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In this paper, we report a version of the space-time conservation element and
solution element (CE/SE) method in which the 2D and 3D unsteady Euler equations
are simulated using structured or unstructured quadrilateral and hexahedral meshes,
respectively. In the present method, mesh values of flow variables and their spatial
derivatives are treated as independent unknowns to be solved for. At each mesh point,
the value of a flow variable is obtained by imposing a flux conservation condition. On
the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-
average procedure. Note that the present extension retains many key advantages of the
original CE/SE method which uses triangular and tetrahedral meshes, respectively,
for its 2D and 3D applications. These advantages include efficient parallel computing,
ease of implementing nonreflecting boundary conditions, high-fidelity resolution of
shocks and waves, and a genuinely multidimensional formulation without the need
to use a dimensional-splitting approach. In particular, because Riemann solvers—
the cornerstones of the Godunov-type upwind schemes—are not needed to capture
shocks, the computational logic of the present method is considerably simpler. To
demonstrate the capability of the present method, numerical results are presented
for several benchmark problems including oblique shock reflection, supersonic flow
over a wedge, and a 3D detonation flow.c© 2002 Elsevier Science
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1. INTRODUCTION

The space-time conservation element and solution element (CE/SE) method, originally
proposed by Chang and co-workers [1–13], is a new numerical framework for solving
conservation laws. The CE/SE method is not an incremental improvement of a previously
existing CFD method, and it differs substantially from other well-established methods. The
CE/SE method has many nontraditional features, including a unified treatment of space and
time, the introduction of conservation element and solution element, and a novel shock-
capturing strategy that does not use Riemann solvers. Note that conservation elements are
nonoverlapping space-time subdomains introduced such that (i) the computational domain
is the union of these subdomains and (ii) flux conservation can be enforced over each of them
and also over the union of any combination of them. In contrast, each solution element is
a space-time subdomain over which any physical flux vector is approximated using simple
smooth functions. In general, a conservation element does not coincide with a solution
element.

To date, numerous highly accurate CE/SE steady and unsteady solutions with Mach num-
bers ranging from 0.0028 to 10 have been obtained without using preconditioning or other
special techniques [1–26]. The flow phenomena modeled include traveling and interacting
shocks, acoustic waves, shedding vortices, detonation waves, and cavitation. In particular,
the rather unique capability of the CE/SE method to resolve both strong shocks and small
disturbances (e.g., acoustic waves) simultaneously has been verified through several ac-
curate predictions of experimental data [15–17]. Note that,while numerical dissipation is
required for shock resolution, it may also result in annihilation of small disturbances. Thus
a solver that can handle both strong shocks and small disturbances simultaneously must
be able to overcome this difficulty. The design principles of the CE/SE method have been
extensively illustrated in the cited references. In this paper, a brief description of the CE/SE
method is provided as the background of the present work.

Perhaps one of the most important features of the CE/SE method is the adoption of
an integral form of space-time flux conservation as the cornerstone for the subsequent
numerical discretization. Note that one derives the conventional finite-volume methods
based on Reynolds transport theorem [27], in which space and time are treated separately.
As will be shown, this separate treatment of space and time imposes a restriction on the
space-time geometry of finite volumes and, as a result, classical Riemann problems arise
natually in the course of flux evaluation across an interface. In contrast, because of its uni-
fied treatment of space and time, Chang’s flux conservation formulation allows a choice
of the space-time geometry of CEs that makes it unnecessary to solve Riemann prob-
lems. To clarify this fundamental difference, in this Introduction, we first review the con-
ventional integral form for hyperbolic conservation laws in Section 1.1 as a contrast to
Chang’s integral form, which is described in Section 1.2. The original CE/SE method is
reviewed in Section 1.3, and the objectives and outline of the present work are presented in
Section 1.4.

1.1. Conventional Finite-Volume Methods

Consider the differential form of a conservation law, i.e.,

∂u

∂t
+∇ · h = 0, (1.1)
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whereu is the density of the conserved quantity,h is the spatial flux vector, and∇· is
the spatial divergence operator. Note that, to distingush a spatial object from a space-time
object (see below), hereafter the former will be denoted by an underline. By using Reynolds’s
transport theorem, one can obtain the conventional integral form of Eq. (1.1), i.e.,

∂

∂t

∮
V

u dv +
∮

S(V)
h · ds= 0, (1.2)

whereV is afixed spatial domain(i.e., a “control volume”),dv is a spatial volume element,
S(V) is the boundary ofV , andds= dσ n with dσ andn, respectively, being the area and
the unit outward normal vector of a surface element onS(V). By integrating Eq. (1.2) over
the time interval(ts, t f ), one obtains[∮

V
u dv

]
t=t f

−
[∮

V
u dv

]
t=ts

+
∫ t f

ts

dt
∮

S(V)
h · ds= 0. (1.3)

The discretization of Eq. (1.3) is the focus of conventional finite-volume methods [27].

1.2. The Space-Time Flux Conservation Formulation

Let EN denote anN-dimensional Euclidean space in whichx1, x2, . . . , xN−1 are spatial
coordinates andxN = t ,∇·be the divergence operator inEN , andh def= (h, u). Then Eq. (1.1)
implies∇ · h = 0. As a result, Gauss’s divergence theorem inEN implies∮

S(V)
h · ds= 0. (1.4)

As depicted in Fig. 1, hereS(V) is the boundary of an arbitraryspace-timeregionV in EN

andds= dσ n with dσ andn, respectively, being the area and the unit outward normal of a
surface element onS(V). Note that: (i) becauseh · ds is thespace-timeflux of h leaving the

FIG. 1. A surface element on the boundaryS(V) of a volumeV in a space-timeE2.
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regionV through the surface elementds, Eq. (1.4) simply states that the totalspace-time
flux of h leaving V throughS(V) vanishes; and (ii) all mathematical operations can be
carried out as thoughEN were an ordinaryN-dimensional Euclidean space.

Let N = 2. For this case,x1 = x andx2 = t ; h = hx; ∇ · h = ∂hx/∂x; and a “surface
element” onS(V) and the “area” of this element reduce to a line segment and the length of
this segment, respectively (see Fig. 1). Note that, for an arbitraryV , the spatial projection
V(t) of the cross section ofV at timet generally varies witht . The exception occurs only
if V is a cylinder with its axis being parallel to the time axis, such as the rectangleABCD
depicted in Fig. 2a. In this case,V(t) is independent oft and thus it can be considered as a
“control volume.”

Let V be the rectangleABCD depicted in Fig. 2a. ThenS(V) is formed by the line
segmentsAB, BC, C D, and D A. Let t = ts at C D, t = t f at AB, x = xs at BC, and

FIG. 2. Space-time geometry of the conventional finite volume method inE2. (a) A rectangle inE2. (b) A
spatial cylinder aligned in thex direction, (c) A regular space-time mesh.
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x = x f at D A. Then becauseh = (hx, u), with the aid of Fig. 2a, Eq. (1.4) implies

[ ∫ x f

xs

u dx

]
t=t f

−
[ ∫ x f

xs

u dx

]
t=ts

+
[ ∫ t f

ts

hx dt

]
x=x f

−
[ ∫ t f

ts

hx dt

]
x=xs

= 0. (1.5)

Note that Eq. (1.3) reduces to Eq. (1.5) for the 1D unsteady case in whichV is the spatial
cylinder of constant cross section depicted in Fig. 2b,u = u(x, t), andh = (hx, 0, 0) with

hx = hx(x, t).
Note that generally the discretization of Eq. (1.3) is carried out by dividing the entire

space-time computational domain into space-time CEs. Each CE is a cylinder in space-
time with its spatial projection being the control volumeV and its top and bottom faces
representing two constant time levels. Because the control volume is a fixed spatial domain,
these CEs generally are stacked up exactly on the top of each other; i.e., no staggering of
CEs in time is allowed (see Fig. 2c for theN = 2 case). With this arrangement of CEs,
the vertical interface that separates any two neighboring columns of CEs will always be
sandwiched between two neighboring columns of mesh points (marked by dots in Fig. 2c).
As such, flux at the vertical interface of two neighboring CEs generally must be evaluated by
interpolating the data from the mesh points embedded in these two CEs. Determining how
this interpolation should be carried out properly under varying solution behavior is a difficult
problem. As will be shown,with a new space-time arrangement of CEs and mesh points,
and a proper definition of SEs, the above difficult interpolation problem can be bypassed
completely.

1.3. The CE/SE Method

As an example, the CE/SE method will be described by considering the PDE

∂u

∂t
+ ∂(au)

∂x
= 0, (1.6)

wherea is a constant. Obviously the integral form of Eq. (1.6) is Eq. (1.4) withN = 2 and
h = (au, u).

To proceed, let9 denote the set of all mesh points inE2 (dots in Fig. 3a). Each( j, n) ∈ 9
is associated with a solution element, i.e., SE( j, n). By definition, SE( j, n) is the interior of
the space-time region bounded by a dashed curve depicted in Fig. 3b. It includes a horizontal
line segment, a vertical line segment, and their immediate neighborhood.

For any(x, t) ∈ SE( j, n), u(x, t) andh(x, t), respectively, are approximated by

u∗(x, t; j, n)
def= un

j + (ux)
n
j (x − xj )+ (ut )

n
j (t − tn) (1.7)

and

h∗(x, t; j, n)
def= (au∗(x, t; j, n), u∗(x, t; j, n)). (1.8)

Note thatun
j , (ux)

n
j , and(ut )

n
j are constants in SE( j, n); (xj , tn) are the coordinates of the

mesh point( j, n); and Eq. (1.8) is the numerical analogue of the definitionh = (au, u).
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FIG. 3. The SEs and CEs of the a scheme. (a) A staggered space-time mesh. (b) SE( j, n). (c) CE−( j, n).
(d) CE+( j, n). (e) CE(j, n).

Let u = u∗(x, t; j, n) satisfy Eq. (1.6) within SE( j, n). Then one has(ut )
n
j = −a(ux)

n
j .

As a result, Eq. (1.7) reduces to

u∗(x, t; j, n) = un
j + (ux)

n
j [(x − xj )− a(t − tn)], (x, t) ∈ SE( j, n); (1.9)

i.e.,un
j and(ux)

n
j are the only independent marching variables associated with( j, n).

Let E2 be divided into nonoverlapping rectangular regions (see Fig. 3a) referred to
as conservation elements. As depicted in Figs. 3c and 3d, two CEs, i.e., CE−( j, n) and
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CE+( j, n), are associated with each interior mesh point( j, n) ∈ 9. These CEs will be
referred to asbasic conservation elements(BCEs). Contrarily, CE( j, n) (see Fig. 3e), which
is the union of CE−( j, n) and CE+( j, n), will be referred to as a compounded conservation
element (CCE).

