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Direct Calculation of Wave Implosion for Detonation Initiation in Pulsed Detonation Engines 

Bao Wang1, Hao He2 and S.-T. John Yu3 
Ohio State University, Columbus, Ohio, 43202 

One- and two-dimensional imploding waves are numerically simulated by using the space-
time CESE method. One-dimensional calculations show that a Mach 1.3 converging shock is 
capable to initiate the detonation in a 2:1:7 H2/O2/Ar gas mixture, initially at 0.2 standard 
atmospheric pressure. Results also clearly show a two-shock implosion system, resulting from 
interactions between the reflected main shock and the contact discontinuity wave. Implosion of 
the second shock pushes pressure and temperature at the focal region to be more than 5000 
times higher than its initial values. Two-dimensional solutions focus on imploding polygonal 
shock fronts. Corners of the polygon are the source of complex Mach reflection. In each 
polygonal section, the flow field is analogous to a planar shock wave entering a channel with 
converging walls. Numerical images show complex and spectacular shock structure. Similar to 
that in one-dimensional results, histories of pressures at the focal point also show a multiple-
implosion system. 

I. Introduction 
There has recently been intense interest in pulse detonation engines (PDEs) which generate thrust via a cyclical 

detonation process. Although it is highly desirable that PDEs use combustible fuels which have already been approved 
by the aviation industry, the resulting fuel-air mixtures are difficult to detonate. One means of initiating these mixtures is 
via the use of a “pre-detonator” or “driver” tube which is filled with highly detonable fuel-oxygen. Spark ignition of this 
mixture leads to a detonation wave which can then be used to initiate the fuel-air mixture in the main combustion 
chamber. It is desirable from both a safety and performance point of view to keep the volume of the pre-detonator as 
small as possible. Thus, the efficiency of transmission from the driver tube to the chamber will be an important issue. 
One means of promoting transmission is shock reflection and focusing techniques.  

Murray et al.1 proposed to transmit detonation waves from an initiator into the main detonation tube through an 
annular orifice. The diameter of the main tube could be 2.2 times of the diameter of the initiator. The annular orifice 
generated an imploding toroidal wave and the high-pressure and high-temperature focal region is capable of sustaining 
detonations in the main chamber.   

Recently, Shepherd and coworkers2,3 have successfully developed an efficient imploding detonation initiator based 
on the use of an array of small channels to generate and merge multiple shock waves to create a single toroidal shock 
front in the main detonation chamber. The collapsing shock front compresses the gas mixture adiabatically as it flows 
into an ever-decreasing area, leading to a focal region of extremely high energy density.  Compressing the gas mixtures 
increases the post-detonation wave pressure to be higher than the Chapman-Jouguet (CJ) pressure, resulting in an 
increasingly overdriven detonation wave for detonation transmission from an initiator into the main detonation engine. 
This shock focusing mechanism depends only on the flow geometry and provides the means to dramatically increase the 
transmission efficiency and to reduce the required amount of sensitized initiator gas. They showed that by using this 
technique, detonations were realized in a C3H8-air mixture at room temperature (298 K).  

To analyze implosion and explosion blast waves, classical self-similar solutions provide useful scaling relationships 
and greatly facilitate the analyses. In general, a self-similar solution represents an asymptotical flow regime, which is 
approached by the flow solution after the initial complex flow structure fades away. Based on dimensional analyses, the 
classical self-similar solution of expanding blast wave was developed by Taylor4 and Sedov.5 Later the analytical 
solution was further refined by many researchers, e.g., Sharma and Radha6 Toque,7 and van Dyke and Guttmann.8 We 
note that in this solution, the central region, from where the blast wave emanates, is without any flow structure. This is 
true when the blast wave has propagated far away from the center and all wave structures in the initiation process have 
been dissipated.  
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In a similar method, solution of imploding wave was provided by Guderley. 9 However, the time and length scales of 
implosion are much smaller than that of explosion, and there is not enough space and time for an imploding flow to 
develop and reach its asymptotic state. Thus, the Guderley solution is less useful, unless the imploding blast wave is 
initiated exactly as the analytical solution.  

