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In this paper, we report a version of the space-time conservation element and
solution element (CE/SE) method in which the 2D and 3D unsteady Euler equations
are simulated using structured or unstructured quadrilateral and hexahedral meshes,
respectively. In the present method, mesh values of flow variables and their spatial
derivatives are treated as independent unknowns to be solved for. At each mesh point,
the value of a flow variable is obtained by imposing a flux conservation condition. On
the other hand, the spatial derivatives are evaluated using afinite-difference/weighted-
average procedure. Note that the present extension retains many key advantages of the
original CE/SE method which uses triangular and tetrahedral meshes, respectively,
forits 2D and 3D applications. These advantages include efficient parallel computing,
ease of implementing nonreflecting boundary conditions, high-fidelity resolution of
shocks and waves, and a genuinely multidimensional formulation without the need
to use a dimensional-splitting approach. In particular, because Riemann solvers—
the cornerstones of the Godunov-type upwind schemes—are not needed to capture
shocks, the computational logic of the present method is considerably simpler. To
demonstrate the capability of the present method, numerical results are presented
for several benchmark problems including oblique shock reflection, supersonic flow
over a wedge, and a 3D detonation flowg 2002 Eisevier Science
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1. INTRODUCTION

The space-time conservation element and solution element (CE/SE) method, origin
proposed by Chang and co-workers [1-13], is a hew numerical framework for solvi
conservation laws. The CE/SE method is not an incremental improvement of a previol
existing CFD method, and it differs substantially from other well-established methods. T
CE/SE method has many nontraditional features, including a unified treatment of space
time, the introduction of conservation element and solution element, and a novel shc
capturing strategy that does not use Riemann solvers. Note that conservation elemen
nonoverlapping space-time subdomains introduced such that (i) the computational dor
is the union of these subdomains and (ii) flux conservation can be enforced over each oft
and also over the union of any combination of them. In contrast, each solution elemer
a space-time subdomain over which any physical flux vector is approximated using sin
smooth functions. In general, a conservation element does not coincide with a solu
element.

To date, numerous highly accurate CE/SE steady and unsteady solutions with Mach r
bers ranging from 0.0028 to 10 have been obtained without using preconditioning or ot
special techniques [1-26]. The flow phenomena modeled include traveling and interac
shocks, acoustic waves, shedding vortices, detonation waves, and cavitation. In partic
the rather unique capability of the CE/SE method to resolve both strong shocks and s
disturbances (e.g., acoustic waves) simultaneously has been verified through severe
curate predictions of experimental data [15-17]. Note tivatle numerical dissipation is
required for shock resolution, it may also result in annihilation of small disturbances. Th
a solver that can handle both strong shocks and small disturbances simultaneously r
be able to overcome this difficultfhe design principles of the CE/SE method have bee
extensively illustrated in the cited references. In this paper, a brief description of the CE
method is provided as the background of the present work.

Perhaps one of the most important features of the CE/SE method is the adoptiol
an integral form of space-time flux conservation as the cornerstone for the subseq
numerical discretization. Note that one derives the conventional finite-volume methc
based on Reynolds transport theorem [27], in which space and time are treated separ
As will be shown, this separate treatment of space and time imposes a restriction on
space-time geometry of finite volumes and, as a result, classical Riemann problems
natually in the course of flux evaluation across an interface. In contrast, because of its
fied treatment of space and time, Chang’s flux conservation formulation allows a chc
of the space-time geometry of CEs that makes it unnecessary to solve Riemann p
lems. To clarify this fundamental difference, in this Introduction, we first review the col
ventional integral form for hyperbolic conservation laws in Section 1.1 as a contrast
Chang's integral form, which is described in Section 1.2. The original CE/SE method
reviewed in Section 1.3, and the objectives and outline of the present work are presentt
Section 1.4.

1.1. Conventional Finite-Volume Methods
Consider the differential form of a conservation law, i.e.,

au
— +V.-h=0, 1.1
8t+—— (3.1)
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whereu is the density of the conserved quantityjs the spatial flux vector, an¥ - is
the spatial divergence operator. Note that, to distingush a spatial object from a space-
object (see below), hereafter the former will be denoted by an underline. By using Reynolc
transport theorem, one can obtain the conventional integral form of Eq. (1.1), i.e.,

d
—fu@Wf h-ds=0, (12)
ot Jv SV)

whereV is afixed spatial domaifi.e., a “control volume”)dv is a spatial volume element,
S(V) is the boundary oY/, andds = do n with do andn, respectively, being the area and
the unit outward normal vector of a surface elemengow). By integrating Eq. (1.2) over
the time intervalts, tf), one obtains

s [ fee

t
+/ dt]f h.-ds=0. (1.3)
ts SV)

The discretization of Eq. (1.3) is the focus of conventional finite-volume methods [27].

t=ts

1.2. The Space-Time Flux Conservation Formulation

Let En denote arN-dimensional Euclidean space in whigh x», ..., Xy_1 are spatial
coordinates angy = t, V- be the divergence operatorti, andh def (h,u). ThenEg. (1.1)
impliesV - h = 0. As a result, Gauss’s divergence theorerijpnimplies

7{ h.ds=0. (1.4)
S(V)

As depicted in Fig. 1, her8(V) is the boundary of an arbitragpace-timeegionV in Ey
andds = do n with do andn, respectively, being the area and the unit outward normal of
surface element 08(V). Note that: (i) becaude- dsis thespace-timélux of h leaving the

FIG. 1. A surface element on the bounde®V) of a volumeV in a space-timés,.
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regionV through the surface elemeds, Eq. (1.4) simply states that the totglace-time
flux of h leavingV through S(V) vanishes; and (ii) all mathematical operations can b
carried out as thougky were an ordinar\N-dimensional Euclidean space.

Let N = 2. For this casex; = x andx, =t; h = hy; V - h = dh,/dx; and a “surface
element” onS(V) and the “area” of this element reduce to a line segment and the length
this segment, respectively (see Fig. 1). Note that, for an arbiWfathe spatial projection
V(1) of the cross section of at timet generally varies with. The exception occurs only
if V is a cylinder with its axis being parallel to the time axis, such as the rectamRbD
depicted in Fig. 2a. In this cas¥,(t) is independent af and thus it can be considered as a
“control volume.”

Let V be the rectangl&BCD depicted in Fig. 2a. Thes(V) is formed by the line
segmentsAB, BC, CD, andDA. Lett =t; atCD, t = t; at AB, X = xs at BC, and

x
— |
>

W= (1,0 T=0,0

(@ w=(0,-1)

\ L 4 @
& & &
t L & L g
& & L g

(©

FIG. 2. Space-time geometry of the conventional finite volume methdg,in(a) A rectangle irE,. (b) A
spatial cylinder aligned in the direction, (c) A regular space-time mesh.
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X = x; at DA. Then becausk = (hy, u), with the aid of Fig. 2a, Eq. (1.4) implies

Xt Xt i tt
[/ udx} — {/ udx] + [/ hxdt] - {/ hxdt} =0. (1.5
Xs t=t¢ Xs t=ts ts X=Xt ts X=X

= = S

Note that Eq. (1.3) reduces to Eq. (1.5) for the 1D unsteady case in Whishhe spatial
cylinder of constant cross section depicted in Fig.&2b; u(x, t), andh = (hy, 0, 0) with
hy = hy(Xx, t).

Note that generally the discretization of Eq. (1.3) is carried out by dividing the enti
space-time computational domain into space-time CEs. Each CE is a cylinder in spe
time with its spatial projection being the control volundeand its top and bottom faces
representing two constant time levels. Because the control volume is a fixed spatial dorr
these CEs generally are stacked up exactly on the top of each other; i.e., no staggerir
CEs in time is allowed (see Fig. 2c for tid = 2 case). With this arrangement of CEs,
the vertical interface that separates any two neighboring columns of CEs will always
sandwiched between two neighboring columns of mesh points (marked by dots in Fig. :
As such, flux at the vertical interface of two neighboring CEs generally must be evaluatec
interpolating the data from the mesh points embedded in these two CEs. Determining |
thisinterpolation should be carried out properly under varying solution behavior is a diffic
problem. As will be shownwith a new space-time arrangement of CEs and mesh point
and a proper definition of SEs, the above difficult interpolation problem can be bypass
completely

1.3. The CE/SE Method
As an example, the CE/SE method will be described by considering the PDE

ou . d@au)
at ax

0, (1.6)

wherea is a constant. Obviously the integral form of Eq. (1.6) is Eq. (1.4) Wtk 2 and
h = (au, u).

To proceed, le¥ denote the set of all mesh pointska (dots in Fig. 3a). Eachj, n) € ¥
is associated with a solution element, i.e.(§|). By definition, SE |, n) is the interior of
the space-time region bounded by a dashed curve depicted in Fig. 3b. Itincludes a horizc
line segment, a vertical line segment, and their immediate neighborhood.

For any(x, t) € SE(j, n), u(x, t) andh(x, t), respectively, are approximated by

U, t: . ) ZTUT 4 U)X — X))+ ()t — t7) (1.7)

and

ef

h*(x, t; j, n) de (@u*(x, t; j,n), u*(x,t; j, n)). (1.8)

Note thatu'l-‘, u,)", and(ut)’j1 are constants in SE, n); (x;, t") are the coordinates of the
mesh poini(j, n); and Eqg. (1.8) is the numerical analogue of the definitica (au, u).
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FIG. 3. The SEs and CEs of the a scheme. (a) A staggered space-time mesh(jj))SE) CE_(j, n).
(d) CE.(j, m). () CE(, n).