Note that, among the line segments forming the boundary of CE−( j, n), AB and AD
belong to SE( j, n), while C B and C D belong to SE( j − 1/2, n− 1/2). Similarly, the
boundary of CE+( j, n) belongs to either SE( j, n) or SE( j + 1/2, n− 1/2). As a result, by
imposing two conservation conditions at each( j, n) ∈ 9, i.e.,∮

S(CE±( j,n))
h∗ · ds= 0, ( j, n) ∈ 9, (1.10)

and using Eqs. (1.8) and (1.9), one has (i)

un
j =

1

2

{
(1+ ν)un−1/2

j−1/2 + (1− ν)un−1/2
j+1/2 + (1− ν2)

[
(u+x )

n−1/2
j−1/2 − (u+x )n−1/2

j+1/2

]}
(1.11)

and, assuming 1− ν2 6= 0, (ii)

(u+x )
n
j =

1

2

[
un−1/2

j+1/2 − un−1/2
j−1/2 − (1− ν)(u+x )n−1/2

j−1/2 − (1+ ν)(u+x )n−1/2
j+1/2

]
. (1.12)

Hereν
def= a1t/1x and(u+x )

n
j

def= (1x/4)(ux)
n
j . Thea scheme [1, 5, 8], the explicit nondis-

sipative CE/SE solver for Eq. (1.6), is formed by Eqs. (1.11) and (1.12).
According to Eq. (1.10), the total flux ofh∗ leaving the boundary of any BCE is zero.

Because the surface integration over any interface separating two neighboring BCEs is
evaluated using the information from a single SE, obviously the local conservation relation
Eq. (1.10) leads to a global flux conservation relation; i.e.,the total flux ofh∗ leaving the
boundary of any space-time region that is the union of any combination of BCEs will also
vanish. In particular, because CE(j, n) is the union of CE−( j, n) and CE+( j, n),∮

S(CE( j,n))
h∗ · ds= 0, ( j, n) ∈ 9, (1.13)

must follow from Eq. (1.10). In fact,it can be shown that Eq. (1.13) is equivalent to
Eq. (1.11).

In addition to the nondissipativea scheme, there is a broad family of dissipative CE/SE
solvers of Eq. (1.6) in which only the less stringent conservation condition Eq. (1.13) is
assumed [2, 3, 5, 8]. Because Eq. (1.13) is equivalent to Eq. (1.11), for each of these
schemes,un

j is still evaluated using Eq. (1.11) while(u+x )
n
j is evaluated using an equation

different from Eq. (1.12). Among these schemes is one (referred to as thea–α scheme)
which is among the simplest and yet capable of handling solutions with discontinuities. For
this scheme,(u+x )

n
j is evaluated using a finite-difference/weighted-average procedure which

involves a parameterα (see Eqs. (2.62), (2.63), and (2.65) in [12]). The key disadvantage
of thea–α scheme and its extensions (see below) is that, compared with the more general
CE/SE schemes, they allow for less freedom in adjusting numerical dissipation. As explained
in Section 5.5 of [9], this inflexibility may impose a constraint on the performance of these
schemes in numerical simulations involving highly nonuniform meshes.



SPACE-TIME CE/SE METHOD 175

The above description of the CE/SE development is based on a simple PDE. However, it
represents the essence of the general CE/SE development which may involve a system of
conservation laws in one, two, or three spatial dimensions. In particular, note that:

(a) The 1D Euler extension of thea–α scheme, which first appears in [2], has been shown
to be an accurate and robust shock-capturing solver [2, 3, 5, 6].

(b) In the original 2D extension of the CE/SE method [4, 6–10], triangles are used as the
basic building blocks of the spatial meshes. Corresponding to the three sides of a triangle,
three BCEs are defined for each mesh point. The union of the three BCEs at a mesh point is
the CCE at the same mesh point. Among the family of 2D CE/SE schemes described in [4,
6–10], the 2Da scheme, which has three unknownsu, ux, anduy at each mesh point, are
constructed by imposing three conservation conditions over the three BCEs at each mesh
point. In contrast, only one conservation condition (imposed over the CCE) per mesh point
and per conservation law is used in the construction of the 2D Eulera–α scheme (i.e.,
the scheme defined by Eqs. (6.54), (6.107), and (6.108) in [8]). Because of its simplicity,
accuracy, and roubustness, all the numerical results presented in [4, 8, 9] are generated using
the 2D Eulera–α scheme.

(c) The 3D Eulera–α scheme [11] is a straightforward extension of the 2D Eulera–α
scheme taking into account that: (i) tetrahedrons are used as the basic building blocks of 3D
spatial meshes; and (ii) corresponding to the four sides of a tetrahedron, the CCE at each
mesh point is the union of the four BCEs defined at the same mesh point.

1.4. The Objectives and Outline of the Present Work

In this paper, the 2D and 3D unstructured-mesha–α Euler schemes are constructed using
quadrilateral and hexahedral meshes, respectively. It is shown that the present schemes
are also simple, robust, and accurate. The rest of the paper is organized as follows. The
2D and 3D solvers along with their key properties are described in Sections 2 and 3,
respectively. Numerical examples are presented in Section 4 to demonstrate the capabilities
of the present solvers. The concept of local and global flux conservation for the present 2D
scheme with an unstructured mesh along with a post-marching procedure for handling a
possible “solution decoupling” problem is discussed in the Appendix. Concluding remarks
are given in Section 5.

2. THE 2D UNSTEADY EULER SOLVER

Consider the standard conservation form of the two-dimensional unsteady Euler equations
of a perfect gas [9],

∂um

∂t
+ ∂ fm

∂x
+ ∂gm

∂y
= 0, m= 1, 2, 3, 4, (2.1)

where fm andgm,m= 1, 2, 3, 4, are explicit functions of the independent flow variablesum,
m= 1, 2, 3, 4 [9]. Letx1 = x, x2 = y, andx3 = t be the coordinates of a three-dimensional
Euclidean spaceE3. Then, in the case thatum are smooth functions ofx, y, z, andt , Eq. (2.1)
can be derived from the more fundamental conservation laws∮

S(V)
hm · ds= 0, m= 1, 2, 3, 4, (2.2)
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whereS(V) andds were defined following Eq. (1.4) andhm
def= ( fm, gm, um). Note that

Eq. (2.2) is valid even in the presence of flow discontinuities.
For the future development, let

fm,`
def= ∂ fm/∂u`, gm,`

def= ∂gm/∂u`, m, ` = 1, 2, 3, 4. (2.3)

2.1. Conservation Elements and Solution Elements

Consider Fig. 4a. Here thex–y plane is divided into nonoverlapping convex quadrilaterals
and any two neighboring quadrilaterals share a common side. Moreover, (i) vertices and
centroids of quadrilaterals are marked by dots and circles, respectively; (ii)Q is the centroid
of a typical quadrilateralB1B2B3B4; (iii) A1, A2, A3 andA4, respectively, are the centroids
of the four quadrilaterals neighboring to the quadrilateralB1B2B3B4; and (iv)Q∗ (marked
by a cross) is the centroid of the polygonA1B1A2B2A3B3A4B4. Hereafter, pointQ∗ (which

FIG. 4. Space-time geometry of the 2D scheme. (a) Representative grid points in thex–y plane. (b) SEs and
CEs. (c) Spatial translation of the quadrilateralA∗1 A∗2 A∗3 A∗4.
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generally does not coincide with pointQ) is referred to as the solution point associated with
the centroidQ. Note that pointsA∗1, A∗2, A∗3, andA∗4, which are also marked by crosses, are
the solution points associated with the centroidsA1, A2, A3, andA4, respectively.

Next consider Fig. 4b. Heret = n1t at thenth time level (n = 0, 1/2, 1, 3/2, . . .) and for
a givenn> 0, Q, Q′, andQ′′, respectively, denote the points on thenth, the(n− 1/2)th,
and the(n+ 1/2)th time levels with pointQ (see Fig. 4a) being their common spatial
projection. Other space-time mesh points, such as those depicted in Fig. 4b, and also those
not depicted, are defined similarly. In particular,Q∗, A∗1, A∗2, A∗3, andA∗4, by definition, lie
on thenth time level and, respectively, are the space-time solution mesh points associated
with pointsQ, A1, A2, A3, andA4, andQ′∗, A′∗1 , A′∗2 , A′∗3 , andA′∗4 , by definition, lie on the
(n− 1/2)th time level and, respectively, are the space-time solution mesh points associated
with pointsQ′, A′1, A′2, A′3, andA′4.

With the above preliminaries, the solution element of pointQ∗, denoted by SE(Q∗),
is defined as the union of the five plane segmentsQ′Q′′B′′1 B′1, Q′Q′′B′′2 B′2, Q′Q′′B′′3 B′3,
Q′Q′′B′′4 B′4, andA1B1A2B2A3B3A4B4 and their immediate neighborhoods. Moreover, the
four basic conservation elements (BCEs) of pointQ, denoted by CÈ(Q), ` = 1, 2, 3, 4,
are defined to be the space-time cylindersA1B1QB4A′1B′1Q′B′4, A2B2QB1A′2B′2Q′B′1,
A3B3QB2A′3B′3Q′B′2, andA4B4QB3A′4B′4Q′B′3, respectively. In addition, the compounded
conservation element of pointQ, denoted by CE(Q), is defined to be the space-time cylinder
A1B1A2B2A3B3A4B4A′1B′1A′2B′2A′3B′3A′4B′4, i.e., the union of the above four BCEs.

In this section, the set of the space-time mesh points whose spatial projections are the
centroids of quadrilaterals depicted in Fig. 4a is denoted byÄ and the set of the space-time
mesh points whose spatial projections are the solution points depicted in Fig. 4a is denoted
by Ä∗. Note that the BCEs and the CCE of any mesh point∈ Ä and the SE of any mesh
point∈ Ä∗ are defined in a manner identical to that described earlier for pointQ andQ∗.

2.2. Approximations within a Solution Element

For anyQ∗ ∈Ä∗ and any(x, y, t)∈SE(Q∗), um(x, y, t), fm(x, y, t), gm(x, y, t), and
hm(x, y, t), respectively, are approximated byu∗m(x, y, t; Q∗), f ∗m(x, y, t; Q∗), g∗m(x, y,
t; Q∗), andh∗m(x, y, t; Q∗) (see below). For anym= 1, 2, 3, 4, let

u∗m(x, y, t; Q∗) def= (um)Q∗ + (umx)Q∗(x − xQ∗)+ (umy)Q∗(y− yQ∗)+ (umt)Q∗(t − tn),

(2.4)

where(xQ∗ , yQ∗ , tn) are the coordinates of the space-time solution mesh pointQ∗ and
(um)Q∗ , (umx)Q∗ , (umy)Q∗ , and(umt)Q∗ , which are constants in SE(Q∗), are the numerical
analogues of the values ofum, ∂um/∂x, ∂um/∂y, and∂um/∂t at pointQ∗, respectively.