Other theoretical and experimental studies of imploding and exploding blast waves have been conducted by 
researchers, e.g., Boyer,10 Friedman,11 Glass,12 Baker,13 and Schwendeman and Whitham14. There have been few 
satisfactory implosion experiments because it is extremely difficult to break a spherical diaphragm instantaneously.   

Numerical experiments have also been carried out for implosion and explosion problems. For example, Flores and 
Holt15 employed Glimm’s scheme to compute the explosion generated by a pressurized sphere in water. Charrier and 
Tessieras16 calculated a cylindrical explosion in air by using a front-tracking technique. Oran and DeVore17 used the 
FCT method and connection machine to solve two-dimensional imploding detonation waves with and without 
perturbation. Payne18 used the Lax method and conducted calculations of converging cylindrical shock.  Falcovitz and 
Birman19 used the GRP method and studied strong and weak discontinuities in explosion/implosion flows. The GRP 
method uses a moving mesh to track the discontinuities and a cell-merging-splitting mechanism to avoid small cells that 
invariably lead to extremely small time steps for numerical stability. The method is rather complex and its extension to 
multidimensional flows could be difficult. Sod20 proposed an operator splitting method to overcome the singularity 
problem at the focal center. He solved an implosion problem and showed the existence of the second implosion due to 
the interactions between the reflected main shock with the incoming contact discontinuity. As will be shown in the 
present paper, this second implosion shock plays a critical role in detonation initiation processes.   

The goal of the present paper is to analyze complex structure of converging shocks. We use the Space-Time 
Conservation Element and Solution Element (CESE) method21-24 to solve the one- and two-dimensional reacting Euler 
equations in cylindrical and Cartesian coordinates, respectively. In one-dimensional simulation, we focus on detonation 
initiation processes in a H2/O2/Ar mixture. Chemical reactions are modeled by a finite-rate chemistry model of 10 
species and 24 reaction steps. Numerical results clearly show a triple shock system and complex wave interactions. 
Apparently, ignition is greatly enhanced by the implosion of the second shock, owing to the interaction between the 
outwardly moving reflected main shock and the inwardly moving contact discontinuity.    

In two-dimensional calculations, we consider both reacting flow and non-reacting flows. For reacting flows, a global 
reaction model is adopted to model C3H8-air combustion for numerical efficiency. Circular imploding flows with small 
perturbations on the shock front as well as polygonal shock fronts are considered. In order to study complex flow 
features, we use up to 4.5 million mesh nodes to calculate the imploding flows. The calculation was performed by using 
a newly constructed 32-node Beowulf cluster at OSU.  In the imploding phase of the flow, the CESE method is able to 
maintain the cylindrical symmetry of the implosion waves and track the main features of the flow near the focal point of 
the incoming waves. Among its many merits, the CESE method is a genuinely un-split numerical method, and it can 
provide highly accurate solutions of complex curved shocks. Although much remains to be done to address the 
abovementioned numerical issues, we visibly demonstrate in the present paper that the CESE method does not suffer 
significant deficiency in calculating the implosion solutions.  

The rest of the present paper is organized as follows. Section 2 gives governing equations. Section 3 presents and 
validates numerical method employed.  Section 4 discusses the one-dimensional numerical results. Section 5 discusses 
the two-dimensional implosion results. We then provide the concluding remarks, acknowledge helps that we received 
during the course of the present work, and provide the list of cited references.   