Letu = u*(x, t; j, n) satisfy Eq. (1.6) within SE, n). Then one hagu,)! = —a(uy)!.
As aresult, Eq. (1.7) reduces to

ut(x, t; j,n) = uf + U][(x —xj) —at —thH], (X, t) € SK(j, n); (1.9)
ie., u’j1 and(ux)’j1 are the only independent marching variables associatedyitt).

Let E; be divided into nonoverlapping rectangular regions (see Fig. 3a) referred
as conservation elements. As depicted in Figs. 3c and 3d, two CEs, i.e(j Gk and
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CE.(j, n), are associated with each interior mesh pg@iptn) € . These CEs will be
referred to abasic conservation elemerfBCEs). Contrarily, CEj, n) (see Fig. 3e), which

is the union of CE (j, n) and CE_(j, n), will be referred to as a compounded conservatior
element (CCE).

Note that, among the line segments forming the boundary of(¢H), AB and AD
belong to SEj, n), while CB and CD belong to SEj — 1/2, n — 1/2). Similarly, the
boundary of CE.(j, n) belongs to either Sg§, n) or SEj + 1/2, n — 1/2). As a result, by
imposing two conservation conditions at egg¢hn) € ¥, i.e.,

]{ h*.ds=0, (j,n) eV, (1.10)
S(CEL(j,n)

and using Eqgs. (1.8) and (1.9), one has (i)

1 _ _ _ _
0 = 2{@+nul 35+ A— ol 3s+ v (e - wdg] ) @l

and, assuming  v2 # 0, (ii)

@l =3[ - - a-wed - aroeniig a1
Herey &' aAt/Ax and(uj)rj1 def (Ax/4)(ux)'j‘. Thea scheme [1, 5, 8], the explicit nondis-
sipative CE/SE solver for Eq. (1.6), is formed by Egs. (1.11) and (1.12).

According to Eqg. (1.10), the total flux df* leaving the boundary of any BCE is zero.
Because the surface integration over any interface separating two neighboring BCE
evaluated using the information from a single SE, obviously the local conservation relat
Eqg. (1.10) leads to a global flux conservation relation; the,total flux ofh* leaving the
boundary of any space-time region that is the union of any combination of BCEs will al
vanish In particular, because CE(n) is the union of CE(j, n) and CE_(j, n),

?{ h*.ds=0, (j,n) eWw, (1.13)
S(CE(j,n)

must follow from Eq. (1.10). In factit can be shown that Eq. (1.13) is equivalent to
Eqg. (1.11)

In addition to the nondissipativeescheme, there is a broad family of dissipative CE/SE
solvers of Eqg. (1.6) in which only the less stringent conservation condition Eq. (1.13)
assumed [2, 3, 5, 8]. Because Eq. (1.13) is equivalent to Eq. (1.11), for each of th
schemesy" is still evaluated using Eq. (1.11) whi(e;)rj‘ is evaluated using an equation
different from Eq. (1.12). Among these schemes is one (referred to as-thecheme)
which is among the simplest and yet capable of handling solutions with discontinuities. |
this scheme(uy)] is evaluated using a finite-difference/weighted-average procedure whi
involves a parameter (see Egs. (2.62), (2.63), and (2.65) in [12]). The key disadvantac
of thea—« scheme and its extensions (see below) is that, compared with the more gen
CE/SE schemes, they allow for less freedom in adjusting numerical dissipation. As explai
in Section 5.5 of [9], this inflexibility may impose a constraint on the performance of the
schemes in numerical simulations involving highly nonuniform meshes.
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The above description of the CE/SE development is based on a simple PDE. Howeve
represents the essence of the general CE/SE development which may involve a syste
conservation laws in one, two, or three spatial dimensions. In particular, note that:

(&) The 1D Euler extension of tleeo scheme, which first appears in [2], has been show
to be an accurate and robust shock-capturing solver [2, 3, 5, 6].

(b) Inthe original 2D extension of the CE/SE method [4, 6—-10], triangles are used as
basic building blocks of the spatial meshes. Corresponding to the three sides of a triar
three BCEs are defined for each mesh point. The union of the three BCEs at a mesh po
the CCE at the same mesh point. Among the family of 2D CE/SE schemes described it
6-10], the 2Da scheme, which has three unknownsly, anduy at each mesh point, are
constructed by imposing three conservation conditions over the three BCEs at each n
point. In contrast, only one conservation condition (imposed over the CCE) per mesh p
and per conservation law is used in the construction of the 2D Edlerscheme (i.e.,
the scheme defined by Egs. (6.54), (6.107), and (6.108) in [8]). Because of its simplic
accuracy, and roubustness, all the numerical results presentedin [4, 8, 9] are generated
the 2D Eulera—« scheme.

(c) The 3D Euleta—« scheme [11] is a straightforward extension of the 2D Ealer
scheme taking into account that: (i) tetrahedrons are used as the basic building blocks c
spatial meshes; and (ii) corresponding to the four sides of a tetrahedron, the CCE at
mesh point is the union of the four BCEs defined at the same mesh point.

1.4. The Objectives and Outline of the Present Work

In this paper, the 2D and 3D unstructured-mast Euler schemes are constructed using
quadrilateral and hexahedral meshes, respectively. It is shown that the present sch
are also simple, robust, and accurate. The rest of the paper is organized as follows.
2D and 3D solvers along with their key properties are described in Sections 2 anc
respectively. Numerical examples are presented in Section 4 to demonstrate the capab
of the present solvers. The concept of local and global flux conservation for the presen
scheme with an unstructured mesh along with a post-marching procedure for handlir
possible “solution decoupling” problem is discussed in the Appendix. Concluding rema
are given in Section 5.

2. THE 2D UNSTEADY EULER SOLVER

Consider the standard conservation form of the two-dimensional unsteady Euler equat
of a perfect gas [9],

4+ 24 ==0, m=12234, 2.1

ot * X * ay (2.1)
wheref,, andgm, m = 1, 2, 3, 4, are explicit functions of the independent flow variahigs
m=1,2 3,4[9]. Letx; = X, X2 = y, andxz = t be the coordinates of a three-dimensional
Euclidean spacEs. Then, inthe case thaf, are smooth functions o, y, z, andt, Eq. (2.1)
can be derived from the more fundamental conservation laws

f{ hm-ds=0, m=12 3 4, 2.2)
S(V)
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where S(V) andds were defined following Eq. (1.4) antl, d=6f(fm, Om, Um). Note that

Eg. (2.2) is valid even in the presence of flow discontinuities.
For the future development, let

foe & 0fm/0Us,  Ome = dQm/dU;, M, € =12 3 4. (2.3)

2.1. Conservation Elements and Solution Elements

Consider Fig. 4a. Here the-y plane is divided into nonoverlapping convex quadrilateral
and any two neighboring quadrilaterals share a common side. Moreover, (i) vertices .
centroids of quadrilaterals are marked by dots and circles, respectivey;igithe centroid
of atypical quadrilateraB, B, BB ; (iii) A;, Ay, Az andAy, respectively, are the centroids
of the four quadrilaterals neighboring to the quadrilat@&aB, B, B4; and (iv) Q* (marked

(®)

FIG. 4. Space-time geometry of the 2D scheme. (a) Representative grid pointsdintipdane. (b) SEs and
CEs. (c) Spatial translation of the quadrilatefalA; AL A;.
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generally does not coincide with poiQ) is referred to as the solution point associated witt
the centroidQ. Note that pointsA7, A5, A3, andAj, which are also marked by crosses, are
the solution points associated with the centrofds A,, As, and A4, respectively.

Next consider Fig. 4b. Hete= nAt atthenth timelevel 0 =0, 1/2, 1, 3/2, ...) and for
agivenn> 0, Q, Q’, andQ”, respectively, denote the points on thid, the(n — 1/2)th,
and the(n + 1/2)th time levels with pointQ (see Fig. 4a) being their common spatial
projection. Other space-time mesh points, such as those depicted in Fig. 4b, and also
not depicted, are defined similarly. In particul®, A, A}, A5, and A}, by definition, lie
on thenth time level and, respectively, are the space-time solution mesh points associ
with pointsQ, A, Az, Az, andA,, andQ™, AT, AS, AY, and A}, by definition, lie on the
(n — 1/2)th time level and, respectively, are the space-time solution mesh points associ
with pointsQ’, Aj, A, A, andAj.

With the above preliminaries, the solution element of pdit denoted by SEQ*),
is defined as the union of the five plane segmept®” By B;, Q'Q”"B;B;, Q'Q"B; B3,
Q'Q"By Bj, andA; B; A2 B, A3 B3 A4 B4 and their immediate neighborhoods. Moreover, the
four basic conservation elements (BCEs) of paihtdenoted by CHQ), £ =1, 2, 3, 4,
are defined to be the space-time cylindérsB; QB, A B Q'B;, A>B,QB,A;B,Q'B,
A3Bs QB A;B;Q'B;, andAsB4Q Bz A, B, Q' B, respectively. In addition, the compounded
conservation element of poi@, denoted by CEQ), is defined to be the space-time cylinder
A1B1 A2 By Az Bs AsBa A} B AL B, AL B3 AL By, e, the union of the above four BCEs.