Let ( fm)Q∗ , (gm)Q∗ , ( fm,`)Q∗ , and(gm,`)Q∗ denote the values of the functionsfm, gm,
fm,`, andgm,`, respectively, whenum, m= 1, 2, 3, 4, respectively, assumes the values of
(um)Q∗ , m= 1, 2, 3, 4. Then, for anym, we define

( fmx)Q∗
def=

4∑
`=1

( fm,`)Q∗(u`x)Q∗ , (gmx)Q∗
def=

4∑
`=1

(gm,`)Q∗(u`x)Q∗ , (2.5a)

( fmy)Q∗
def=

4∑
`=1

( fm,`)Q∗(u`y)Q∗ , (gmy)Q∗
def=

4∑
`=1

(gm,`)Q∗(u`y)Q∗ , (2.5b)
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( fmt)Q∗
def=

4∑
`=1

( fm,`)Q∗(u`t )Q∗ , (gmt)Q∗
def=

4∑
`=1

(gm,`)Q∗(u`t )Q∗ . (2.5c)

Because

∂ fm

∂x
=

4∑
`=1

fm,`
∂u`
∂x

(2.6)

and because the expression on the right side of the first equation in Eq. (2.5a) is the numerical
analogue of that on the right side of Eq. (2.6) at pointQ∗, ( fmx)Q∗ can be considered as
the numerical analogue of the value of∂ fm/∂x at point Q∗. Similarly, (gmx)Q∗ , ( fmy)Q∗ ,
(gmy)Q∗ , ( fmt)Q∗ , and(gmt)Q∗ can be considered as the numerical analogues of the values
of ∂gm/∂x, ∂ fm/∂y, ∂gm/∂y, ∂ fm/∂t , and∂gm/∂t at pointQ∗, respectively. As a result, for
anym= 1, 2, 3, 4, we define

f ∗m(x, y, t; Q∗) def= ( fm)Q∗ + ( fmx)Q∗(x − xQ∗)+ ( fmy)Q∗(y− yQ∗)+ ( fmt)Q∗(t − tn)

(2.7)

and

g∗m(x, y, t; Q∗) def= (gm)Q∗ + (gmx)Q∗(x − xQ∗)+ (gmy)Q∗(y− yQ∗)+ (gmt)Q∗(t − tn).

(2.8)

Also, as an analogue tohm
def= ( fm, gm, um), for anym= 1, 2, 3, 4, we define

h∗m(x, y, t; Q∗) def= ( f ∗m(x, y, t; Q∗), g∗m(x, y, t; Q∗), u∗m(x, y, t; Q∗)). (2.9)

Note that, by their definitions: (i)( fm)Q∗ , (gm)Q∗ , ( fm,`)Q∗ , and (gm,`)Q∗ are functions
of (um)Q∗ , m= 1, 2, 3, 4; (ii) ( fmx)Q∗ and(gmx)Q∗ are functions of(um)Q∗ and(umx)Q∗ ,
m= 1, 2, 3, 4; (iii) ( fmy)Q∗ and(gmy)Q∗ are functions of(um)Q∗ and(umy)Q∗ ,m= 1, 2, 3, 4;
and (iv)( fmt)Q∗ and(gmt)Q∗ are functions of(um)Q∗ and(umt)Q∗ , m= 1, 2, 3, 4.

To proceed, we also assume that, for any(x, y, t) ∈ SE(Q∗), and anym= 1, 2, 3, 4,

∂u∗m(x, y, t; Q∗)
∂t

+ ∂ f ∗m(x, y, t; Q∗)
∂x

+ ∂g∗m(x, y, t; Q∗)
∂y

= 0. (2.10)

Note that Eq. (2.10) is the numerical analogue of Eq. (2.1). With the aid of Eqs. (2.4), (2.7),
(2.8), (2.5a), and (2.5b), Eq. (2.10) implies that, for anym= 1, 2, 3, 4,

(umt)Q∗ = −( fmx)Q∗ − (gmy)Q∗ = −
4∑
`=1

[( fm,`)Q∗(u`x)Q∗ + (gm,`)Q∗(u`y)Q∗ ] . (2.11)

Thus(umt)Q∗ is a function of(um)Q∗ , (umx)Q∗ , and(umy)Q∗ , m= 1, 2, 3, 4. From this result
and the facts stated following Eq. (2.9), one concludes thatthe only independent discrete
solution variables associated with the space-time solution point Q∗ are (um)Q∗ , (umx)Q∗ ,

and(umy)Q∗ , m= 1, 2, 3, 4.
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2.3. Evaluation of(um)Q∗

Based on Figs. 4a and 4b, we introduce the following preliminaries:

(a) The boundary of CE(Q) belongs to the union of SE(Q∗) and SE(A′∗` ), ` = 1, 2, 3, 4.
Specifically, (i) the octagonA1B1A2B2A3B3A4B4 belongs to SE(Q∗); (ii) the quadri-
laterals A′1B′1Q′B′4, A′1B′4B4A1, and A′1B′1B1A1 belong to SE(A′∗1 ); (iii) the quadrilat-
erals A′2B′2Q′B′1, A′2B′1B1A2, and A′2B′2B2A2 belong to SE(A′∗2 ); (iv) the quadrilaterals
A′3B′3Q′B′2, A′3B′2B2A3, and A′3B′3B3A3 belong to SE(A′∗3 ); and (v) the quadrilaterals
A′4B′4Q′B′3, A′4B′3B3A4, andA′4B′4B4A4 belong to SE(A′∗4 ). Note that, by definition, (i) the
quadrilateralsA1B1QB4, A2B2QB1, A3B3QB2, and A4B4QB3, which form the octagon
A1B1A2B2A3B3A4B4 (the top face of CE(Q)), also belong to SE(A∗1), SE(A∗2), SE(A∗3),
and SE(A∗4), respectively; and (ii) the octagonA′1B′1A′2B′2A′3B′3A′4B′4 (the bottom face of
the CE(Q)) also belongs to SE(Q′∗). However, in the evaluation of Eq. (2.13) (see below),
by assumption, the top face of CE(Q) is considered to be a subset of SE(Q∗) while the
bottom face is considered to be the union of subsets of SE(A′∗` ), ` = 1, 2, 3, 4.

(b) Let0 be a space-time plane segment lying within SE(Q∗). Let A be the area of0,
(xc, yc, tc) be the coordinates of the centroid of0, andn be a unit vector normal to0.
Then, becauseu∗m(x, y, t; Q∗), f ∗m(x, y, t; Q∗), andg∗m(x, y, t; Q∗) are linear inx, y, and
t , Eq. (2.9) implies that ∫

0

h∗m · ds= h∗m(xc, yc, tc; Q∗) · An, (2.12)

whereds= dσ n with dσ being the area of a surface element on0.
(c) Let S denote the area of the top faceA1B1A2B2A3B3A4B4 of CE(Q). Because the

unit outward normal vector (outward from the interior of CE(Q)) of this face is(0, 0, 1),
its surface vector (i.e., the unit outward normal vector multiplied by the area) is(0, 0, S).

(d) Let (x`, y`), ` = 1, 2, 3, 4, denote the spatial coordinates of the centroids of the
quadrilateralsA′1B′1Q′B′4, A′2B′2Q′B′1, A′3B′3Q′B′2, and A′4B′4Q′B′3, respectively, and let
S`, ` = 1, 2, 3, 4, denote the areas of the above four quadrilaterals, respectively. Then
(x`, y`, tn−1/2), ` = 1, 2, 3, 4, are the coordinates of the above four centroids, respectively,
and (0, 0,−S`), ` = 1, 2, 3, 4, are the surface vectors of the above four quadrilaterals,
respectively. Furthermore, because the above four quadrilaterals form the bottom face of
CE(Q) and because the area of the top face of CE(Q) is identical to that of the bottom face,
one concludes thatS=∑4

`=1 S`.
(e) Let the eight side facesA′1B′4B4A1, A′1B′1B1A1, A′2B′1B1A2, A′2B′2B2A2, A′3B′2B2A3,

A′3B′3B3A3, A′4B′3B3A4, and A′4B′4B4A4 of CE(Q) be assigned the indices(1, 1), (2, 1),
(1, 2), (2, 2), (1, 3), (2, 3), (1, 4), and(2, 4), respectively. Hereafter each side face with
the indices(k, `) is referred to as the(k, `) side face. For each̀, by definition, the(1, `)
and(2, `) side faces belong to SE(A′∗` ). Because the spatial projection of each side face
is a line segment on thex–y plane and because each side face is sandwiched between the
(n− 1/2)th and thenth time levels, one concludes that, for the(k, `) side face, its surface
vector and the coordinates of its centroid, respectively, are given by(1t/2)λ`k(n

`
kx, n

`
ky, 0)

and(x`k, y`k, t
n −1t/4). Hereλ`k, (n`kx, n

`
ky), and(x`k, y`k), respectively, denote the length,

the unit outward normal (on thex–y plane), and the coordinates of the midpoint of the
spatial projection of the(k, `) side face.

(f) Note that: (i)(xQ∗ , yQ∗ , tn) are the coordinates of the centroidQ∗ of the top face
A1B1A2B2A3B3A4B4 of CE(Q); (ii) u∗m(xQ∗ , yQ∗ , tn; Q∗) = (um)Q∗ (see Eq. (2.4)); and
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(iii) the surface vector of the top face is(0, 0, S). As a result, Eqs. (2.9) and (2.12) imply
that the flux ofh∗m leaving CE(Q) through its top face is(um)Q∗S. Similarly, by using the
information presented in items (a), (b), (d), and (e), the flux ofh∗m leaving the other faces
of CE(Q) can be evaluated in terms of the independent marching variables at pointsA′∗` ,
` = 1, 2, 3, 4.
Let ∮

S(CE(Q))
h∗m · ds= 0, m= 1, 2, 3, 4, (2.13)

i.e., the total flux ofh∗m leaving CE(Q) through its boundary vanishes. Then, with the aid
of the above preliminaries, it can be shown that

(um)Q∗ =
(

4∑
`=1

R`m

)/
S, m= 1, 2, 3, 4, (2.14)

where, for anym, ` = 1, 2, 3, 4,

R`m = S` u∗m(x
`, y`, tn−1/2; A′∗`)−

2∑
k=1

1t

2
λ`k
[
n`kx f ∗m

(
x`k, y`k, t

n −1t
/

4; A′∗`
)

+ n`ky g∗m
(
x`k, y`k, t

n −1t
/

4; A′∗`
)]
. (2.15)

Because, by definition,t = tn−1/2 for any point A′∗` , here the functionsu∗m(x, y, t; A′∗`),
f ∗m(x, y, t; A′∗`), andg∗m(x, y, t; A′∗`) are defined using Eqs. (2.4), (2.7), and (2.8), respec-
tively, with the symbolsQ∗ and tn in these equations being replaced byA′∗` and tn−1/2,
respectively. As a result, eachR`m and therefore each(um)Q∗ , an independent marching
variable at thenth time level, is a function of several independent marching variables at the
(n− 1/2)th time level, i.e.,(um)A′∗` , (umx)A′∗` , and(umy)A′∗` , m, ` = 1, 2, 3, 4.

