CE/SE method in multiple spatial dimensions,
on the other hand, does not involve any directional
splitting. (iii) The flow property gradient is treated
as an additional unknown in the CE/SE schemes.
Therefore, there is no need for reconstruction of the
flow gradient by polynomial curve fitting over neigh-
boring mesh points, and for the subsequent use of
complicated flux limiters. (iv) Space-time fluxes are
conserved at both the local and global level. The
condition of flux conservation, rather than any ex-
trapolation, links the solution at a mesh point with
its neighbors at the previous time level. This empha-
sis on the integral conservation law is critical for ac-
curate flow simulations, particularly if they involve
long marching times and/or regions of rapid change
(e.g., boundary layers and shocks).

We reproduced here several numerical results ob-
tained with various CE/SE flow solvers. The re-
sults included a demonstration of extremely simple
yet highly effective non-reflecting boundary condi-
tions for the extended Sod’s shock-tube problem.
The CE/SE solver for the scalar convection-diffusion
equation was shown to be accurate in all Reynolds
number regimes. The CE/SE solver for the Eu-
ler equations with source terms representing heat-
ing/cooling was also shown to be accurate, even
when the source term is of the order of 10'5. We re-
produced numerical solutions obtained with the 2D
CE/SE Euler solver, including the process of diffrac-
tion of a shock wave around a wedge and the implo-
sion/explosion of a polygonal shock wave in a box, as
well as computational aeroacoustic phenomena in-
volving the interaction of strong shocks and weak
acoustics. The results reproduced here are only some
of the difficult problems readily solved with CE/SE
schemes; see [1-9] and [13-22] for more examples.

We remark here that the CE/SE schemes devel-
oped thus far are characterized by simplicity, gen-
erality of applicability and second-order accuracy
in space and time. The simplest possible stencils
are employed. The 2D spatial mesh is constructed
from triangles, and the 3D spatial mesh will be con-
structed from tetrahedra. Triangles and tetrahedra
are the simplest polytopes in 2D and 3D, respec-
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tively. The 1D and 2D Euler solvers bear a remark-
able resemblance to the solvers of the 1D and 2D
scalar convection-diffusion equations, respectively,
with the discrete equations in the former two be-
ing matrix versions of the scalar equations in the
latter two. All of the above schemes are character-
ized by virtually the same properties. Furthermore,
the viscous flow solvers are designed to reduce to the
respective non-dissipative solvers when the physical
viscosity vanishes. The CE/SE method thus rep-
resents a new unified framework for the numerical
solution of conservation laws. The concept of the
dual space-time mesh, that was explained in Sec.
4.6, plays a key role in the development of implicit
viscous solvers. It is also essential in the application
of the CE/SE method to 2D unstructured meshes,
when the triangles in space can not be segregated
into two sets which are dual to each other. A 2D
Euler solver which uses an unstructured mesh, and
a 2D implicit Navier-Stokes solver are currently un-
der development. -
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Appendix 5 continue

open (unit=8,file=’for008’)
write (8,10) tt,it,ia,nx
write (8,20) dt,dx,ga
write (8,30) rhol,ul,pl,cl
write (8,40) rhor,ur,pr,cr

The CE/SE 1D Euler Solver solves
the extended Sod’'s shock-tube problem

implicit real*8(a-h,o-z)
parameter (nxd=1000)
dimension gq(3,nxd), qn(3,nxd),

gx(3,nxd), qt(3,nxd), do 400 i = 1»1F

s(3,nxd), vx1(3), vxr(3), Bis Bx f i- (i/2)2

xx(nxd) do 100 j = 1,m

w2 = q(2,j)/q(1,3)

nx must be an odd integer. w3 = q(3,3)/q(1,3)
nx = 101 121 = —a3*w2**2
it = 100 122 = al2+#*w2
dt = 0.4d-2 131 = al#w2#*3 - ga*w2+w3
dx = 0.1d-1 132 = ga*uwld - ad*ul**2
ga = 1.4d0 £33 = ga*w2
rhol = 1.d0 qt(1,3j) = -qx(2,j)
ul = 0.d0 qt(2,j) = =(£21%qx(1,j) + £22*qx(2,j)
pl = 1.d0 * + alxqx(3,3))
cl = 1.40 qt(3,j) = —(£31*qx(1,j) + £32%qx(2,j)
rhor = 0.125d0 * + 133#qx(3,3))
ur = 0.d0 s(1,j) = qdx*qx(1,j) + dtx*(q(2,j)
pr = 0.1d0 * + qdt*qt(2,j))
cr = 1.d0 s(2,j) = qdx*qx(2,j) + dtx*
B & (£21%(q(1,j) + qdt*qt(4,3))

+ 122%(q(2,j)+ qdt*qt(2,3))

axi = nx + 1 * + al*(q(3,j) + qdt*qt(3,3)))

nx2 = nx1/2 s(3,j) = qdx*qx(3,j) + dtx*

hdt = dt/2.d0 (£31%(q(1,3) + qdt*qt(1,j))
tt = hdt*dfloat(it) + 132%(q(2,j) + qdt*qt(2,3))
qdt = dt/4.do + £33%(q(3,3j) + qdt*qt(3,3)))
hdx = dx/2.d0 100 continue

gqdx = dx/4.d0 if (i.ne.(i/2)#*2) goto 150

dtx = dt/dx do 120 k = 1,3

al = ga - 1.40 qx(k,1)= cl*qx(k,1)

a2 = 3.d0 - ga qx(k,nx1) = cr*qx(k,nx)

a3 = a2/2.d0 qn(k,1) = q(k,1)