In this section, the set of the space-time mesh points whose spatial projections are
centroids of quadrilaterals depicted in Fig. 4a is denote2 layd the set of the space-time
mesh points whose spatial projections are the solution points depicted in Fig. 4a is den
by @*. Note that the BCEs and the CCE of any mesh peifit and the SE of any mesh
pointe Q* are defined in a manner identical to that described earlier for G@entd Q*.

2.2. Approximations within a Solution Element

For any Q* € Q* and any(x, y, t) € SHQ*), um(X, ¥, ), fm(X,y¥,1), Om(X, y, ), and
hm(X, y, t), respectively, are approximated b, (x, y, t; Q*), fr(X,y,t; Q%), g5 (X, Y,
t; Q*), andh’ (x, y, t; Q*) (see below). For ansn = 1, 2, 3, 4, let

U5 Yt Q9 L (Unor 4 (Uni)gr (X — Xo+) + (Umy) o (Y — Yor) + (Ump) - ( — t),
(2.4)

where (Xq-, Yo-, t") are the coordinates of the space-time solution mesh p@tnand
(Um) @+, (Umx) @+, (Umy) @+, and(umt) g+, Which are constants in $0*), are the numerical
analogues of the values of,, 0un /90X, dum/dy, andduy,/dt at pointQ*, respectively.

Let (fm)o+, (Om)a+, (fme)or, and(gm,¢) o~ denote the values of the functiorig, gm,
fm.¢, andgm., respectively, when,, m = 1, 2, 3, 4, respectively, assumes the values o
(Um)g-, m=1, 2, 3, 4. Then, for anyn, we define

4 4
(fmx)Q* dZEfZ(fm,Z)Q*(UZx)Q*» (gmx)Q* dZEfZ(gm,Z)Q*(UZx)Q*v (2.5&)
(=1 (=1

4 4
(e £ (fndo U)o Gmpo £ (@moo Uy,  (2.5b)

=1 (=1
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4 4
(fae £ (fnooUmg. @mo T Y @moe-Ung.  (250)
(=1 =1
Because
fm o Uy
Im_§~g,, 2 2.6
ox m™Ex (2.6)

and because the expression on the right side of the first equation in Eq. (2.5a) is the nume
analogue of that on the right side of Eq. (2.6) at pddtt (fmx)q- can be considered as
the numerical analogue of the valuedff,/dx at pointQ*. Similarly, (gmx) g+, (fmy) o,
(Imy) o+, (fmp) o+, and(gmt) - can be considered as the numerical analogues of the valu
of 3gm/9X, 3fm/0Y, 00m/aY, dfm/0t, andagm,/at at pointQ*, respectively. As a result, for
anym =1, 2, 3, 4, we define
fax Y.t Q) E (f)gr + (fmd g (X — X@) + (fmp)r (¥ = Yor) + (fnd @ (t — t7)
(2.7)

and

g%, ¥t Q%) £ (gm) o + (@mdo (X — Xo) + (Gmy) o (Y — Yor) + (Gmi)ge (t — 7).

(2.8)

Also, as an analogue to, dzef( fm, Om, Um), foranym =1, 2, 3, 4, we define

haO, Yt QY E (FE0 v, 6 Q9), gL Y, £ Q9), U5 (X, Y.t Q7). (2.9)

Note that, by their definitions: (ij fm)g-, (Om)o*, (fm¢)g+, and(gm)q- are functions
of (Um)g+, m=1, 2,3, 4; (ii) (fmx) o+ and(gmx)q- are functions ofum)g- and (Umy) o,
m=1, 2,3, 4;(iii) (fmy)o- @and(gmy) o- are functions ofum) o- and(Umy) o+, M=1, 2, 3, 4;
and (iv) (fmt) o~ and(gmet) o+ are functions ofum) g+ and(Umt) g+, m=1, 2, 3, 4.

To proceed, we also assume that, for axyy, t) € SE(Q*), and anym=1, 2, 3, 4,

Ium(X, y, t; Q%) + Ifn(x, y, t; Q") n Igm(x, Yy, 1 QY _

0. (2.10)
at X dy

Note that Eq. (2.10) is the numerical analogue of Eq. (2.1). With the aid of Egs. (2.4), (2.
(2.8), (2.5a), and (2.5b), Eq. (2.10) implies that, for amy- 1, 2, 3, 4,

4

(Umpor = —(fmx)or — (Omy)or = — Z[(fm,z)Q*(Uex)Q* + (Ome)o-(Ugy)o+]. (2.11)
-1

Thus(Umy) o- is a function of(um) g+, (Umx) @+, and(Umy) g+, M = 1, 2, 3, 4. From this result
and the facts stated following Eq. (2.9), one concludestti@bnly independent discrete
solution variables associated with the space-time solution pofn&m® (Um) o+, (Umx) g+
and(Umy)g-, m=1,2,3, 4.
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2.3. Evaluation of(um) q-
Based on Figs. 4a and 4b, we introduce the following preliminaries:

(a) The boundary of CE)) belongs to the union of SB)*) and SEA}), £ =1, 2, 3, 4.
Specifically, (i) the octagorA; B; A;B,A3B3z A4B4 belongs to SEQ*); (ii) the quadri-
laterals A} B;Q'By, A1B;BsA;, and A]B;B;1A; belong to SEAY); (iii) the quadrilat-
erals A;B,Q'B;, A,B;B1 Ay, and A,B;B, A, belong to SEAY); (iv) the quadrilaterals
A;B;Q'B5, A5B;ByAs3, and ASB;B3A; belong to SEAY); and (v) the quadrilaterals
A,B,Q'B;, A}B;Bs A4, and A B, Bs A4 belong to SEA]). Note that, by definition, (i) the
guadrilateralsA; B; Q By, A2B,QB:, A3B3Q By, and A4B,Q Bz, which form the octagon
A1B1A;By A3B3 AsB4 (the top face of CEQ)), also belong to SEA}), SHAS), SHAY),
and SEA}), respectively; and (ii) the octagoly, B A, B; A3 B3 A, B (the bottom face of
the CHQ)) also belongs to SE&*). However, in the evaluation of Eq. (2.13) (see below),
by assumption, the top face of CB) is considered to be a subset of (8E) while the
bottom face is considered to be the union of subsets ¢ASE ¢ = 1, 2, 3, 4.

(b) LetI" be a space-time plane segment lying within(QE). Let A be the area of,
(X, Yo, tc) be the coordinates of the centroid Bf andn be a unit vector normal td'.
Then, becausey, (x, y, t; Q*), fi(x,y, t; Q%), andg;,(x, y, t; Q*) are linear inx, y, and
t, Eg. (2.9) implies that

/ h* - ds= h} (X, Ye, te; Q) - An, (2.12)
r

whereds = do n with do being the area of a surface elementlan

(c) Let Sdenote the area of the top fage B A, B, A3B3 A4B4 of CE(Q). Because the
unit outward normal vector (outward from the interior of @B) of this face is(0, 0, 1),
its surface vector (i.e., the unit outward normal vector multiplied by the arg@) @ S).

(d) Let (x%, y"), £ =1, 2,3, 4, denote the spatial coordinates of the centroids of th
quadrilateralsA; B; Q'B,, A,B,Q'B;, A;B;Q'B5, and A B, Q’'B;, respectively, and let
S, £ =1,2,3, 4, denote the areas of the above four quadrilaterals, respectively. Tt
(xt, yb, 1712y ¢ =1, 2, 3, 4, are the coordinates of the above four centroids, respective
and (0,0, —S, £ =1, 2, 3,4, are the surface vectors of the above four quadrilateral
respectively. Furthermore, because the above four quadrilaterals form the bottom fac
CE(Q) and because the area of the top face of @Hs identical to that of the bottom face,
one concludes th& = "7_; S'.

(e) Let the eight side face@l BAB4A]_, Aa_ BZ,l B A, A/Z BZ,I. B, A, A/Z Bé B, As, Aé Bé B, Az,
A;B;BsAs, A,B;B3A4, and A, B, B, A4 of CE(Q) be assigned the indice4, 1), (2, 1),
1,2, (2,2, (1,3), (2,3), (1,4, and(2, 4), respectively. Hereafter each side face with
the indices(k, ¢) is referred to as thék, ¢) side face. For each by definition, the(l, ¢)
and (2, ¢) side faces belong to $B;). Because the spatial projection of each side fac
is a line segment on the-y plane and because each side face is sandwiched between
(n — 1/2)th and thenth time levels, one concludes that, for ttke ¢) side face, its surface
vector and the coordinates of its centroid, respectively, are giverby2) 1{ (n,, nﬁy, 0)
and (x¢. Yi. t" — At/4). Hereay, (ng,. ni,), and(x¢. V), respectively, denote the length,
the unit outward normal (on the-y plane), and the coordinates of the midpoint of the
spatial projection of thek, ¢) side face.

(f) Note that: (i) (xo+, Yo+, t") are the coordinates of the centra@f of the top face
A1B1A;ByA3B3 A4B, Of CE(Q); (II) U*m(XQ*, yQ*,tn; Q" = (Um)Q* (See Eqg. (24))1 and
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(iii) the surface vector of the top face (6, 0, S). As a result, Egs. (2.9) and (2.12) imply
that the flux ofh, leaving CEQ) through its top face isum)o-S. Similarly, by using the
information presented in items (a), (b), (d), and (e), the flukjpleaving the other faces
of CE(Q) can be evaluated in terms of the independent marching variables at pgints
=123 4.