2.4. Evaluation of(umx)Q∗ and(umy)Q∗

A finite-difference approach similar to that given in [10] is employed here to evaluate
(umx)Q∗ and(umy)Q∗ . First, we perform a spatial translation of the quadrilateralA∗1 A∗2 A∗3 A∗4
so that the centroid of the resulting new quadrilateralAo

1Ao
2Ao

3Ao
4 coincides withQ∗ (see

Fig. 4c). Let the centroid of the quadrilateralA∗1 A∗2 A∗3 A∗4 and its spatial coordinates be
denoted byA∗ and(xA∗ , yA∗), respectively. Then(xAo

`
, yAo

`
), the spatial coordinates ofAo

`,
are

xAo
`
= xA∗

`
+ xQ∗ − xA∗ and yAo

`
= yA∗

`
+ yQ∗ − yA∗ , ` = 1, 2, 3, 4. (2.16)

To proceed, let

(um)Ao
`

def= u∗m
(
xAo

`
, yAo

`
, tn; A′∗`

)
, m, ` = 1, 2, 3, 4. (2.17)

Next, for anym= 1, 2, 3, 4, consider the three points in thex–y–u space with the co-
ordinates(xQ∗ , yQ∗ , (um)Q∗), (xAo

1
, yAo

1
, (um)Ao

1
), and(xAo

2
, yAo

2
, (um)Ao

2
), respectively. The

values of∂u/∂x and∂u/∂y on the plane that intercepts the three points are given by(
u(1)mx

)
Q∗

def= 1x/1 and
(
u(1)my

)
Q∗

def= 1y/1 (1 6= 0), (2.18)



SPACE-TIME CE/SE METHOD 181

where

1
def=
∣∣∣∣xAo

1
− xQ∗ yAo

1
− yQ∗

xAo
2
− xQ∗ yAo

2
− yQ∗

∣∣∣∣ , (2.19a)

1x
def=
∣∣∣∣(um)Ao

1
− (um)Q∗ yAo

1
− yQ∗

(um)Ao
2
− (um)Q∗ yAo

2
− yQ∗

∣∣∣∣ , (2.19b)

and

1y
def=
∣∣∣∣(um)Ao

1
− (um)Q∗ xQ∗ − xAo

1

(um)Ao
2
− (um)Q∗ xQ∗ − xAo

2

∣∣∣∣ . (2.19c)

Note that: (i)1 = 0 if and only if the spatial projections ofAo
1, Ao

2 andQ∗ are collinear;
and (ii) similarly,(u(k)mx)Q∗ and(u(k)my)Q∗ , k = 2, 3, 4, are defined, respectively, by replacing
the pointsAo

1 andAo
2 in the above operations withAo

2 andAo
3, Ao

3 andAo
4, andAo

4 andAo
1,

respectively.
With the above preliminaries, for eachm= 1, 2, 3, 4, (umx)Q∗ and (umy)Q∗ may be

evaluated by

(umx)Q∗ = 1

4

4∑
k=1

(
u(k)mx

)
Q∗ , (umy)Q∗ = 1

4

4∑
k=1

(
u(k)my

)
Q∗ . (2.20)

Alternatively, for a flow with steep gradients or discontinuities, the simple averages in
Eq. (2.20) may be replaced by weighted averages, i.e.,

(umx)Q∗ =
{

0, if θmk = 0, k = 1, 2, 3, 4,∑4
k=1

[(
W(k)

m

)α(
u(k)mx

)
Q∗
]/∑4

k=1

(
W(k)

m

)α
, otherwise

(2.21a)

and

(umy)Q∗ =
{

0, if θmk = 0, k = 1, 2, 3, 4,∑4
k=1

[(
W(k)

m

)α(
u(k)my

)
Q∗
]/∑4

k=1

(
W(k)

m

)α
, otherwise.

(2.21b)

Hereα ≥ 0 is an adjustable constant (usuallyα = 1 orα = 2),

θmk
def=
√[(

u(k)mx
)

Q∗
]2+ [(u(k)my

)
Q∗
]2
, m, k = 1, 2, 3, 4, (2.22)

and

W(1)
m

def= θm2θm3θm4, W(2)
m

def= θm3θm4θm1, W(3)
m

def= θm4θm1θm2, W(4)
m

def= θm1θm2θm3.

(2.23)

Note that: (i) to avoid dividing by zero, in practice a small positive number such as 10−60

is added to the denominators that appear in Eqs. (2.21a) and (2.21b); and (ii) Eqs. (2.21a)
and (2.21b) reduce to Eq. (2.20) ifα = 0.
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2.5. Remarks and Discussion

The present 2D Euler solver is formed using Eqs. (2.14), (2.21a), and (2.21b). Stability
of the solver generally requires thatα ≥ 0 and that the maximalCFL number<1. Also,
with α ≥ 1, the solver is capable of suppressing numerical oscillations near a discontinuity,
and solutions generated by the solver tend to become more smeared as theCFL number
decreases or the value ofα increases. Other key properties of this solver are given in the
following remarks:

(a) The stencil of the present explicit solver is formed by one point at the upper time level
and four points at the lower time level. Because the spatial projections of the four points at
the lower time level are the immediate neighbors of that of the point at the upper time level,
the stencil is staggered in space-time, and it is the most compact among the schemes using
quadrilateral meshes. As a result, the solver is ideal for parallel computations.

(b) For a uniform mesh, points such asQ, Q∗, andA∗ referred to earlier coincide with
one another. In this case, the present solver can be greatly simplified. Also, by using the
arguments presented in [8, 9] and also by numerical experiments, it can be shown that the
simplified scheme is second order in accuracy.

(c) The present scheme is applicable to both structured and unstructured meshes. For a
structured mesh, the setÄ∗ may be divided into two disjoint subsetsÄ∗+ andÄ∗− with the
following property: If any point, say pointQ∗, belongs toÄ∗+ (Ä∗−), then the six space-
time solution mesh points immediately neighboring to pointQ∗, i.e., pointsQ′∗, Q′′∗, and
A∗` , ` = 1, 2, 3, 4, belong toÄ∗− (Ä∗+). Because, for each̀= 1, 2, 3, 4, points A′∗` and
A∗` are immediate neighbors of each other and thus they must belong to different subsets,
one concludes that pointsQ∗ andA′∗` , ` = 1, 2, 3, 4, which form the stencil of the present
marching scheme, belong to the same subset. From the above observations, it is seen that
each ofÄ∗+ andÄ∗− represents astaggeredspace-time mesh. As such, the entire space-time
mesh is a dual space-time mesh [9], i.e., the union of two disjoint staggered space-time
meshes. Furthermore, it is also obvious that the marching overÄ∗+ is completely decoupled
from that overÄ∗−, i.e., marching needs to be carried out only over one of these two staggered
space-time meshes, unless the decoupling is prevented by other factors such as the boundary
conditions imposed. Note that boundary values generally are not updated using the main
marching scheme. As a result, solution values ofÄ∗+ andÄ∗− may become coupled near a
boundary (see Section 4).

(d) Consider the decoupling case referred to in item (c). Let a space-time mesh point
belong toÄ+ (Ä−) if and only if its associated space-time solution mesh point belongs
to Ä∗+ (Ä∗−). Then it is obvious that the setÄ is formed by the two disjoint setsÄ+ and
Ä−. Moreover, the CCEs of the mesh points inÄ+ (Ä−) do not overlap among them-
selves and they can fill any domain inE3. Furthermore, because the surface integration
over any interface separating two neighboring and nonoverlapping CCEs is evaluated us-
ing the information from the same SE (i.e., the flux leaving a CCE through its interface
with a neighboring CCE is the negative of the flux leaving the neighboring CCE through
this interface), a summation of the local conservation conditions Eq. (2.13) over the mesh
pointsQ ∈ Ä+ (Ä−) leads to a global conservation condition, i.e., for eachm= 1, 2, 3, 4,
the total flux ofh∗m leaving the boundary of any space-time region that is the union of
any combination of the CCEs associated withÄ+ (Ä−) vanishes. Note that a similar
discussion for the general case in which decoupling may not occur will be given in the
Appendix.
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(e) The present solver and the triangular-mesh-based solver described in [10] are con-
structed using similar techniques. Using these techniques and their trivial extensions, one
can easily develop a 2D CE/SE solver for spatial meshes formed by polygons of different
shapes. An advantage of using such a mixed mesh is that a geometrically complex spatial
subdomain can be filled easily using triangles while a less complex subdomain, such as a
near-wall region, can be filled using more regular shaped polygons such as quadrilaterals.

(f) Because of the space-time staggering nature of the stencil of the present scheme, a
solution of the present schememayappear as the overlapping of two distinctively different
solutions (especially in a high-gradient region) after many marching steps. The significance
of this “solution decoupling” problem and how to handle it are discussed in the Appendix.
Note that this problem could occur even in the absence of a complete ofÄ∗+ andÄ∗− decou-
pling referred to earlier. Also, because the solution decoupling problem is not significant for
the test problems discussed in Section 4, the numerical results presented there are generated
without using the post-marching procedure described in the Appendix.

3. THE 3D UNSTEADY EULER SOLVER

For the current 3D case, Eqs. (2.1)–(2.3) are replaced by

∂um

∂t
+ ∂ fm

∂x
+ ∂gm

∂y
+ ∂qm

∂z
= 0, m= 1, 2, 3, 4, 5, (3.1)∮

S(V)
hm · ds= 0, m= 1, 2, 3, 4, 5, (3.2)

and

fm,`
def= ∂ fm/∂u`, gm,`

def= ∂gm/∂u`, qm,`
def= ∂qm/∂u`, m, ` = 1, 2, 3, 4, 5, (3.3)

respectively. Herehm
def= ( fm, gm,qm, um) and the three-dimensional Euclidean spaceE3

referred to in Section 2 is replaced in the current case by the four-dimensional Euclidean
spaceE4 with x1= x, x2= y, x3= z, andx4= t .