qn(k,nx1) = q(k,nx)
120 continue
160 ji =1 -1

a4 = 1.5d0%*al
u2l = rhol#*ul

u3l = pl/ai + 0.5d0*rhol*ul**2 x
u2r = rhor#ur mm =m =1
u3r = pr/al + 0.5d0*rhor*ur¥*2 do 200 j = 1,mm
do B j = 1,312 do 200 k = 1,3
q(1,j) = rhol qn(k,j+j1) = 0.5d0*(q(k,j) + q(k,j+1)
q(2,j) = u21 * + 8(k,j) - s(k,j+1))
q(3,3) = u31 vxl(k) = (qn(k,j+j1) - q(k,j)
q(i,nx2+j) = rhor * B hdt*qt(k,j))/hdx
q(2,nx2+j) = u2r vxr(k) = (q(k,j+1) + hdt*qt(k,j+1)
q(3,nx2+j) = u3r * - gn(k,j+j1))/hdx
do 5 i=1,3 qx(k,j+j1) =

* (vx1(k)*(dabs(vxr(k)))**ia

qx(i,j) = 0.40

qx(i,nx2+j) = 0.d0 * + vxr(k)*(dabs(vxl(k)))#*+*ia)/
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* ((dabs(vxl(k)))**ia

* 4+ (dabs(vxr(k)))#**ia +1.d-60)
continue

m=nxi - i+ (i/2)%2

do 300 j = 1,m

do 300 k = 1,3

q(kaj) = qn(kaj)

continue

continue

m = nxi -it + (it/2)#*2

mm=m - 1

xx(1) = -0.5d0*dx*dfloat (mm)

do 600 j = 1i,mm

xx(j+1) = xx(j) + dx

continue

do 600 j = 1,m

x = q(2,j)/q(1,3)

z = al*(q(3,j) - 0.5d0*x**2%q(1,j))
y = x/dsqrt(ga*z/q(1,3))

write (8,50) xx(j),q(1,j),x,y.2
continue

close (unit=8)
format(' t = ?,£8.4,? it = ’,i4,
* ' ia ',i4,? nx = ?,14)
format(’ dt 1,18.4,7 dx = ',18.4,
* ’ gamma = ’,18.4)
format(’ rhol = ’,f8.4,7 ul = ’,18.4,
* ' pl = ?,£8.4,7 ¢l = *,18.4)
format(’ rhor = ?,f8.4,' ur = ?,18.4,
* ! pr = ',f8.4," ¢cr = ?,18.4)
format(’ x =',f8.4,’ rho =',18.4,
'n=*,18.4,°" M =? ,18.4,
» p =?,18.4)

non

stop
end
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Figure 2.1 — Space-time conservation clements for methods using a fixed
spatial domain: (a) one space dimension (b) two space dimensions x

Figure 2.2 — A space-time conservation element with an
1 Ax ] arbitrary space-time domain
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Figure 3.2 — Estimating interface solution value from left (L)
and right (R), in an upwind scheme

Figure 3.1 —The direction of information transfer (shown by arrows)
during spatial flux estimation in an upwind scheme
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Figure 5.1 — A spatial domain formed from congruent triangles,
showing the spatial projections of the mesh points

Figure 5.2 — (a) The CEs associated with G' (b) the CEs associated with C* Figure 5.3(a) — The SE associated with the point G*
(c) The relative positions of the CEs of successive time steps
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Figure 5.4 — The SE of alternative type associated with G*

Figure 5.5 — Spatial projection of part of a 3D space-time mesh,
showing the construction of a CE

Fig. 6.2 The CESE soluton of the extended Sod's problem at r=0.4

Fig. 6.1 The CE/SE solution of the extended Sod's problem at /0.2
(CTL=0.84, 4X=0.01. a=1)

(CFL=0.84, 4X=0.01, a=1)

(B}
oe

or
o8

Denslty

Dansly

0.3
ot

~a : -0.1
. X ~0.84  -035  -on o a.13 038
X

Yalaaity
I3
e

Yaiosily

-0 : -0 :
-0.08 -3 =a.1 all -5~ a.84 =-0.845 =03 =0.11 2.1 X LX)
x x

Prassura

ap

- =0,1
=068 -0.33 =011 LT} 033 LR -0.33 =033 =011 a1 LB-L} LEL]
X x

31



density

06

Fig #.) The CE/SE solution of the catended Sod's problem ate= 05+ -0.005
(CrL-0.84, AX=001, a=1) \
1 LA
3 1 A i
O Lt N o000 I
orf i
i o} g 0.3 ? g
a E : 1-0.005
aif = 0.2F %
- om -1 oa1 033 083 4 ooy 2]
-0.53 "k o1l <ee--=. scaled ermor 1-0.010
exact solution
08502 04 06 o8 10015
x
Figure 6.4 — Implicit a-p Scheme : Pure Diffusion

=001 a1l
x

2.3

=033 -0.33 10w ‘
. ogf  * compuedw 4 Joo10
.. T T} e scaled error :
€ ] 06}k exact solution :
E [LE3 4 ’: E
* it 7 T T TP a i 0.000
0.4}
o 1 - %
=01 4
=035 =033 =241 % .1 2.3 a.38 02 d 3
1-0.010
0.0

0.1 ; .
0.0 0.2 0.4

X

1.0

velocity

0.0 02 04 06 08 10

X —

Figure 6.5 — Implicit a-) Scheme : Boundary Layer, Re = 100

Figure 6.6(b) — Shock in a constant temperature bath with K = 10" :
velocity distribution at t = 0.3

Figure 6.6(a) — Shock in a constant temperature bath with K = 10" :
density distribution at r=0.3
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temperature distribution at t = 0.3
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