Let

7( h* .ds=0, m=1234, (2.13)
S(CE(Q)

i.e., the total flux ot leaving CEQ) through its boundary vanishes. Then, with the aid
of the above preliminaries, it can be shown that

4
(Um)q: = (Z R@)/s m=1234, (2.14)
(=1

where, foranym, ¢ =1, 2, 3, 4,

2
* At 1%
R = ST unO<, y5, 172 AT = 3 A f (X6 v 17— At /4 A7)
k=1
+ gy O (X Vi " — At /4 A (2.15)

Because, by definitiort, = t"~%/2 for any pointA’;, here the functionsi® (x, y, t; A’}),
frx(x,y, t; A7), andgs (X, y, t; A}) are defined using Egs. (2.4), (2.7), and (2.8), respec
tively, with the symbolsQ* andt" in these equations being replaced Af§j andt"~%/2,
respectively. As a result, eadRf, and therefore eactum)q:, an independent marching
variable at thenth time level, is a function of several independent marching variables at tl
(n —1/2)th time level, i.e.(Um) az, (Umx) A, aNd(Umy) A, M, £ = 1,2, 3, 4.

2.4. Evaluation of(umx) g+ and (Umy) o

A finite-difference approach similar to that given in [10] is employed here to evalua
(Umx) @~ and(umy) g+ . First, we perform a spatial translation of the quadrilatéighs AL A}
so that the centroid of the resulting new quadrilateéf@hJ A3 A3 coincides withQ* (see
Fig. 4c). Let the centroid of the quadrilateraf A5 AA; and its spatial coordinates be
denoted byA* and(xa, ya-), respectively. Theiix e, yae), the spatial coordinates @€,
are

Xpe = Xpr + Xgr — Xar and yao = yar + Yot —Ya, £=1234 (2.16)
To proceed, let
(Um)ae ZTUE (Xao, e, tT AG), m£=1,2,3,4. (2.17)

Next, for anym = 1, 2, 3, 4, consider the three points in thxe-y—u space with the co-
ordinates(Xq+, Yq+, (Um)q+), (Xag, Yas, (Um)a2), @and(Xag, Yag, (Um) ag), respectively. The
values ofdu/ax andou/dy on the plane that intercepts the three points are given by

(U)o Eax/a and (U)o Eay/a (a£0, 218)
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where
A XA T X Y Yo (2.19a)
Xpg — X+ Yag — Yor
 def [ Um) g — (Um)Q> Ya = Yor | (2.19b)
(Um)Ag - (Um)Q* YA — Yo
and
A, % Um)ag — (Um)Qs  XqQr — Xa ’ . (2.19¢)
(um)Ag — (Um)gr Xg= — Xag

Note that: (i)A = 0 if and only if the spatial projections @&}, A3 and Q* are collinear;
and (i) similarly, (u¥)) o- and(ui) o+, k = 2, 3, 4, are defined, respectively, by replacing
the pointsA? and A3 in the above operations with§ and A3, A3 and A}, and A] and A,
respectively.

With the above preliminaries, for each =1, 2, 3, 4, (Umx)q- and (Umy)o- May be
evaluated by

4 4

1 1
(Umx) g = 2 Z (Ur(TI&) o (Umy) g = 1 Z (Ugf;,) Q- (2.20)

k=1 k=1

Alternatively, for a flow with steep gradients or discontinuities, the simple averages
Eqg. (2.20) may be replaced by weighted averages, i.e.,

0, if k=0, k=1,2, 3,4,
Umde = S T(WE) (U o]/ iy (WE9)",  otherwise
(2.21a)

and

Un) , if onk=0,k=1,2, 3,4,
Unyv)or = . 3 _
e Shea [ (W) (Uﬁil)Q*]/Zﬁzl(Wr(nk)) , otherwise

(2.21b)

Herea > 0 is an adjustable constant (usually= 1 ora = 2),

ok £/ [(089) . )7 + [(UR) o7 mk=1.23.4 (222)

and

1) def 2) def def 4) def
Wr(n) = 9m29m39m4, Wéq) = 9m39m49m1s W,f) = 9m49m19m2a Wr(n) = 9m19m29m3~

(2.23)

Note that: (i) to avoid dividing by zero, in practice a small positive number such & 10
is added to the denominators that appear in Egs. (2.21a) and (2.21b); and (ii) Egs. (2.
and (2.21b) reduce to Eq. (2.20)if= 0.
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2.5. Remarks and Discussion

The present 2D Euler solver is formed using Egs. (2.14), (2.21a), and (2.21b). Stabi
of the solver generally requires that> 0 and that the maximalFL number<1. Also,
with @ > 1, the solver is capable of suppressing numerical oscillations near a discontinu
and solutions generated by the solver tend to become more smearedGi_thember
decreases or the value @fincreases. Other key properties of this solver are given in th
following remarks:

(a) The stencil of the present explicit solver is formed by one point at the upper time le
and four points at the lower time level. Because the spatial projections of the four point:
the lower time level are the immediate neighbors of that of the point at the upper time ley
the stencil is staggered in space-time, and it is the most compact among the schemes:
guadrilateral meshes. As a result, the solver is ideal for parallel computations.

(b) For a uniform mesh, points such @ Q*, and A* referred to earlier coincide with
one another. In this case, the present solver can be greatly simplified. Also, by using
arguments presented in [8, 9] and also by numerical experiments, it can be shown tha
simplified scheme is second order in accuracy.

(c) The present scheme is applicable to both structured and unstructured meshes. |
structured mesh, the st may be divided into two disjoint subse®s; andQ2* with the
following property: If any point, say poin@*, belongs taQ* (2*), then the six space-
time solution mesh points immediately neighboring to p&it i.e., pointsQ’*, Q”*, and
A;, £ =1,2 3,4, belong toQ* (22*). Because, for each= 1, 2, 3,4, points A’; and
A; are immediate neighbors of each other and thus they must belong to different subs
one concludes that poin@* and A}, ¢ = 1, 2, 3, 4, which form the stencil of the present
marching scheme, belong to the same subset. From the above observations, it is seel
each ofQ% andQ* represents ataggeredpace-time mesh. As such, the entire space-tim
mesh is a dual space-time mesh [9], i.e., the union of two disjoint staggered space-t
meshes. Furthermore, it is also obvious that the marchingseyes completely decoupled
fromthat over2* ,i.e., marching needs to be carried out only over one of these two stagge
space-time meshes, unless the decoupling is prevented by other factors such as the bou
conditions imposed. Note that boundary values generally are not updated using the
marching scheme. As a result, solution valuedfandQ* may become coupled near a
boundary (see Section 4).

(d) Consider the decoupling case referred to in item (c). Let a space-time mesh p«
belong to2, (2_) if and only if its associated space-time solution mesh point belonc
to Q% (22*). Then it is obvious that the sét is formed by the two disjoint se®, and
Q_. Moreover, the CCEs of the mesh pointsSin (2_) do not overlap among them-
selves and they can fill any domain k. Furthermore, because the surface integratiol
over any interface separating two neighboring and nonoverlapping CCEs is evaluated
ing the information from the same SE (i.e., the flux leaving a CCE through its interfa
with a neighboring CCE is the negative of the flux leaving the neighboring CCE throu
this interface), a summation of the local conservation conditions Eq. (2.13) over the m
pointsQ € Q. (2_) leads to a global conservation condition, i.e., for eaxch 1, 2, 3, 4,
the total flux ofh’ leaving the boundary of any space-time region that is the union «
any combination of the CCEs associated with (2_) vanishes. Note that a similar
discussion for the general case in which decoupling may not occur will be given in t
Appendix.
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(e) The present solver and the triangular-mesh-based solver described in [10] are |
structed using similar techniques. Using these techniques and their trivial extensions,
can easily develop a 2D CE/SE solver for spatial meshes formed by polygons of differ
shapes. An advantage of using such a mixed mesh is that a geometrically complex sf
subdomain can be filled easily using triangles while a less complex subdomain, such
near-wall region, can be filled using more regular shaped polygons such as quadrilatel

(f) Because of the space-time staggering nature of the stencil of the present schen
solution of the present schenmmeayappear as the overlapping of two distinctively different
solutions (especially in a high-gradient region) after many marching steps. The significa
of this “solution decoupling” problem and how to handle it are discussed in the Append
Note that this problem could occur even in the absence of a complete ahd2* decou-
pling referred to earlier. Also, because the solution decoupling problem is not significant
the test problems discussed in Section 4, the numerical results presented there are gen
without using the post-marching procedure described in the Appendix.

3. THE 3D UNSTEADY EULER SOLVER

For the current 3D case, Egs. (2.1)—(2.3) are replaced by

dun  dfnm  9gm  9Qm
—+—4+—4+—=0, m=123,45, 31
at + ax + ay + dz (3.1)

hm-ds=0, m=12345, 3.2)
S(V)

and
def def def
fme = 0fm/0Ue, Ome = 00m/0Ug, Omye = 00m/0U;, M, £=1,2 34,5 (3.3)

respectively. Herd, dzef(fm, Om, Om> Um) and the three-dimensional Euclidean sp&ge
referred to in Section 2 is replaced in the current case by the four-dimensional Euclid
spacek, with X3 =X, Xo =Y, X3 =2z, andx, =t.