3.1. Conservation Elements and Solution Elements

The spatial computational domain is divided into nonoverlapping convex hexahedrons
of arbitrary shape with the understanding that any two neighboring hexahedrons share
a common face. In Fig. 5,Q (marked by a circle) is the centroid of a typical hexahedron
B1B2B3B4B5B6B7B8 (hereafter referred to as the central hexahedron). Each of the central
hexahedron’s six neighboring hexahedrons is arbitrarily assigned an identification index
` = 1, 2, . . . ,6, i.e., the neighboring hexahedron with the index` is referred to as thèth
neighbor of the central hexahedron. Also, the centroid of the`th neighbor will be denoted
by A`. As an example, the central hexahedron and its first neighbor is separated by the
quadrilateralB1B4B8B5 in Fig. 5.

With the above preliminaries, we proceed with the following definitions:

(a) PointQ and the two end points (say pointsB1 andB2) of any of the twelve edges of
the central hexahedron form a triangle. Each of the twelve triangles so formed is arbitrarily
assigned an indexj = 1, 2, 3, . . . ,12 and denoted by1( j ).
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FIG. 5. Representative grid points in thex–y–z space.

(b) Given any` = 1, 2, . . . ,6, a triangle is formed by the pointA` and the two end
points of any of the four edges of the interface (a quadrilateral) that separates the central
hexahedron and its̀th neighbor. Each of the four triangles so formed with the same`

is arbitrarily assigned an indexk = 1, 2, 3, 4, and denoted by1(k, `). As an example,
1A1B1B4,1A1B4B8,1A1B8B5, and1A1B5B1 depicted in Fig. 5 have the same` = 1.
Therefore they may be denoted by1(1, 1),1(2, 1),1(3, 1), and1(4, 1), respectively.

(c) The centroid of the 24-faced polyhedronB1B2B3B4B5B6B7B8A1A2A3A4A5A6 is
referred to as the solution point associated with pointQ. Note that the above 24-faced
polyhedron hereafter is denoted byV(24) and the centroid ofV(24) is denoted byQ∗ and
marked by a cross in Fig. 5.

(d) Given anỳ = 1, 2, . . . ,6, pointsQ andA` and the four vertices of the quadrilateral
interface that separates the central hexahedron and its`th neighbor are the vertices of a
octahedron. This octahedron hereafter is denoted byV(8; `).

In the space-time computational domain, again we assume thatt = n1t at thenth time
level (n = 0, 1/2, 1, 3/2, . . .). Also, for a givenn > 0, let Q, Q′, and Q′′ (not shown),
respectively, be the points on thenth,(n− 1/2)th, and(n+ 1/2)th time levels with pointQ
being their common spatial projection. Other space-time mesh points such as (i)Q∗ andQ

′∗;
(ii) Bk, B′k, andB′′k , k = 1, 2, 3, 4, 5, 6, 7, 8; and (iii) A`, A∗` , A′`, andA′∗` , ` = 1, 2, . . . ,6,
are defined similarly. Because geometric objects inE4 generally are difficult to visualize,
they will be described analytically in the following discussions.

To proceed, note that a “plane” (termed a hyperplane) inE4, by definition, is a subspace
of E4 defined by a linear equation i.e.,

a1x + a2y+ a3z+ a4t = a0, ((a1)
2+ (a2)

2+ (a3)
2+ (a4)

2 6= 0), (3.4)

where ak, k = 0, 1, 2, 3, 4, are constants. As a result, a hyperplane inE4 is a three-
dimensional subspace. The unit normal to the hyperplane is

n = ± (a1,a2,a3,a4)√
(a1)2+ (a2)2+ (a3)2+ (a4)2

. (3.5)

Note that a hyperplane segment, by definition, is a bounded region of a hyperplane.
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Two types of hyperplane segments inE4 are involved in the definition of SEs to be given
shortly. A hyperplane segment of type I, denoted by0(V; tc), is formed by all the points
(x, y, z, t) that satisfy the conditionst = tc and(x, y, z) ∈ V , wheretc is a constant andV
denotes a 3D spatial region. Obviously, the equationt = tc is a special form of Eq. (3.4).
Also, it can be shown that:

(a) The unit normal to0(V; tc) is (0, 0, 0,±1).
(b) The “area” of0(V; tc) is the volume ofV .
(c) The coordinates of the centroid of0(V; tc) are(xc, yc, zc, tc), where(xc, yc, zc) are

the coordinates of the centroid ofV .

In contrast, a hyperplane segment of type II, denoted by0(S; t−, t+), is formed by all the
points(x, y, z, t) that satisfy the conditions(x, y, z) ∈ Sandt− ≤ t ≤ t+, whereSdenotes
a spatial plane segment andt− andt+ (t− < t+) are constants. Note that every point(x, y, z)
on the spatial plane segmentSsatisfies a linear equation of the form

c1x + c2y+ c3z= c0, ((c1)
2+ (c2)

2+ (c3)
2 6= 0), (3.6)

whereck, k = 0, 1, 2, 3, are constants. Thus every point(x, y, z, t) on 0(S; t−, t+) also
satisfies a special form of Eq. (3.4), i.e., Eq. (3.6). Moreover, it can be shown that:

(a) The unit normal to0(S; t−, t+) is (n, 0), wheren is the unit normal to the spatial
plane segmentS, i.e.,

n = ± (c1, c2, c3)√
(c1)2+ (c2)2+ (c3)2

. (3.7)

(b) The “area” of0(S; t−, t+) is the area ofSmultiplied by(t+ − t−).
(c) The coordinates of the centroid of0(S; t−, t+) are(xc, yc, zc, (t− + t+)/2), where

(xc, yc, zc) are the coordinates of the centroid ofS.

In addition to the above two types of hyperplanes, we shall also consider “hypercylinders”
in E4. A hypercylinder, denoted by3(V; t−, t+), is formed by all the points(x, y, z, t) that
satisfy the conditions(x, y, z) ∈ V andt− ≤ t ≤ t+, whereV is a 3D spatial region andt−
andt+ (t− < t+) are constants.

With the above preliminaries, SE(Q∗), the solution element of pointQ∗—the point that
lies on thenth time level and hasQ∗ as its spatial projection—is defined to be the union of
0(V(24); tn) and0(1( j ); tn−1/2, tn+1/2), j = 1, 2, 3, . . . ,12, and their immediate neigh-
borhoods. Moreover, the six BCEs of pointQ, denoted by CÈ(Q), ` = 1, 2, . . . ,6, are
defined to be the hypercylinders3(V(8; `); tn−1/2, tn), ` = 1, 2, . . . ,6, respectively. In
addition, the CCE of pointQ, denoted by CE(Q), is defined to be3(V(24); tn−1/2, tn),
i.e., the union of the above six BCEs.

In this section, the set of the space-time mesh points whose spatial projections are the
centroids of the hexahedrons that fill the 3D spatial computational domain is denoted byÄ

and the set of the space-time mesh points whose spatial projections are the solution points
of the centroids just referred to is denoted byÄ∗. Note that the BCEs and the CCE of any
mesh point∈ Ä and the SE of any mesh point∈ Ä∗ are defined in a manner identical to
that described earlier for pointsQ andQ∗.
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3.2. Approximations within a Solution Element

For anyQ∗ ∈ Ä∗ and(x, y, z, t) ∈ SE(Q∗), um(x, y, z, t), fm(x, y, z, t), gm(x, y, z, t),
qm(x, y, z, t), andhm(x, y, z, t) are approximated byu∗m(x, y, z, t; Q∗), f ∗m(x, y, z, t; Q∗),
g∗m(x, y, z, t; Q∗), q∗m(x, y, z, t; Q∗), andh∗m(x, y, z, t; Q∗), respectively (see below). For
anym= 1, 2, 3, 4, 5, let

u∗m(x, y, z, t; Q∗) def= (um)Q∗ + (umx)Q∗(x − xQ∗)+ (umy)Q∗(y− yQ∗)

+ (umz)Q∗(z− zQ∗)+ (umt)Q∗(t − tn), (3.8)

f ∗m(x, y, z, t; Q∗) def= ( fm)Q∗ + ( fmx)Q∗(x − xQ∗)+ ( fmy)Q∗(y− yQ∗)

+ ( fmz)Q∗(z− zQ∗)+ ( fmt)Q∗(t − tn), (3.9)

g∗m(x, y, z, t; Q∗) def= (gm)Q∗ + (gmx)Q∗(x − xQ∗)+ (gmy)Q∗(y− yQ∗)

+ (gmz)Q∗(z− zQ∗)+ (gmt)Q∗(t − tn), (3.10)

q∗m(x, y, z, t; Q∗) def= (qm)Q∗ + (qmx)Q∗(x − xQ∗)+ (qmy)Q∗(y− yQ∗)

+ (qmz)Q∗(z− zQ∗)+ (qmt)Q∗(t − tn), (3.11)

and

h∗m(x, y, z, t; Q∗) def= ( f ∗m(x, y, z, t; Q∗), g∗m(x, y, z, t; Q∗),
q∗m(x, y, z, t; Q∗), u∗m(x, y, z, t; Q∗)) (3.12)

be the 3D extension of Eqs. (2.4) and (2.7)–(2.9). Note that, in this section it is implicitly
assumed that any notation that has a similar 2D version is defined similarly. The definition
of such a notation will not be given explicitly here unless confusion could occur.

Moreover, we assume that, for any(x, y, z, t) ∈ SE(Q∗), and anym= 1, 2, 3, 4, 5,

∂u∗m(x, y, t; Q∗)
∂t

+ ∂ f ∗m(x, y, t; Q∗)
∂x

+ ∂g∗m(x, y, t; Q∗)
∂y

+ ∂q∗m(x, y, t; Q∗)
∂z

= 0.

(3.13)

Thus, for anym= 1, 2, 3, 4, 5,

(umt)Q
∗ = −( fmx)Q∗ − (gmy)Q∗ − (qmz)Q∗

= −
5∑
`=1

[( fm,`)Q∗(u`x)Q∗ + (gm,`)Q∗(u`y)Q∗ + (qm,`)Q∗(u`z)Q∗ ]. (3.14)

Using the equations given above, it can be shown that,for the current 3D case, the only
independent discrete variables associated with the space-time solution point Q∗ are(um)Q∗ ,

(umx)Q∗ , (umy)Q∗ , and(umz)Q∗ , m= 1, 2, 3, 4, 5.