II. Governing equations 
The governing equations for the numerical simulation are the one-dimensional multi-species reactive Euler equations 

of Ns species:  
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where ρ, u, p, E, and ρk are density, velocity, specific total energy, and mass concentration of species k, respectively. j = 
0, 1, 2 for planar, cylindrical, and spherical flows, respectively. ρ is the summation of all species density, 
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The total energy E is defined as 
2/ueE 2+=                                     (2.4) 

where e  is the internal energy of the gas mixture per unit mass and it is calculated based on a mass-weighted average 
of the specific internal energy of each species ek, i.e., 
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In Eq. (2.5), ρρ /y kk = is the mass fraction of species k. Note that since the internal energy e and the total energy 

E include the heat of formation of each species in their definitions, no source term exists in the energy equation. kω& is 

the net molar production rate of species k and can also be expressed as kkk W/Ωρω =& . 
According to the law of mass action, the stoichiometric equation of a set of Nr elementary reactions involving Ns 

species can be written in the following form 
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where kkk W/n ρ= is the mole concentration of species k in the gas mixture. '
jkν  and "

jkν  are respectively the 

stoichiometric coefficients of the reactants and products of species k in the jth reaction. The source terms, kω&  for 
k=1,2,3,..,Ns-1, in the species equations, Eq. (2.2), are formulated in mass concentration, and they are the summation of 
the net rate of change of species k from all chemical reactions involved, i.e., 
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where Wk is the molecular weight of species and jk )n( &  is the rate change of concentration of species k by the 
reaction j, given by 
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The forward and backward reaction rate constants, Kfj and Kbj, are in the Arrhenius form:  
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where Af and Ab are the pre-exponential constant; Ef and Eb are the activation energies; and Ru is the universal gas 
constant. In general, those coefficients in Eq. (2.9) are provided as a part of the adopted finite-rate chemistry model. If 
the kinetic data of the reverse reaction were not available, one needs to use the equilibrium constant to calculate the 
reverse reaction rate constants, i.e.,  

jjj eqfb KKK =                                         (2.10) 

where the Keqj is determined by minimizing the free energy.25 

III. Numerical method 
The space-time Conservation Element Solution Element (CESE) method, originally proposed by Chang21 has been 

extended for chemical reacting flows with realistic finite-rate chemistry models. The CESE method is distinguished by 
the simplicity of its design principle, i.e., treating space and time as one entity in calculating flux conservation. 
Previously, we have reported the extension of the CESE method for chemically reacting flows with comprehensive 
physical modeling, including the multi-step finite-rate kinetics and thermodynamics models. 26,27 

The details of the Space-Time CE/SE method have been extensively illustrated in the cited references. For 
completeness, only a brief discussion of the essential steps of the CE/SE method will be provided here. We shall first 
discuss the conventional finite-volume methods, in which because space and time are not treated equally, the choice of 
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the space-time geometry has been restricted. As discovered by Godunov, the classical Riemann problem was 
encountered in balancing the space-time flux. Thus a Riemann solver became an integral part of the modern upwind 
schemes. In the present space-time CE/SE method, however, due to an equal footing treatment of space and time, the 
resultant formula is flexible to allow a better choice of space-time geometry to calculate flux conservation. In particular, 
a zigzagging strategy was developed such that the Riemann problem was avoided in balancing the space-time flux.  
Moreover, the spatial gradients of the flow variables are also treated as the unknowns and they march in time hand in 
hand with the flow variables themselves.  As a result, no Riemann solver or reconstruction step is used as the building 
block. The logic of the present method is much simpler.   In the following subsections, we shall illustrate the basic 
concept of the space-time integration in the CE/SE method as a contrast to the conventional methods. We then illustrate 
the essential steps of the present method in calculating the detonations.  