3.1. Conservation Elements and Solution Elements

The spatial computational domain is divided into nonoverlapping convex hexahedr
of arbitrary shape with the understanding that any two neighboring hexahedrons sl
a common face. In Fig. 8 (marked by a circle) is the centroid of a typical hexahedror
hexahedron’s six neighboring hexahedrons is arbitrarily assigned an identification in
£=12...,6,ie., the neighboring hexahedron with the index referred to as théth
neighbor of the central hexahedron. Also, the centroid oftheneighbor will be denoted
by A,. As an example, the central hexahedron and its first neighbor is separated by
guadrilateraB; B4BgBs in Fig. 5.

With the above preliminaries, we proceed with the following definitions:

(@) PointQ and the two end points (say poirés andB,) of any of the twelve edges of
the central hexahedron form a triangle. Each of the twelve triangles so formed is arbitra
assigned anindek= 1,2, 3, ..., 12 and denoted b (j).
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A *
1 x A
Bs Bg
B4
= B
: Q Q* B4
1
%Y S D B,
B> Bs

FIG.5. Representative grid points in tlxey—z space.

(b) Given any¢ =1,2,...,6, a triangle is formed by the poi#, and the two end
points of any of the four edges of the interface (a quadrilateral) that separates the cel
hexahedron and itéth neighbor. Each of the four triangles so formed with the sé@me
is arbitrarily assigned an index= 1, 2, 3, 4, and denoted bw\(k, £). As an example,
AA1B1B4, AAB4sBg, AA1BgBs, andAA;BsB, depiCted in Flg 5 have the samie= 1.
Therefore they may be denoted hy1, 1), A(2, 1), A(3, 1), andA(4, 1), respectively.
referred to as the solution point associated with p@ntNote that the above 24-faced
polyhedron hereafter is denoted ¥y24) and the centroid o¥ (24) is denoted byQ* and
marked by a cross in Fig. 5.

(d) Givenany = 1,2, ..., 6, pointsQ andA, and the four vertices of the quadrilateral
interface that separates the central hexahedron artthitseighbor are the vertices of a
octahedron. This octahedron hereafter is denoted (8y ¢).

In the space-time computational domain, again we assume thatAt at thenth time
level (h=0,1/2,1,3/2,...). Also, for a givenn > 0, let Q, Q’, and Q” (not shown),
respectively, be the points on thth, (n — 1/2)th, and(n + 1/2)th time levels with poinQ
being their common spatial projection. Other space-time mesh points sucRas Q™
(i) Bk, B, andB/,k=1,23,4,5,6,7,8; and (iii) A,, A}, A,,andAf, ¢ =1,2,...,6,
are defined similarly. Because geometric objectgjrgenerally are difficult to visualize,
they will be described analytically in the following discussions.

To proceed, note that a “plane” (termed a hyperplan&)irby definition, is a subspace
of E4 defined by a linear equation i.e.,

X +ay +agz+agt = a, ((@)?+ (@) + (a3)? + (an)? # 0), (3.4)

wherea,, k=0, 1,2, 3,4, are constants. As a result, a hyperplaneEinis a three-
dimensional subspace. The unit normal to the hyperplane is

(a1, ap, ag, au)
n==+ .
V(@2 + (@2)2 + (a3)? + (as)?

Note that a hyperplane segment, by definition, is a bounded region of a hyperplane.

(3.5)
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Two types of hyperplane segmentsipare involved in the definition of SEs to be given
shortly. A hyperplane segment of type |, denotedltiy/; t.), is formed by all the points
(X, Y, z,1) that satisfy the conditionts= t; and(X, vy, z) € V, wheret. is a constant ang’
denotes a 3D spatial region. Obviously, the equatient. is a special form of Eq. (3.4).
Also, it can be shown that:

(@) The unit normal ta"(V; tc) is (0, 0, 0, &1).

(b) The “area” ofl"(V; t¢) is the volume olV.

(c) The coordinates of the centroid BtV ; tc) are(Xc, Ye, Z, tc), where(Xc, Y, Zc) are
the coordinates of the centroid 9f.

In contrast, a hyperplane segment of type I, denoteb¢8; t_, t, ), is formed by all the
points(x, vy, z, t) that satisfy the conditions, y, z) € Sandt_ <t <t,, whereSdenotes
a spatial plane segment andandt, (t_ < t,) are constants. Note that every padirt y, z)
on the spatial plane segme®tatisfies a linear equation of the form

CIX + Gy + CaZ=Co. ((C1)? + (C2)* + (C3)* # 0), (3.6)
wherecg, k =0, 1, 2, 3, are constants. Thus every poixt y,z,t) onT'(St_,t,) also

satisfies a special form of Eq. (3.4), i.e., Eq. (3.6). Moreover, it can be shown that:

(&) The unit normal ta*(S;t_, t,) is (n, 0), wheren is the unit normal to the spatial
plane segmerf, i.e.,

(Cy1, C2, C3)

n==+ .
T V(C)2 4 ()2 + (C3)?

3.7)

(b) The “area” ofl'(S; t_, t,) is the area o multiplied by (t, —t_).
(c) The coordinates of the centroid B{S; t_, t,) are (X, Ve, Z, (t_ +t;)/2), where
(Xe, Ye, Zo) are the coordinates of the centroid®f

In addition to the above two types of hyperplanes, we shall also consider “hypercylinde
in E4. A hypercylinder, denoted by (V; t_, t,), is formed by all the point&, vy, z, t) that
satisfy the conditiongx, y,z) € V andt_ <t <t,, whereV is a 3D spatial region and
andt, (t_ <t,) are constants.

With the above preliminaries, $B*), the solution element of poir@*—the point that
lies on thenth time level and ha®* as its spatial projection—is defined to be the union of
I'(V(24);t") andl(A(j); t"Y2 t"1/2) j =1, 2,3,...,12, and theirimmediate neigh-
borhoods. Moreover, the six BCEs of poi@ denoted by CHQ), ¢ =1,2,...,6, are
defined to be the hypercylinders(V (8; £); t"%2,t"), ¢ = 1,2, ..., 6, respectively. In
addition, the CCE of poinQ, denoted by CEQ), is defined to beA (V (24); t"~1/2 t"),
i.e., the union of the above six BCEs.

In this section, the set of the space-time mesh points whose spatial projections are
centroids of the hexahedrons that fill the 3D spatial computational domain is denaied b
and the set of the space-time mesh points whose spatial projections are the solution p
of the centroids just referred to is denoted®y. Note that the BCEs and the CCE of any
mesh pointe Q and the SE of any mesh poiatQ* are defined in a manner identical to
that described earlier for poin€@ and Q*.
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3.2. Approximations within a Solution Element

ForanyQ* € Q*and(x, y, z,t) € SE(Q*),Uum(X, VY, z,t), fn(X, ¥,z 1t),0n(X, Y, Z,1),
gm(X, Y, z, t), andhn (X, y, z, t) are approximated by, (x, y, z, t; Q%), fr(X,y, z, t; Q%),
O (X, Y, 2z, t; Q), gn(X, Yy, z, t; Q%), andh;, (X, y, z, t; Q*), respectively (see below). For
anym=1,2 3,4,5, let

U5 0G Y 2t Q9 E (Um)gr + Umdor (X — Xg) + (Umy) o+ (Y — Yor)

+ (Um2 o+ (Z — Zg+) + (UmD g+ (t — t), (3.8)
f20 Y, 26 Q9 E (for + (fmdor (X — Xoo) + (fay) o (Y — Yor)

+ (fm)o-(Z — 2g-) + (fmp - (t — t"), (3.9)
g%, ¥, 2.t Q) £ (Gn)or + (Gmo- (X — Xgo) + (Gmy)a- (Y — Yor)

+ (Om2) 0+ (Z — Zg*) + (Gmo) @+ (t — t7), (3.10)
0%, ¥, 2t Q) £ (@m)o + @ (X — X) + (Gmy)o- (Y — Vo)

+ (GmD o (Z — 2g) + @mdgr (t — M), (3.11)

and

e Y. 2t QY E (Fr .y, 2.t Q%) gh(x. Y.z t; Q)

an(X, ¥, 2,1, Q%), un(x,y, zt; Q%) (3.12)

be the 3D extension of Egs. (2.4) and (2.7)—(2.9). Note that, in this section it is implicif

assumed that any notation that has a similar 2D version is defined similarly. The definit

of such a notation will not be given explicitly here unless confusion could occur.
Moreover, we assume that, for at, y, z, t) € SE(Q*), and anyn =1, 2, 3, 4, 5,

oup (X, y, t; Q%) Afr(X, y,t; Q%) agm(X, Yy, t; Q%)  dgn(x,y, t; Q)
+ + +
ot aX ay 9z

=0.

(3.13)
Thus, foranyn =1, 2, 3, 4, 5,
(Um) Q" = —(fmx) o — (Gmy)@* — (UmD @+
= - ZS:[( fm.e) @ (Uex) @+ + (Ome) - (Uey)+ + (Ume)o (U] (3.14)
=1

Using the equations given above, it can be shown foatthe current 3D casethe only
independent discrete variables associated with the space-time solution pairg @m) o,
(Umx) @+, (Umy)Q*» and (Umpdo>, m=1,23,4,5.