3.3. Evaluation of(um)Q∗

We begin with the following preliminaries:

(a) The boundary of CE(Q) is formed by the “top face”0(V(24); tn), the “bottom
face” 0(V(24); tn−1/2), and the 24 “side faces”0(1(k, `); tn−1/2, tn), k = 1, 2, 3, 4 and
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` = 1, 2, . . . ,6. BecauseV(24) is the union ofV(8; `), ` = 1, 2, . . . ,6, the top (bottom)
face is the union of0(V(8; `); tn) (0(V(8; `); tn−1/2)), ` = 1, 2, . . . ,6. From the above
observations, one concludes that the boundary of CE(Q)belongs to the union of SE(Q∗)and
SE(A′∗` ), ` = 1, 2, . . . ,6. Specifically,0(V(24); tn) belongs to SE(Q∗), and for each̀ =
1, 2, . . . ,6,0(V(8; `); tn−1/2)and0(1(k, `); tn−1/2, tn),k = 1, 2, 3, 4, belong to SE(A′∗` ).
Note that0(V(8; `); tn), ` = 1, 2, . . . ,6, the union of which is0(V(24); tn), also belong
to SE(A∗`), ` = 1, 2, . . . ,6, respectively, and that0(V(24); tn−1/2), which is the union of
0(V(8; `); tn−1/2), ` = 1, 2, . . . ,6, also belongs to SE(Q′∗). However, in the evaluation of
Eq. (3.16) (see below), by assumption,0(V(24); tn) is considered to be a subset of SE(Q∗)
while0(V(24); tn−1/2) is considered to be the union of subsets of SE(A′∗` ), ` = 1, 2, . . . ,6.

(b) Let 0 be a hyperplane segment lying within SE(Q∗). Let A be the area of0,
(xc, yc, zc, tc) be the coordinates of the centroid of0, andn be a unit vector normal to
0. Then it can be shown that∫

0

h∗m · ds= h∗m(xc, yc, zc, tc; Q∗) · An, (3.15)

whereds= dσ n with dσ being the area of a surface element on0.
(c) Let V denote the volume ofV(24), i.e., the area of the top face0(V(24); tn) of

CE(Q) (see comments (a)–(c) given following Eq. (3.5)). Because the unit outward normal
vector (outward from the interior of CE(Q)) of this face is(0, 0, 0, 1), its surface vector
(i.e., the unit outward normal vector multiplied by the area) is(0, 0, 0,V).

(d) Let V` and(x`, y`, z`), respectively, denote the volume and the spatial coordinates
of the centroid of anyV(8; `). Then the surface vector, and the coordinates of the centroid
of 0(V(8; `); tn−1/2), respectively, are(0, 0, 0,−V`) and(x`, y`, z`, tn−1/2).

(e) LetS`k , (n`kx, n
`
ky, n

`
kz), and(x`k, y`k, z

`
k), respectively, denote the area, the spatial unit

outward normal, and the coordinates of the centroid of any1(k, `). Then the surface vector,
and the coordinates of the centroid of the side face0(1(k, `); tn−1/2; tn), respectively, are
(1t/2)S`k(n

`
kx, n

`
ky, n

`
kz, 0) and(x`k, y`k, z

`
k, t

n −1t/4) (see comments (a)–(c) given follow-
ing Eq. (3.6)).

(f) Note that: (i)(xQ∗ , yQ∗ , zQ∗ , tn) are the coordinates of the centroidQ∗ of the top face
0(V(24), tn)of CE(Q); (ii) u∗m(xQ∗ , yQ∗ , zQ∗ , tn; Q∗) = (um)Q∗ (see Eq. (3.8)); and (iii) the
surface vector of the top face is(0, 0, 0,V). As a result, Eq. (3.12) and (3.15) imply that the
flux ofh∗m leaving CE(Q) through its top face is(um)Q∗V . Similarly, by using the information
presented in items (a), (b), (d), and (e), the flux ofh∗m leaving the other faces of CE(Q) can be
evaluated in terms of the independent marching variables at pointsA′∗` , ` = 1, 2, 3, 4, 5, 6.

Let ∮
S(C E(Q))

h∗m · ds= 0, m= 1, 2, 3, 4, 5; (3.16)

i.e., the total flux ofh∗m leaving CE(Q) through its boundary vanishes. Then, with the aid
of the above preliminaries, it can be shown that

(um)Q∗ =
(

6∑
`=1

R`m

)/
V, m= 1, 2, 3, 4, 5, (3.17)
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where, for anym= 1, 2, 3, 4, 5 and anỳ = 1, 2, . . . ,6,

R`m = V` u∗m
(
x`, y`, z`, tn−1/2; A′∗`

)− 4∑
k=1

1t

2
S`k
[
n`kx f ∗m

(
x`k, y`k, z

`
k, t

n −1t/4; A′∗`
)

+ n`ky g∗m
(
x`k, y`k, z

`
k, t

n −1t/4; A′∗`
)+ n`kz q∗m

(
x`k, y`k, z

`
k, t

n −1t/4; A′∗`
)]
. (3.18)

Hereu∗m(x, y, z, t; A′∗` ), f ∗m(x, y, z, t; A′∗` ), g∗m(x, y, z, t; A′∗` ), andq∗m(x, y, z, t; A′∗` ) are
defined using Eqs. (3.8)–(3.11), respectively, with the understanding that the symbolsQ∗

and tn in these equations be replaced byA′∗` and tn−1/2, respectively. As a result, each
R`m and therefore each(um)Q∗ , an independent marching variable at thenth time level, is
a function of several independent marching variables at the(n− 1/2)th time level, i.e.,
(um)A′∗

`
, (umx)A′∗

`
, (umy)A′∗

`
, and(umz)A′∗

`
, m= 1, 2, 3, 4, 5 and` = 1, 2, . . . ,6.

3.4. Evaluation of(umx)Q∗ , (umy)Q∗ , and(umz)Q∗

First, we perform a spatial translation of the polyhedronA∗1 A∗2 A∗3 A∗4 A∗5 A∗6 so that the
centroid of the resulting new polyhedronAo

1Ao
2Ao

3Ao
4Ao

5Ao
6 coincides withQ∗. Let the

centroid of the polyhedronA∗1 A∗2 A∗3 A∗4 A∗5 A∗6 and its spatial coordinates be denoted byA∗ and
(xA∗ , yA∗ , zA∗), respectively, and letδx = xQ∗ − xA∗ , δy = yQ∗ − yA∗ , andδz= zQ∗ − zA∗ .
Then(xAo

`
, yAo

`
, zAo

`
), the spatial coordinates ofAo

`, ` = 1, 2, . . . ,6, are given by

xAo
`
= xA∗

`
+ δx, yAo

`
= yA∗

`
+ δy, and zAo

`
= zA∗

`
+ δz. (3.19)

As a preliminary for the following discussions, form= 1, 2, 3, 4, 5 and` = 1, 2, . . . ,6,
let

(um)Ao
`

def= u∗m
(
xAo

`
, yAo

`
, zAo

`
, tn; A′∗`

)
, (3.20)

δu`m
def= (um)Ao

`
− (um)Q∗ , (3.21)

and

δx`
def= xAo

`
− xQ∗ , δy`

def= yAo
`
− yQ∗ , δz`

def= zAo
`
− zQ∗ . (3.22)

Next consider the vertexB1 depicted in Fig. 5. This vertex is the common vertex of
the central hexahedron and three of its neighbors. As an example, let the identification
indices` of these three neighbors be 1, 2, and 3. Then, for anym= 1, 2, 3, 4, 5, consider
the four points in thex–y–z–u space with the coordinates(xQ∗ , yQ∗ , zQ∗ , (um)Q∗) and
(xAo

`
, yAo

`
, zAo

`
, (um)Ao

`
), ` = 1, 2, 3. It can be shown that the values of∂u/∂x, ∂u/∂y, and

∂u/∂z on the hyperplane that intercepts the above four points are given by(
u(1)mx

)
Q∗

def= 1x/1,
(
u(1)my

)
Q∗

def= 1y/1,
(
u(1)mz

)
Q∗

def= 1z/1 (1 6= 0), (3.23)

where

1
def=
∣∣∣∣∣∣
δx1 δy1 δz1

δx2 δy2 δz2

δx3 δy3 δz3

∣∣∣∣∣∣ (3.24)



SPACE-TIME CE/SE METHOD 189

and

1x
def=

∣∣∣∣∣∣∣∣
δu1

m δy1 δz1

δu2
m δy2 δz2

δu3
m δy3 δz3

∣∣∣∣∣∣∣∣ , 1y
def=

∣∣∣∣∣∣∣∣
δx1 δu1

m δz1

δx2 δu2
m δz2

δx3 δu3
m δz3

∣∣∣∣∣∣∣∣ , 1z
def=

∣∣∣∣∣∣∣∣
δx1 δy1 δu1

m

δx2 δy2 δu2
m

δx3 δy3 δu3
m

∣∣∣∣∣∣∣∣ .
(3.25)

Note that1 = 0 if and only if the spatial projections ofAo
1, Ao

2, Ao
3, andQ∗ are coplanar

and that for eachk = 2, 3, . . . ,8, (u(k)mx)Q∗ , (u(k)my)Q∗ , and(u(k)mz)Q∗ are defined by the above
definition procedure except thatB1 is replaced byBk.

With the above preliminaries, for eachm= 1, 2, 3, 4, 5, (umx)Q∗ , (umy)Q∗ , and(umz)Q∗

may be evaluated by

(umx)Q∗ = 1

8

8∑
k=1

(
u(k)mx

)
Q∗ , (umy)Q∗ = 1

8

8∑
k=1

(
u(k)my

)
Q∗ , (umz)Q∗ = 1

8

8∑
k=1

(
u(k)mz

)
Q∗ .

(3.26)

Alternatively, for a flow with steep gradients or discontinuities, the simple averages in
Eq. (3.26) may be replaced by weighted averages, i.e.,

(umx)Q∗ =
{

0, if θmk = 0, k = 1, 2, . . . ,8,∑8
k=1

[(
W(k)

m

)α(
u(k)mx

)
Q∗
]/∑8

k=1

(
W(k)

m

)α
, otherwise,

(3.27a)

(umy)Q∗ =
{

0, if θmk = 0, k = 1, 2, . . . ,8,∑8
k=1

[(
W(k)

m

)α(
u(k)my

)
Q∗
]/∑8

k=1

(
W(k)

m

)α
, otherwise,

(3.27b)

and

(umz)Q∗ =
{

0, if θmk = 0, k = 1, 2, . . . ,8,∑8
k=1

[(
W(k)

m

)α(
u(k)mz

)
Q∗
]/∑8

k=1

(
W(k)

m

)α
, otherwise.