A. Conventional Finite-Volume Methods 
The conventional finite-volume methods for solving conservation laws were formulated according to flux balance 

over a fixed spatial domain. The conservation laws state that the rate of change of the total amount of a substance 
contained in a fixed spatial domain V is equal to the flux of that substance across the boundary of V, i.e., S(V).  Let the 
density of the substance be u and its spatial flux be f, the convection equation can be written as   

∂u
∂t + ∂ f

∂x = τ(u )                                      (3.1)  
where τ(u) is the source term in the convection equation. According to the Reynolds transport theorem, the integral 

form of the above equation can be expressed as:   
∂
∂t udV

V
= – f ⋅

S(V)
ds + τ(u ) dV

V
                           (3.2) 

The conventional finite-volume methods concentrated on calculating the surface flux, i.e., the first term on the right 
hand side. The time derivative term is usually treated by a finite difference method, e.g., the Runge-Kutta method. Or, 
integration can be performed for temporal evolution:  

  udV
V t1

t2

= – f ⋅ds
S(V )

+ τ(u ) dV
V

t1

t

dt                        (3.3)  

Due to the fixed spatial domain, the shape of the space-time Conservation Elements (CEs) in one spatial dimension 
for Eq. (3.3) must be rectangular. Refer to Fig. 3.1(a).  The unknowns are usually placed at the center of the spatial mesh, 
i.e., on the boundary of the space-time CEs.  The CEs must stack up exactly on the top of each other in the temporal 
direction, i.e., no staggering of these elements in time is allowed. For equations in two space dimensions, as depicted in 
Fig. 3.1(b), a conservation element is a uniform-cross-section cylinder in the space-time domain, and again no 
staggering in time is allowed.  

t

x

x

y

t

(a)

(b)  
Figure 3.1 Space-time integration for conventional finite-volume methods in one and two spatial dimensions. 
This arrangement results in vertical interfaces extended in the direction of time evolution between adjacent space-

time conservation elements.  Across these interfaces, flow information travels in both directions. Therefore, an upwind 
bias method (or a Riemann solver) must be employed to calculate the interfacial fluxes.  
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B. The Space-Time Integration  
Consider an initial-value problem involving the PDE,  
∂u
∂t + a∂u

∂x = τ(u )                            (3.4)   
where a is a constant and τ(u) is a function of u. Let x1 = x  and x2 =t, be the coordinates of a two-dimensional 

Euclidean space E2. Thus Eq. (3.4) becomes a divergence free condition,  
∇ ⋅ h = τ(u )                                       (3.5) 
where the current density vector h = ( au, u).  By using Gauss’ divergence theorem in the space-time E2, it can be 

shown that Eq. (3.4) is the differential form of the integral conservation law: 
h⋅ds

S(R)
= τ(u ) dR

R
                                         (3.6)   

Figure 3.2 is a schematic for Eq. (3.6).   

r+dr

r

dr

ds
R

S(R)

  r=(x,t)
dr=(dx,dt)t

x 

Figure 3.2 A schematic of the space-time integral. 
Here S(R) is the boundary of an arbitrary space-time region R in E2, ds = dσ n with dσ  and n , respectively, being 

the area and the outward unit normal of a surface element on S(R), and dR is the volume of a space-time region inside 
S(R). Note that h ⋅ ds  is the space-time flux of h leaving the region R through the surface element ds , and all 
mathematical operations can be carried out since E2 was an ordinary two-dimensional Euclidean space. We remark that 
space and time are treated on an equal footing manner. Therefore, there is no restriction on the space-time geometry of 
the conservation elements over which the space-time flux is imposed.    

Let Ω denote the set of all staggered space-time mesh nodes (j, n) in E2 (dots in Fig. 3.3(a)) with n being a half or 
whole integer, and (j - n) being a half integer. For each (j, n) ∈ Ω, let the solution element SE(j, n) be the interior of the 
space-time region bounded by a dashed curve depicted in Fig. 3.3(b). It includes a horizontal line segment, a vertical 
line segment, and their immediate neighborhood. For the discussions given in this paper, the exact size of this 
neighborhood does not matter.  

n=2

n=3/2

n=1

n=1/2

n=0

j=-3/2 j=-1/2 j=1/2 j=3/2
j=-1 j=0 j=1

t/2

t/2

x/2

t

x

(a) The staggered space-time mesh

(j,n)

x/2

t/2

(b) SE(j,n)

(j,n)

(j-1/2,n-1/2) (j+1/2,n-1/2)