3.3. Evaluation of(um) g~
We begin with the following preliminaries:

(@) The boundary of C&)) is formed by the “top faceT (V (24);t"), the “bottom
face” I'(V.(24); t"12), and the 24 “side faced"(A(k, £); t"V2 t"), k=1, 2, 3,4 and
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=12 ...,6. Becausd/(24) is the union oV (8; ¢), ¢ =1, 2, ..., 6, the top (bottom)
face is the union of (V.(8; £): t™) (I'(V.(8; £);t"1/2)), ¢ =1, 2,..., 6. From the above
observations, one concludes that the boundary gf@Belongs to the union of SB)*) and
SE(AY), £=1,2,...,6. Specifically"(V (24); t") belongs to SEQ*), and for eaclt =
1,2,...,6,T(V(8; €); t""Y2)yandl (A (K, £); t"~Y2 t"), k = 1, 2, 3, 4, belong to SEA}").
Note thatl' (V(8; £);t™), £ =1, 2, ..., 6, the union of which if"(V (24); t™), also belong
to SEAY), £ =1,2,...,6, respectively, and that(V (24); t"~%/2), which is the union of
I(\V(8; 6);t"12), ¢ =12 ...,6,alsobelongs to SE)*). However, in the evaluation of
Eq. (3.16) (see beloy by assumptior; (V (24); t") is considered to be a subset of §E)
while (V. (24); t"~%/2) is considered to be the union of subsets of 8B, ¢ = 1,2, ..., 6.

(b) LetT" be a hyperplane segment lying within ). Let A be the area of",
(Xe, Ye» Ze, tc) be the coordinates of the centroid Bf andn be a unit vector normal to
I'. Then it can be shown that

/ hy, - ds= hp (X, Ye, Zc, te; Q%) - An, (3.15)
r

whereds = do n with do being the area of a surface elementlan

(c) LetV denote the volume of (24), i.e., the area of the top fad&(V (24); t") of
CE(Q) (see comments (a)—(c) given following Eq. (3.5)). Because the unit outward norr
vector (outward from the interior of GB)) of this face is(0, 0, 0, 1), its surface vector
(i.e., the unit outward normal vector multiplied by the areai0, 0, V).

(d) LetV¢and(xt, yt, 2%, respectively, denote the volume and the spatial coordinat
of the centroid of anW (8; ¢). Then the surface vector, and the coordinates of the centro
of ['(V.(8; £); t"~Y/2), respectively, ar€0, 0, 0, —V*) and(x*, y¢, z¢, t"=%/?),

(e) LetS, (N Niy» Ni), and(x¢, Y. Z), respectively, denote the area, the spatial uni
outward normal, and the coordinates of the centroid ofak; £). Then the surface vector,
and the coordinates of the centroid of the side faca(k, £); t"~/2; t"), respectively, are
(At/2) SNy, Ny Nz 0) and(x, i, Zi, t" — At/4) (see comments (a)—(c) given follow-
ing Eq. (3.6)).

(f) Note that: (i)(Xo~, Yo+, Zg+, t") are the coordinates of the centr@ of the top face
I'(V.(24),t") of CE(Q); (ii) U (Xa+» Yor» Zo-» t"; Q%) = (Um)o- (see Eq. (3.8)); and (i) the
surface vector of the top face(@®, 0, 0, V). As aresult, Eq. (3.12) and (3.15) imply that the
flux of h, leaving CE Q) throughits top face i@im) o+ V . Similarly, by using the information
presented initems (a), (b), (d), and (e), the flurjhteaving the other faces of GR) can be
evaluated in terms of the independent marching variables at pajnté = 1, 2, 3, 4,5, 6.

Let

7{ hi-ds=0, m=123 4,5 (3.16)
JS(CE(Q))

i.e., the total flux ot} leaving CEQ) through its boundary vanishes. Then, with the aic
of the above preliminaries, it can be shown that

6
(Um)g = (Z R@) /v, m=1,22345, (3.17)
=1
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where, foranym=1,2,3,4,5andany =1,2,...,6,

4
At
RE = Veaur (x4, v, 2,12 AY) 27 [nEy £ (X, Ve, Z t" — At/4; AY)
=1

+ nﬁy O (X Vi Zio t" — At/4 AY) 4+ ni, o (X, Vi Zi 1 — At/4; AF)]. (3.18)

Hereui (X, y, z, t; A)), TA(X,y,z t; AY), gn (X, y, z t; AY), andg (X, Y, z, t; A)) are
defined using Egs. (3.8)—(3.11), respectively, with the understanding that the sy@ibols
andt" in these equations be replaced Bff andt"~/2, respectively. As a result, each
RE and therefore eactunm)q-, an independent marching variable at titk time level, is

a function of several independent marching variables afithe 1/2)th time level, i.e.,
(Um) A5 (Umy) A, (Umy) A, and(umgA/;, m=122345andt =12, ...,6.

3.4. Evaluation of(Umx) g+, (Umy) @+, @and (Umz) -

First, we perform a spatial translation of the polyheddspAs A5 A} AL AL so that the
centroid of the resulting new polyhedroif A3 A3 A A2AZ coincides withQ*. Let the
centroid of the polyhedroA] A3 A3 A} Az A and its spatial coordinates be denoted¥yyand
(Xas, Yar, Zas), respectively, and X = Xq+ — Xar, 8Y = Yor — Ya+, andsz = zg- — Za-.

Then(xAg, YA, Zao), the spatial coordinates @, £ = 1,2, ..., 6, are given by
Xpo = Xpe +8X,  Yao = Ya +3y, and zp = za + 8z (3.19)
As a preliminary for the following discussions, for=1,2,3,4,5and¢ =1, 2,...,6,
let
(Um)ae Z 0% (xap, Yoo, Zao, 75 AF), (3.20)
sul, € U a — (Um)r, (3.21)
and
5% Expe — xor, 8y Elype — Vor, 82 E'zp0 — 2. (3.22)

Next consider the verteB, depicted in Fig. 5. This vertex is the common vertex of
the central hexahedron and three of its neighbors. As an example, let the identifica
indices? of these three neighbors be 1, 2, and 3. Then, formanry 1, 2, 3, 4, 5, consider
the four points in thex—-y—z—u space with the coordinateSq-, Yo+, Zg~, (Um)g-) and
(Xpo, Yag, Zao, (Um)ao), £ =1,2,3. It can be shown that the valuesaf/dx, du/ady, and
au/dz on the hyperplane that intercepts the above four points are given by

(UB) o Eaw/a, (uB)o Eay/a, (D)o Ea/a (a£0, (329

where

§X1 (Sy]_ Y4
AL lsx, sy, 82 (3.24)

§X3 5y3 823
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and
sul sy; 8z §xp Sut 8z 81 8yp Sul
Ay Esu2 sy, sz|. Ay T [sx, su 7|, A, E [sxe Syp U2
sud  dys dz3 8xg dud 6z 8X3 8ys Sud
(3.25)
Note thatA = 0 if and only if the spatial projections &2, 3, andQ* are coplanar

and that foreack = 2,3, ..., 8, u%) o, (ug‘?y)Q*, and(u“())Q* are defined by the above
definition procedure except thB, is replaced byBy.

With the above preliminaries, for eaoh= 1, 2, 3, 4, 5, (Unx) g*» (Umy) @+, and(Umz) o
may be evaluated by

8 8 8
1
(Undo = 5> (U g (Umylor = E (Um) g Umdor = E (U)o
k=1 k: k:

(3.26)

Alternatively, for a flow with steep gradients or discontinuities, the simple averages
Eq. (3.26) may be replaced by weighted averages, i.e.,

0, ifonk=0 k=12,...,8,
09 = S0, (W) (u) ./ SEu (W)™, otherwise
(3.27a)
) {O, if k=0, k=12,...,8,
u Q* = o a .
" ket (W) (ul) 0./ Sieea (W), otherwise
(3.27b)
and
0, ifook=0 k=12,...,8,
u . =
90 =] 50 (W) (U)o )/ T ()", otherwise
(3.27¢)
Herea > 0 is an adjustable constant (usuatly= 1 oro = 2),
def 2 2 2
O [(0850) .17 + [(0) ]+ () .12 (3.28)
and for eaclk, W,(nk) is the product 0fm1, Oma, - . . , Oms eXcludingdmk. Note that: (i) to avoid

dividing by zero, in practice a small positive number such a$4@ added to the denomi-
nators that appear in Egs. (3.27a)—(3.27c¢); and (ii) Egs. (3.27a)—(3.27c) reduce to Eq. (3
if« =0.
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3.5. Remarks and Discussions

The present 3D Euler solver is formed using Egs. (3.17) and (3.27a)—(3.27¢). With sc
trivial modifications, most of the discussions about the 2D scheme given in Section 2.5
the Appendix are also applicable to the present 3D scheme. In particular, the concey
local and global flux conservation can also be established for the present 3D schem
using a redefinition procedure similar to that presented in the Appendix.

4. NUMERICAL RESULTS

The capabilities of the present 2D and 3D schemes are now demonstrated using t
numerical examples.