(3.27c)

Hereα ≥ 0 is an adjustable constant (usuallyα = 1 orα = 2),

θmk
def=
√[(

u(k)mx
)

Q∗
]2+ [(u(k)my

)
Q∗
]2+ [(u(k)mz

)
Q∗
]2
, (3.28)

and for eachk, W(k)
m is the product ofθm1, θm2, . . . , θm8 excludingθmk. Note that: (i) to avoid

dividing by zero, in practice a small positive number such as 10−60 is added to the denomi-
nators that appear in Eqs. (3.27a)–(3.27c); and (ii) Eqs. (3.27a)–(3.27c) reduce to Eq. (3.26)
if α = 0.
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3.5. Remarks and Discussions

The present 3D Euler solver is formed using Eqs. (3.17) and (3.27a)–(3.27c). With some
trivial modifications, most of the discussions about the 2D scheme given in Section 2.5 and
the Appendix are also applicable to the present 3D scheme. In particular, the concept of
local and global flux conservation can also be established for the present 3D scheme by
using a redefinition procedure similar to that presented in the Appendix.

4. NUMERICAL RESULTS

The capabilities of the present 2D and 3D schemes are now demonstrated using three
numerical examples.

4.1. Shock Reflection on a Flat Plate

This steady-state test problem was proposed by Yeeet al. [28]. By imposing suitable
upstream conditions, oblique incident and reflected shocks will appear above a flat plate. The
spatial computational domain is a 4.0× 1.0 rectangle containing 19,200 uniform rectangles.
For the resulting space-time mesh,Ä∗ = Ä andÄ∗ can be divided into two disjoint sets
Ä∗+ andÄ∗− (see Section 2.5).

The flow conditions att = 0 are [9]

(u, v, ρ, p) =
{
(2.9, 0.0, 1.0, 0.71428), ahead of the incident shock,

(2.6193,−0.50632, 1.7, 1.5282), behind the incident shock,
(4.1)

whereu, v, ρ, and p, arex-velocity, y-velocity, mass density, and static pressure, respec-
tively. For t > 0, (i) the flow conditions given in the first and second rows on the right side
of Eq. (4.1) are imposed on the left and the top boundaries, respectively; (ii) the reflect-
ing boundary conditions (see the bottom half of p. 124 in [9]) are imposed on the bottom
boundary (a solid wall); and (iii) the nonreflecting conditions [9, 13] are imposed on the
right boundary (a supersonic outlet).

Note that, for the reflecting boundary conditions used here, no mesh point lies on the
solid wall. In addition, for each interior mesh point immediately neighboring to the solid
wall, at the same time level there is a mirror image ghost mesh point lying just below
the wall. Because the solution values at the ghost point are assigned to be the mirror-
image values of its corresponding interior mesh point, and because one of the above two
points belongs toÄ∗+ while the other belongs toÄ∗−, the solution values ofÄ∗+ andÄ∗−
are coupled by the present reflecting boundary conditions. In spite of this disadvantage, as
explained in [9], the set of reflecting boundary conditions used here (which are also used in
the following numerical examples) is the most robust among several sets of the reflecting
boundary conditions described in [9]. Note that, because the marching overÄ∗+ and that
overÄ∗− are completely decoupled from each other except for the mesh points immediately
neighboring to the solid wall, only the solution values of one ofÄ∗+ andÄ∗− are involved
in producing Fig. 6b, although the numerical time-marching itself involves bothÄ∗+ and
Ä∗−. Here it should be emphasized that, for the current special problem in which only one
straight solid wall is present, only one ofÄ∗+ andÄ∗− needs to be used in the computation if,
instead, one uses the reflecting boundary conditions similar to that described in [9, p. 122].
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FIG. 6. The Euler solution of a steady-state shock reflection problem: (a) pressure contours; (b) pressure
coefficient distribution at the mid-section of the computation domain(y = 0.5).

The pressure contours generated using the present 2D scheme withα = 2 are shown in
Fig. 6a. The angle between the computed reflected shock and the horizontal line is 23.28◦,
which is very close to the analytical value [27]. Furthermore, as shown in Fig. 6b, (i) the
numerical values of the pressure coefficient at the horizontal mid-section of the rectangular
domain agree very well with the analytical values; (ii) no numerical oscillations are detected
near either the incident or the reflected shock; and (iii) both the incident and reflected shocks
are resolved by a single data point.

4.2. Shock Wave Diffraction over a Wedge

This test problem, which was originally used by Wang [6], is based on a flow field given
in the flow album edited by Van Dyke [29]. A planar shock wave atMs = 1.3 moves toward
a wedge with the angleθ = 26.565◦ (see Fig. 7a). Taking advantage of symmetry, only
half of the flow field is simulated. The spatial computational domain is a rectangle with
−0.8≤ x ≤ 3.2 and 0≤ y ≤ 1.1, excluding the wedge. The whole domain is divided into
248, 750 nonuniform quadrilaterals andα = 1 is assumed.

At t = 0, the incident planar shock is placed atx= − 0.5. Fort > 0, the constant behind-
the-shock flow conditions are maintained at the left boundary, the reflecting boundary
conditions are imposed on the upper and lower boundaries (note that the lower boundary
is the symmetric center line), and also on the surfaces of the wedge, and the nonreflecting
boundary conditions are imposed on the right boundary, a supersonic outlet.

To enhance the visual effect, the density countours of the entire flow field at three different
times are presented in Figs. 7b–7d. When the planar shock reaches the wedge, a circular
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FIG. 7. Schematic (a) and density contours at three different times compared with the experimental pho-
tographs: (b)t = 0.725; (c)t = 1.2125; (d)t = 1.825.

reflection wave is generated. As the shock passes the wedge, the flow separates and vortices
are formed around the two sharp corners. Further interaction between shocks and vortices
produces increasingly elaborate patterns of shock waves, slip lines, and vortices. These
results agree well with the experimental result [29] except for those phenomena induced
by the viscous effect. Here, it should be pointed out that the exact locations of the upper
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and lower walls in the experiment are not given in [29] (we only know that these walls are
actually above and below the top and bottom edges of the photograph, respectively). As a
result, the spatial domain assumed in the current simulation (which is slightly larger than
the photographic frame) is only an approximation of the actual physical domain.

4.3. Three-Dimensional Detonation

The 3D scheme described in Section 3 has been extended to become a solver for con-
servation laws with source terms. Previously, we have reported numerical simulations of
1D and 2D detonation waves by using the CE/SE method [25]. Those results have been
validated by comparing them with analytical solutions and numerical solutions reported by
other researchers. In the present paper, 3D simulation of a detonation wave is performed by
solving the reacting Euler equations. The chemical reactions are modeled by single-step,
irreversible, and finite-rate kinetics. Two chemical species are considered, i.e., the reactant
and the product. The Euler equations and one species equation are solved simultaneously.
With proper nondimensionalization, it can be shown that the defining parameters of this
detonation wave are the overdriven factorf , the specific heat ratioγ , the activation energy
E+, and the heat release rateq. In the present simulation,f = 1.6,γ = 1.2, E+ = 50, and
q = 50 are assumed.

In the current simulation,α = 1 is assumed. Also, the spatial computational domain, a
8× 8× 6 rectangular box, is divided into 6.4 million hexahedrons. Reflecting boundary
conditions are imposed on the four lateral wall boundaries. The fresh reactant travels from
top to bottom and is consumed by the frame front. On the top surface, the incoming flow
conditions are specified. On the bottom surface, a nonreflecting boundary condition is
imposed. The coordinate system is chosen such that the frame front stays in the horizontal
mid-section of the rectangular box.

A snapshot of temperature countours is shown in Fig. 8. The flow field is composed of
the quiescent state of the reactant ahead of the shock, a flame zone with finite rate reaction,
and the equilibrium state behind the reaction zone. Because of the cellular structure of the
detonation, the flow field is very complex. The shock front is characterized by triple points

FIG. 8. Temperature contours for a simulated three-dimensional detonation wave in a square duct.
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traveling in transverse directions. The colliding triple points create tremendous vortices. We
observe the classical picture of “explosions within explosions” sustained by the propagating
triple points at the detonation front. It is seen that a high-temperature region exists around
triple points. At each collision of triple points, vortices with opposite signs are created and
propagated downstream. Due to these vortices, unburnt reactant is pushed into the flame
zone. The continuous burning of the pockets of the unburnt reactant behind the flame zone
greatly extends the effective flame zone.

5. CONCLUDING REMARKS

In this paper, the original 2D and 3D CE/SE Eulera–α schemes (which use triangular
and tetrahedral meshes, respectively) were extended to solve the 2D and 3D unsteady Euler
equations using quadrilateral and hexahedral meshes, respectively. It has been shown that
the present schemes retain many key advantages of other CE/SE schemes, i.e., efficient
parallel computing, ease of implementing nonreflecting boundary conditions, high-fidelity
solutions, and a genuinely multidimensional formulation without the need to use Riemann
solvers. The only key disadvantage of the present schemes (and, for that matter, any other
a–α scheme) is that, compared with other more general CE/SE schemes such as thea–ε–α–β
schemes [9], they allow for less freedom in adjusting numerical dissipation. As explained in
[9, Section 5.5], this inflexibility may impose a constraint on the performance of the current
schemes in numerical simulations involving highly nonuniform meshes.

In addition, it was pointed out that, by combining the techniques used to construct the
present and earlier CE/SE solvers, one could easily develop 2D and 3D mixed mesh solvers.
An advantage of using such a mixed mesh is that a geometrically complex spatial subdomain
can be filled easily using triangles or tetrahedrons while a less complex subdomain, such
as a near-wall region, can be filled using quadrilaterals or hexahedrons.

A rigorous discussion about the concept of local and global flux conservation as applied
to the present 2D scheme using an unstructured mesh is given in the Appendix. As a part
of this discussion, a post-marching procedure was introduced to handle a “solution decou-
pling” problem that may arise after a long marching involving many time steps. Without
any exception, the discussions given in the Appendix can be extended to three dimensions
easily.

APPENDIX

In this appendix, using a technique similar to that presented in [10], local and global
flux conservation is established for the present 2D scheme using an unstructured mesh.
Also a post-marching procedure is introduced to handle the “solution decoupling” problem
referred to in comment (f) of Section 2.5.

Note that, for the case in which the mesh decoupling referred to in comments (c)
and (d) of Section 2.5 does not occur, generally the space-time computational domain can-
not be filled by the union of a combination of nonoverlapping CCEs. As a result, global flux
conservation cannot be established by summing over a set of local conservation conditions
such as Eq. (2.13). However, even in the nondecoupling case, the computational domain
can still be filled by the union of a combination of nonoverlapping BCEs. As a result,
through a process of flux redefinition to be shown, one can manage to preserve the concept
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of local and global flux conservation over the BCEs and the union of any combination of
them.