(c) CE(j,n)

(j,n)

(j-1/2,n-1/2) (j+1/2,n-1/2)

(d) The union of SE(j,n),
SE(j-1/2,n-1/2) and SE(j+1/2,n-1/2)  
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Figure 3.3 The space-time mesh of the CE/SE method. 
For any (x, t) ∈ SE(j, n), let u(x, t) and h(x, t), respectively, be approximated by u*(x, t; j, n) and h*(x, t; j, n) which 

we shall define shortly.  
Let  
  u*(x, t; j, n ) = u j

n + (ux )j
n(x – x j ) + (ut )j

n(t – tn )                           (3.7) 
where (i) u j

n , (ux )j
n  and (ut )j

n  are constants in SE(j, n), and (ii) (xj, tn) are the coordinates of the mesh point (j, n). As will 
be explained later, we shall assume that  

(ut )j
n = – a(ux )j

n                                                               (3.8)  
Combining Eqs. (3.7) and (3.8), one has  

u*(x, t; j, n) = u j
n + (ux) j

n[(x – xj) – a (t – tn)],
(x, t) ∈ SE( j, n)

                                                  (3.9)  

As a result, there are two independent marching variables u j
n  and (ux )j

n  associated with each (j, n) ∈ Ω. Furthermore, 
because h = (au, u), we define 

    h* (x, t; j, n) =(au*(x, t; j, n), u*(x, t; j, n))                             (3.10)  
Let E2 be divided into non-overlapping rectangular regions referred to as conservation elements (CEs). As depicted  

in Fig. 3.3(c), the CE with the midpoint of its top face being any mesh point (j, n) ∈ Ω is denoted by CE(j, n). The 
discrete approximation of Eq. (3.6) is  

h ⋅ ds = τ(u j
n) × ∆x∆t

2S(CE( j,n))
                                     (3.11)   

Here τ(u j
n )  is assumed to be the average value of τ(u) in CE(j, n). Because (∆x∆t)/2 is the volume of CE(j, n), Eq. (3.11) 

simply states that the total space-time flux of h* leaving the boundary of any CE is equal to the source  integral over the 
CE. Because the surface integration over any interface separating two neighboring CEs is evaluated using the 
information from a single SE, obviously the local conservation relation Eq. (3.11) leads to a global flux conservation 
relation, i.e., the total flux of h* leaving the boundary of any space-time region that is the union of any combination of 
CEs is equal to the source integral over the same space-time region.  

To justify Eq. (3.8), we shall assume that the value of u on a macro scale (that is the value of u obtained from an 
averaging process involving a few neighboring CEs) will not vary significantly as a result of redistribution of τ over 
each CE, in which τ is held constant. Based on this assumption, we take the liberty to redistribute the source term such 
that there is no source present within each SE. Thus with the aid of Eq. (3.7), Eq. (3.8) is the result of substituting u = 
u*(x, t; j, n) into Eq. (3.6). 

Because the boundary of CE(j, n) is a subset of the union of SE(j, n), SE(j-1/2, n-1/2) (refer to Fig. 3.3(d)), Eqs. (3.9-
11) imply that  

u j
n – ∆t

2 τ(u j
n ) = 1

2 [(1 – v) u j + 1 / 2
n – 1 / 2 – (1 – v2)(ux

+) j + 1 / 2
n – 1 / 2

+ (1 + v) u j – 1 / 2
n – 1 / 2 + (1 – v2)(ux

+) j – 1 / 2
n – 1 / 2 ]

                            (3.12) 