4.1. Shock Reflection on a Flat Plate

This steady-state test problem was proposed byeétes. [28]. By imposing suitable
upstream conditions, oblique incident and reflected shocks will appear above a flat plate.
spatial computational domainis @4x 1.0 rectangle containing 19,200 uniform rectangles.
For the resulting space-time mest = 2 andQ* can be divided into two disjoint sets
Q% andQ* (see Section 2.5).

The flow conditions at = 0 are [9]

(2.9,0.0,1.0,0.71428, ahead of the incident shock

(2.6193 —0.50632 1.7, 1.5282, behind the incident shock

whereu, v, p, and p, arex-velocity, y-velocity, mass density, and static pressure, respec
tively. Fort > 0, (i) the flow conditions given in the first and second rows on the right sid
of Eqg. (4.1) are imposed on the left and the top boundaries, respectively; (ii) the refle
ing boundary conditions (see the bottom half of p. 124 in [9]) are imposed on the bottc
boundary (a solid wall); and (iii) the nonreflecting conditions [9, 13] are imposed on tl
right boundary (a supersonic outlet).

Note that, for the reflecting boundary conditions used here, no mesh point lies on
solid wall. In addition, for each interior mesh point immediately neighboring to the soli
wall, at the same time level there is a mirror image ghost mesh point lying just bel
the wall. Because the solution values at the ghost point are assigned to be the mi
image values of its corresponding interior mesh point, and because one of the above
points belongs ta2* while the other belongs t®*, the solution values o2} and Q*
are coupled by the present reflecting boundary conditions. In spite of this disadvantage
explained in [9], the set of reflecting boundary conditions used here (which are also use
the following numerical examples) is the most robust among several sets of the reflec
boundary conditions described in [9]. Note that, because the marchingxjvand that
overQ* are completely decoupled from each other except for the mesh points immediat
neighboring to the solid wall, only the solution values of on&xfandQ* are involved
in producing Fig. 6b, although the numerical time-marching itself involves bxjtrand
Q* . Here it should be emphasized that, for the current special problem in which only ¢
straight solid wall is present, only one &ff and2* needs to be used in the computation if,
instead, one uses the reflecting boundary conditions similar to that described in [9, p. 1
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Pressure contours

»® R

(a)

075

------ Exact solution
000 Numerical solution

Cp
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(b)

FIG. 6. The Euler solution of a steady-state shock reflection problem: (a) pressure contours; (b) pres:
coefficient distribution at the mid-section of the computation donggig: 0.5).

whk

The pressure contours generated using the present 2D scheme wighare shown in
Fig. 6a. The angle between the computed reflected shock and the horizontal liri28is 23
which is very close to the analytical value [27]. Furthermore, as shown in Fig. 6b, (i) t
numerical values of the pressure coefficient at the horizontal mid-section of the rectang
domain agree very well with the analytical values; (ii) no numerical oscillations are detec
near either the incident or the reflected shock; and (iii) both the incident and reflected shc
are resolved by a single data point.

4.2. Shock Wave Diffraction over a Wedge

This test problem, which was originally used by Wang [6], is based on a flow field give
in the flow album edited by Van Dyke [29]. A planar shock wavi#at= 1.3 moves toward
a wedge with the angleé = 26.565 (see Fig. 7a). Taking advantage of symmetry, only
half of the flow field is simulated. The spatial computational domain is a rectangle wi
—0.8 < x < 3.2and0< y < 1.1, excluding the wedge. The whole domain is divided intc
248, 750 nonuniform quadrilaterals and= 1 is assumed.

Att = 0, theincident planar shock is placeckat — 0.5. Fort > 0, the constant behind-
the-shock flow conditions are maintained at the left boundary, the reflecting bound
conditions are imposed on the upper and lower boundaries (note that the lower boun
is the symmetric center line), and also on the surfaces of the wedge, and the nonrefle
boundary conditions are imposed on the right boundary, a supersonic outlet.

To enhance the visual effect, the density countours of the entire flow field at three differ
times are presented in Figs. 7b—7d. When the planar shock reaches the wedge, a ci
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(d)

FIG. 7. Schematic (a) and density contours at three different times compared with the experimental p
tographs: (b} = 0.725; (c)t = 1.2125; (d)t = 1.825.

reflection wave is generated. As the shock passes the wedge, the flow separates and vc
are formed around the two sharp corners. Further interaction between shocks and vor
produces increasingly elaborate patterns of shock waves, slip lines, and vortices. Tl
results agree well with the experimental result [29] except for those phenomena indu
by the viscous effect. Here, it should be pointed out that the exact locations of the up
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and lower walls in the experiment are not given in [29] (we only know that these walls ¢
actually above and below the top and bottom edges of the photograph, respectively). .
result, the spatial domain assumed in the current simulation (which is slightly larger tt
the photographic frame) is only an approximation of the actual physical domain.

4.3. Three-Dimensional Detonation

The 3D scheme described in Section 3 has been extended to become a solver for
servation laws with source terms. Previously, we have reported numerical simulation:
1D and 2D detonation waves by using the CE/SE method [25]. Those results have &
validated by comparing them with analytical solutions and numerical solutions reported
other researchers. In the present paper, 3D simulation of a detonation wave is performe
solving the reacting Euler equations. The chemical reactions are modeled by single-s
irreversible, and finite-rate kinetics. Two chemical species are considered, i.e., the rea
and the product. The Euler equations and one species equation are solved simultanec
With proper nondimensionalization, it can be shown that the defining parameters of 1
detonation wave are the overdriven facfarthe specific heat ratip, the activation energy
E™, and the heat release rateln the present simulatiorf, = 1.6,y = 1.2, E* = 50, and
g = 50 are assumed.

In the current simulationy = 1 is assumed. Also, the spatial computational domain,
8 x 8 x 6 rectangular box, is divided into 6.4 million hexahedrons. Reflecting bounda
conditions are imposed on the four lateral wall boundaries. The fresh reactant travels f
top to bottom and is consumed by the frame front. On the top surface, the incoming fi
conditions are specified. On the bottom surface, a nonreflecting boundary conditiol
imposed. The coordinate system is chosen such that the frame front stays in the horiz
mid-section of the rectangular box.

A snapshot of temperature countours is shown in Fig. 8. The flow field is composec
the quiescent state of the reactant ahead of the shock, a flame zone with finite rate reac
and the equilibrium state behind the reaction zone. Because of the cellular structure o
detonation, the flow field is very complex. The shock front is characterized by triple poit

FIG. 8. Temperature contours for a simulated three-dimensional detonation wave in a square duct.
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traveling in transverse directions. The colliding triple points create tremendous vortices.
observe the classical picture of “explosions within explosions” sustained by the propaga
triple points at the detonation front. It is seen that a high-temperature region exists aro
triple points. At each collision of triple points, vortices with opposite signs are created a
propagated downstream. Due to these vortices, unburnt reactant is pushed into the f
zone. The continuous burning of the pockets of the unburnt reactant behind the flame z
greatly extends the effective flame zone.

5. CONCLUDING REMARKS

In this paper, the original 2D and 3D CE/SE Eutetx schemes (which use triangular
and tetrahedral meshes, respectively) were extended to solve the 2D and 3D unsteady |
equations using quadrilateral and hexahedral meshes, respectively. It has been showi
the present schemes retain many key advantages of other CE/SE schemes, i.e., eff
parallel computing, ease of implementing nonreflecting boundary conditions, high-fidel
solutions, and a genuinely multidimensional formulation without the need to use Rieme
solvers. The only key disadvantage of the present schemes (and, for that matter, any «
a—« scheme) is that, compared with other more general CE/SE schemes sudrasdhes
schemes [9], they allow for less freedom in adjusting numerical dissipation. As explainec
[9, Section 5.5], this inflexibility may impose a constraint on the performance of the curre
schemes in numerical simulations involving highly nonuniform meshes.

In addition, it was pointed out that, by combining the techniques used to construct:
present and earlier CE/SE solvers, one could easily develop 2D and 3D mixed mesh sol
An advantage of using such a mixed mesh is that a geometrically complex spatial subdor
can be filled easily using triangles or tetrahedrons while a less complex subdomain, s
as a near-wall region, can be filled using quadrilaterals or hexahedrons.

A rigorous discussion about the concept of local and global flux conservation as app!
to the present 2D scheme using an unstructured mesh is given in the Appendix. As a
of this discussion, a post-marching procedure was introduced to handle a “solution dec
pling” problem that may arise after a long marching involving many time steps. Witho
any exception, the discussions given in the Appendix can be extended to three dimens
easily.

APPENDIX

In this appendix, using a technique similar to that presented in [10], local and glot
flux conservation is established for the present 2D scheme using an unstructured
Also a post-marching procedure is introduced to handle the “solution decoupling” probl
referred to in comment (f) of Section 2.5.

Note that, for the case in which the mesh decoupling referred to in comments
and (d) of Section 2.5 does not occur, generally the space-time computational domain
not be filled by the union of a combination of nonoverlapping CCEs. As a result, global fl
conservation cannot be established by summing over a set of local conservation condit
such as Eq. (2.13). However, even in the nondecoupling case, the computational dor
can still be filled by the union of a combination of nonoverlapping BCEs. As a resu
through a process of flux redefinition to be shown, one can manage to preserve the cor
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of local and global flux conservation over the BCEs and the union of any combination
them.
As a preliminary, first we introduce the following definitions (see Fig. 4b):

(@) Foranym, ¢ =1,2 3 4, letF!(Q*) denote the flux oh, leaving CEQ) through
the top face of CHQ), assuming that this top face belongs to(QE). Note that the top
faces of CE(Q), £ = 1, 2, 3, 4, are the quadrilateral8; B Q By, A2B,QBy, A3B3QBy,
and A, B4 Q B3, respectively.