As a preliminary, first we introduce the following definitions (see Fig. 4b):

(a) For anym, ` = 1, 2, 3, 4, let F`
m(Q

∗) denote the flux ofh∗m leaving CE(Q) through
the top face of CÈ(Q), assuming that this top face belongs to SE(Q∗). Note that the top
faces of CÈ(Q), ` = 1, 2, 3, 4, are the quadrilateralsA1B1QB4, A2B2QB1, A3B3QB2,
andA4B4QB3, respectively.

(b) For anym, ` = 1, 2, 3, 4, let F`
m(A

′∗
` ) denote the flux ofh∗m leaving CE(Q) through

the bottom face of CÈ(Q), assuming that this bottom face belongs to SE(A′∗` ). Note that
the bottom faces of CÈ(Q), ` = 1, 2, 3, 4, are the quadrilateralsA′1B′1Q′B′4, A′2B′2Q′B′1,
A′3B′3Q′B′2, andA′4B′4Q′B′3, respectively.

(c) For anym, ` = 1, 2, 3, 4 and anyk = 1, 2, let F (k,`)
m (A′∗) denote the flux ofh∗m

leaving CE(Q) through its(k, `) side face, assuming that this side face belongs to SE(A′∗` ).
Note that the(k, `) (k = 1, 2, ` = 1, 2, 3, 4) side faces of CE(Q) are defined in Comments
(e) of Section 2.3.

With the above definitions, local flux conservation over CE(Q), i.e., Eq. (2.13), implies
that

4∑
`=1

S`m(Q
∗, A′∗` ) = 0, (A.1)

where

S`m(Q
∗, A′∗` )

def= F`
m(Q

∗)+ F`
m(A

′∗
` )+ F (1,`)

m (A′∗` )+ F (2,`)
m (A′∗` ). (A.2)

Note that Eq. (A.1) says nothing about local flux conservation over CE`(Q), ` = 1, 2, 3, 4.
As is shown in the following, local flux conservation over these BCEs can be realized with
a proper assignment of “artificial fluxes” over the four interfaces that divide CE(Q) into
CÈ (Q), ` = 1, 2, 3, 4.

To proceed, note that the boundary of each CE`(Q) is formed by the top face, the bottom
face, and the four side faces. Among these four side faces, two are also the side faces of
CE(Q) while the other two belong to the set of the four interfaces that divide CE(Q) into
CÈ (Q), ` = 1, 2, 3, 4. Hereafter, the first pair and second pair of the above four side faces,
respectively, are referred to as the “exterior” and “interior” side faces of CE`(Q). Obviously,
for eachm, the four terms on the right side of Eq. (A.2) represent the fluxes leaving CE`(Q)
through its top face, bottom face, and two exterior side faces, respectively.

Next, for anym= 1, 2, 3, 4, let F1:2
m (Q) represent a flux (as yet to be defined explicitly)

leaving CE1(Q) (and entering CE2(Q)) through the interface dividing CE1(Q)and CE2(Q).
F2:3

m (Q), F3:4
m (Q), andF4:1

m (Q) are similarly defined. In addition, for anym= 1, 2, 3, 4,
let

S1
m(Q

∗, A′∗1 )+ F1:2
m (Q)− F4:1

m (Q) = 0, (A.3a)

S2
m(Q

∗, A′∗2 )+ F2:3
m (Q)− F1:2

m (Q) = 0, (A.3b)

S3
m(Q

∗, A′∗3 )+ F3:4
m (Q)− F2:3

m (Q) = 0, (A.3c)

S4
m(Q

∗, A′∗4 )+ F4:1
m (Q)− F3:4

m (Q) = 0. (A.3d)
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Note thatS1
m(Q

∗, A′∗1 ) represents the sum of the fluxes leaving CE1(Q) through its top
face, bottom face, and two exterior side faces and thatF1:2

m (Q) and−F4:1
m (Q), respectively,

represent the fluxes leaving CE1(Q) through its two interior side faces. Thus, for eachm,
Eq. (A.3a) represents a local flux conservation relation over CE1(Q). Similarily, for each
m, Eqs. (A.3b)–(A.3d) represent local flux conservation relations over CE2(Q), CE3(Q),
and CE4(Q), respectively.

Note that a summation over Eqs. (A.3a)–(A.3d) results in Eq. (A.1)—the known local
conservation condition over CE(Q). Thus, for eachm, Eqs. (A.3a)–(A.3d) contain only
three independent conditions for four unknownsF1:2

m (Q), F2:3
m (Q), F3:4

m (Q), andF4:1
m (Q).

In other words, there still is a degree of freedom left for these unknowns.
To proceed, note that the interfaces that divide CE(Q) into CÈ (Q), ` = 1, 2, 3, 4, all

belong to SE(Q∗). As a result, even though they are not used in the construction of the present
scheme, the fluxes ofh∗m at these interfaces can be evaluated in terms of the independent
marching variables at pointQ∗. In the following discussion, the evaluated flux ofh∗m leaving
CE1(Q) (and entering CE2(Q)) through the interface dividing CE1(Q) and CE2(Q) will
be denoted byF1:2

m (Q∗). Similarily, one also defineF2:3
m (Q∗), F3:4

m (Q∗), andF4:1
m (Q∗).

With the above definitions, the degree of freedom referred to earlier is removed by
requiring that, for eachm, F1:2

m (Q), F2:3
m (Q), F3:4

m (Q), and F4:1
m (Q) be the solution to

Eqs. (A.3a)–(A.3d) with the minimal value of

Lm
def= [F1:2

m (Q)− F1:2
m (Q∗)

]2+ [F2:3
m (Q)− F2:3

m (Q∗)
]2

+ [F3:4
m (Q)− F3:4

m (Q∗)
]2+ [F4:1

m (Q)− F4:1
m (Q∗)

]2
. (A.4)

It can be shown that the last requirement amounts to imposing the extra condition

F1:2
m (Q)+ F2:3

m (Q)+ F3:4
m (Q)+ F4:1

m (Q)

= F1:2
m (Q∗)+ F2:3

m (Q∗)+ F3:4
m (Q∗)+ F4:1

m (Q∗). (A.5)

By using Eq. (A.5) and any three of Eqs. (A.3a)–(A.3d), for eachm, F1:2
m (Q), F2:3

m (Q),
F3:4

m (Q), and F4:1
m (Q) can be uniquely defined in terms of known parametersF1:2

m (Q∗),
F2:3

m (Q∗), F3:4
m (Q∗), F4:1

m (Q∗), andS`m(Q
∗, A′∗` ), ` = 1, 2, 3, 4.

Next, note that a space-time region may be the common BCE of two different mesh
points (these two mesh points are referred to as the cohosts of the common BCE). As an
example, the space-time cylinderA1B1QB4A′1B′1Q′B′4 depicted in Fig. 4b was designated
as CE1(Q). However, it also can be designated as a BCE of pointA1, say CE1(A1). As is
shown in the following remarks, for eachm, how the flux is assigned to each face of the
space-time cylinder, along with the resulting flux conservation relation over the cylinder,
depends on whether it is designated as CE1(Q) or CE1(A1):

(a) At the top face of CE1(Q) (CE1(A1)), the flux is evaluated assuming that the face
belongs to SE(Q∗) (SE(A∗1)).

(b) At the bottom face of CE1(Q) (CE1(A1)), the flux is evaluated assuming that the
face belongs to SE(A′∗1 ) (SE(Q′∗)).

(c) The exterior (interior) side faces of CE1(Q) are the interior (exterior) side faces of
CE1(A1).

(d) At each of the exterior side faces of CE1(Q) (CE1(A1)), the flux is evaluated assuming
that the side face belongs to SE(A′∗1 ) (SE(Q∗)).
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(e) A local conservation condition over CE1(A1) (different from that over CE1(Q), i.e.,
Eq. (A.3a)) will result if the artificial flux at each interior side face of CE1(A1) is also
assigned using a procedure parallel to that used to assign the flux at each interior side face
of CE1(Q).

Consider a common BCE of two cohosts lying in the interior of the computational
domain. From the above discussion, one concludes that, for eachm, two different fluxes
are assigned to each face of the BCE, and corresponding to the two cohosts, there are two
different conservation relations over this BCE. Hereafter,the simple average of the two
fluxes at each face will be referred to as the generalized flux at this face. By summing the
two local conservation relations over the BCE, one concludes that the total generalized flux
leaving the BCE through its boundary vanishes.

Furthermore, note that only one generalized flux is defined at any interface dividing
two neighboring BCEs and that the generalized flux leaving a BCE through an interface
dividing this BCE and a neighboring BCE is the negative of the generalized flux leaving the
neighboring BCE through the same interface. Thus, one arrives at the following global flux
conservation relation:For each m, the total generalized flux leaving the boundary of any
space-time region that is the union of any combination of BCEs (with each of these BCEs
having two interior cohosts) vanishes.

To proceed further, note that, for eachm, corresponding to its two cohosts, the boun-
dary of a BCE is assigned two sets of fluxes. Because of the space-time staggering
nature of the stencil of the present scheme, the above two sets along with the solution
values at its two cohosts may become decoupled locally after many marching steps. Note
that one may argue that this decoupling does not matter, because the amount of decou-
pling usually is of the order of the discrepancy between the numerical solution and the
exact solution and, as such, it does not exacerbate the actual simulation errors. How-
ever, in practice, the decoupling can cause a substantial problem in solution display.
The decoupling can manifest itself as what appear to be small-wavelength oscillations
when the solution at the final time level is displayed using the solution values of both
Ä∗+ andÄ∗−. As is shown in the following paragraph, not only does the above defini-
tion of a unique generalized flux at any boundary of a BCE provide a way to avoid the
problem of “flux decoupling,” it also provides a way to handle the problem of “solution
decoupling.”

Consider the top face of any BCE with two cohosts. For anym, the two fluxes assigned
to this face, respectively, are evaluated assuming that the face belongs to the SEs of its two
cohosts, respectively. It can be shown that these two fluxes, respectively, are equal to the
area of the face multiplied by the two values ofum at the centroid of the top face evaluated
assuming that the centroid belongs to the two cohosts, respectively. Let the simple average of
the above two values ofum be referred to as thecoupledsolution value ofum at the centroid
of the top face of this BCE. Then it can easily be shown that, for eachm, the generalized
flux at this face is simply the area of the face multiplied by the new solution value. Also,
because of how these new solution values are defined, solution decoupling generally is no
longer a problem if the numerical data are taken from these new solution values.

Finally, it should be emphasized that the above definition of generalized fluxes and
coupled solution values by no means implies any change in the marching scheme. In fact,
evaluation of the locations of the centroids of the top faces of the BCEs along with that of
the associated coupled solution values represents only a post-marching procedure.
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