(b) Foranym, ¢ = 1,2, 3,4, letF:(A;) denote the flux oh, leaving CEQ) through
the bottom face of CKQ), assuming that this bottom face belongs taq 8F). Note that
the bottom faces of CEQ), £ = 1, 2, 3, 4, are the quadrilaterala; B; Q'By, A,B,Q'By,
A;B;Q’'B5, and A} B, Q'B;, respectively.

(c) For anym, ¢ =1,2 3,4 and anyk = 1, 2, let F*9(A™*) denote the flux oh’,
leaving CE Q) through its(k, £) side face, assuming that this side face belongs (@A3E
Note thatthek, ¢) (k =1, 2,2 =1, 2, 3, 4) side faces of CE)) are defined in Comments
(e) of Section 2.3.

With the above definitions, local flux conservation over(QE i.e., Eq. (2.13), implies
that

4
> SHQ AN =0, (A1)
=1

where

Q% AN EELQY) + FL(AY) + FEO(A) + F@O (AR, (A.2)

Note that Eq. (A.1) says nothing about local flux conservation ovefQE ¢ = 1, 2, 3, 4.

As is shown in the following, local flux conservation over these BCEs can be realized w
a proper assignment of “artificial fluxes” over the four interfaces that divideQQEnto
CE(Q),£=12234.

To proceed, note that the boundary of each @B is formed by the top face, the bottom
face, and the four side faces. Among these four side faces, two are also the side fac
CE(Q) while the other two belong to the set of the four interfaces that divideQ Ento
CE(Q), ¢ =1, 2, 3, 4. Hereafter, the first pair and second pair of the above four side fac
respectively, are referred to as the “exterior” and “interior” side faces @f GE Obviously,
for eachm, the four terms on the right side of Eq. (A.2) represent the fluxes leavipg@E
through its top face, bottom face, and two exterior side faces, respectively.

Next, foranym = 1, 2, 3, 4, let F1?(Q) represent a flux (as yet to be defined explicitly)
leaving CE(Q) (and entering CE Q)) through the interface dividing GEQ) and CE(Q).
F23(Q), F¥4(Q), andF¥1(Q) are similarly defined. In addition, for anp = 1, 2, 3, 4,
let

SH(Q*, AY) + FE4(Q) — FA4(Q) = 0, (A.3a)
S(QF, AY) + F23(Q) — FX4(Q) =0, (A.3b)
S(Q*, AY) + F3*Q) — F23(Q) = 0, (A.3c)

SHQ*, A)) + FElQ) — F¥%Q) =0. (A.3d)
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Note thatSL(Q*, AY) represents the sum of the fluxes leaving; @B through its top
face, bottom face, and two exterior side faces andfi&t Q) and—F.+1(Q), respectively,
represent the fluxes leaving @&)) through its two interior side faces. Thus, for eawh
Eqg. (A.3a) represents a local flux conservation relation over( QE Similarily, for each
m, Egs. (A.3b)—(A.3d) represent local flux conservation relations oveXQE CE;(Q),
and CR(Q), respectively.

Note that a summation over Egs. (A.3a)—(A.3d) results in Eq. (A.1)—the known loc
conservation condition over GB). Thus, for eachm, Eqgs. (A.3a)—(A.3d) contain only
three independent conditions for four unknowf$?(Q), F23(Q), F34(Q), andF#1(Q).

In other words, there still is a degree of freedom left for these unknowns.

To proceed, note that the interfaces that dividg @Einto CE,(Q), ¢ = 1, 2, 3, 4, all
belong to SEQ*). As aresult, eventhough they are not used in the construction of the pres
scheme, the fluxes df}, at these interfaces can be evaluated in terms of the independ:
marching variables at poil@*. In the following discussion, the evaluated fluxyjfleaving
CE1(Q) (and entering CHQ)) through the interface dividing GEQ) and CE(Q) will
be denoted by 12(Q*). Similarily, one also defin&23(Q*), F34(Q*), andF+1(Q*).

With the above definitions, the degree of freedom referred to earlier is removed
requiring that, for eaclm, F12(Q), F23(Q), F¥4(Q), and F¥1(Q) be the solution to
Egs. (A.3a)—(A.3d) with the minimal value of

def

Lm £ [FE2(Q) — FX2(Q")* + [F2%Q) - F23%Q")]?

. . % 2 . . % 2
+[F34Q — F34QM]" + [Fa(Q) — Fa@")]°. (A4)
It can be shown that the last requirement amounts to imposing the extra condition

Fal(Q) + FR*(Q) + Fp®(Q) + FR(Q)
= FR2(Q) + F23%(Q" + F3%Q") + Fak(Q"). (A.5)

By using Eg. (A.5) and any three of Egs. (A.3a)—(A.3d), for eactF1?(Q), F23(Q),
F34(Q), and F¥1(Q) can be uniquely defined in terms of known paramefe}d(Q*),
F23(Q"), F3*%(Q*), FA4(Q*), andS,(Q*, A)), £ =1,2,3, 4.

Next, note that a space-time region may be the common BCE of two different me
points (these two mesh points are referred to as the cohosts of the common BCE). A
example, the space-time cylindag B; Q B, A} B} Q' B}, depicted in Fig. 4b was designated
as CE(Q). However, it also can be designated as a BCE of paintsay CR(A;). As is
shown in the following remarks, for each, how the flux is assigned to each face of the
space-time cylinder, along with the resulting flux conservation relation over the cylind
depends on whether it is designated as @B or CE; (Ay):

(a) Atthe top face of CHQ) (CEi(A1)), the flux is evaluated assuming that the face
belongs to SEQ*) (SE(AY)).

(b) At the bottom face of CHQ) (CE1(A1)), the flux is evaluated assuming that the
face belongs to ) (SE(Q™)).

(c) The exterior (interior) side faces of Q&) are the interior (exterior) side faces of
CE(Ar).

(d) Ateach ofthe exterior side faces of GB) (CE;(Ay)), the fluxis evaluated assuming
that the side face belongs to &&") (SEQ*)).
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(e) Alocal conservation condition over @E\;) (different from that over CHQ), i.e.,
Eq. (A.3a)) will result if the artificial flux at each interior side face of &) is also
assigned using a procedure parallel to that used to assign the flux at each interior side
of CE1(Q).

Consider a common BCE of two cohosts lying in the interior of the computation
domain. From the above discussion, one concludes that, forreatkio different fluxes
are assigned to each face of the BCE, and corresponding to the two cohosts, there ar
different conservation relations over this BCE. Hereaftteg, simple average of the two
fluxes at each face will be referred to as the generalized flux at this Byceumming the
two local conservation relations over the BCE, one concludes that the total generalized
leaving the BCE through its boundary vanishes.

Furthermore, note that only one generalized flux is defined at any interface dividi
two neighboring BCEs and that the generalized flux leaving a BCE through an interf:
dividing this BCE and a neighboring BCE is the negative of the generalized flux leaving 1
neighboring BCE through the same interface. Thus, one arrives at the following global f
conservation relatiorFor each m, the total generalized flux leaving the boundary of an
space-time region that is the union of any combination of BCEs (with each of these B(
having two interior cohosts) vanishes

To proceed further, note that, for eact) corresponding to its two cohosts, the boun-
dary of a BCE is assigned two sets of fluxes. Because of the space-time stagge
nature of the stencil of the present scheme, the above two sets along with the solu
values at its two cohosts may become decoupled locally after many marching steps. |
that one may argue that this decoupling does not matter, because the amount of de
pling usually is of the order of the discrepancy between the numerical solution and
exact solution and, as such, it does not exacerbate the actual simulation errors. F
ever, in practice, the decoupling can cause a substantial problem in solution disp
The decoupling can manifest itself as what appear to be small-wavelength oscillati
when the solution at the final time level is displayed using the solution values of bc
Q% and Q. As is shown in the following paragraph, not only does the above defin
tion of a unique generalized flux at any boundary of a BCE provide a way to avoid t
problem of “flux decoupling,” it also provides a way to handle the problem of “solutio
decoupling.”

Consider the top face of any BCE with two cohosts. For mmyhe two fluxes assigned
to this face, respectively, are evaluated assuming that the face belongs to the SEs of it:
cohosts, respectively. It can be shown that these two fluxes, respectively, are equal tc
area of the face multiplied by the two valuesugf at the centroid of the top face evaluated
assuming that the centroid belongs to the two cohosts, respectively. Let the simple avera
the above two values af;, be referred to as theoupledsolution value ofi, at the centroid
of the top face of this BCE. Then it can easily be shown that, for eadhe generalized
flux at this face is simply the area of the face multiplied by the new solution value. Als
because of how these new solution values are defined, solution decoupling generally i
longer a problem if the numerical data are taken from these new solution values.

Finally, it should be emphasized that the above definition of generalized fluxes &
coupled solution values by no means implies any change in the marching scheme. In-
evaluation of the locations of the centroids of the top faces of the BCEs along with that
the associated coupled solution values represents only a post-marching procedure.
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