Here, (i) ν ≡ (a∆t ) / ∆x is the Courant number and (ii) (ux
+ )j

n ≡ (∆x / 4) (ux )j
n , (j, n) ∈ Ω, is the normalized form of (ux )j

n . 
Given the values of the marching variables at the (n - 1/2)th time level,  u j

n   is determined by solving Eq. (3.12) with the 
aid of Newton’s iteration method. Note that, in the solver of the ZND wave, the initial estimated solution for Newton’s 
iterations is calculated by assuming that the source term is zero. After  u j

n  is known, (ux
+ )j

n  is evaulated using a 
oscillation-suppressing procedure, which was described fully in [22,23]. Here, only a brief account si provided. Let (j, n) 
∈ Ω. With the aid of Eq. (3.8), we have  

  
u′ j ± 1 / 2

n ≡ u j ± 1 / 2
n – 1 / 2 +

∆t
2 (ut )j ± 1 / 2

n – 1 / 2

≡ u j ± 1 / 2
n – 1 / 2 – 2v (ux

+ )j ± 1 / 2
n – 1 / 2                                (3.13) 

 According to Eq. (3.13), u ′ j ± 1 / 2
n can be interpreted as a first-order Taylor’s approximation of u at (j±1/2, n). Let  

(ux ±
+ ) j

n ≡ ± (u′ j ± 1 / 2
n – u j

n)

= ± ∆x
4

u′ j ± 1 / 2
n – u j

n

∆x / 2

                                           (3.14)  

where (u′x+
+ )j

n and (u′x–
+ )j

n , aside from a normalized factor ∆x/4, are two numerical analogues of ∂u/∂x at (j, n) with one 
being evaluated from the right and the other evaluated from the left. Let the function W be defined by (i) W(0, 0, α) = 0 
and (ii)  

W(x–,x+;α)=|x+|αx–+|x–|
αx+

|x+|α+|x–|
α                                   (3.15)  
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Then (ux
+ )j

n is calculated using  
(ux

+) j
n=W((ux+

+ ) j
n,(ux–

+ ) j
n,α)                                   (3.16)  

By using the procedures described,28 the above scheme can be easily extended to become the solver of a nonlinear 
conservation equations with stiff source terms in either one-dimensional or multidimensional space. In addition to the 
present work, other CE/SE work related to the 1D and 2D problems with stiff source terms are also studied.29 

For validation, cylindrical explosion30 is calculated and the results are compared with the one-dimensional radial 
RCM solution at time t=0.25.The initial condition is given as below 


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The snapshots agree very well with the results got by RCM method, as shown in Fig. 3.4. 
 

 
 

 
 

Figure 3.4 CESE results compared with RCM solution
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Another example is the repeat of Sedov’s solution.5 First, Sedov’s solution at time t=2.8e-6 is taken as input, 

then the results after ∆t =1.92e-8 are compared with Sedov’s solution, shown in Fig 3.4.  

 

 
Figure 3.4 CESE results compared with Sedov’s solution 

IV. One-Dimensional Implosion 
In a one-dimensional cylindrical coordinate system, the initial conditions are composed of two regions, separated 

at r = ro. In all results, ro = 0.1 meter, and the computational domain is 0 < r < 0.38 meter. 14,400 equally spaced 
mesh nodes are used to cover the whole spatial domain. To maintain numerical stability, the time step size is 
dynamically adjusted, and, in general, 0.5 < CFL < 0.8.  In the driving region, where r > ro, we consider two initial 
pressures: 10 atm and 1 atm. In the driven region, where r < ro, the initial pressure is 0.2 atm. In all calculations, the 
initial temperature of the whole domain is 300 K and mole concentration ratio of the H2/O2/Ar gas mixture is 2:1:7. 
Note that most of the results presented in the paper is for the case of Pout/Pin = 50.  For Pout/Pin = 5, only limited 
results are presented and compared with the Pout/Pin = 50 case.  

We start the computation when the diaphragm separating the two flow regions is suddenly released. Figures 4.1, 
4.2 and 4.3 show the snapshots of pressure, density, and velocity profiles at various times. Note that values of the 
flow variables in the implosion phase of the flow problem are significantly different from that of the exploding 
phase. Thus, two plots are provided for each flow variables. Figures 4.4 shows detailed space-time flow patterns of 
pressure, density, temperature, velocity. Figure 4.5 shows mass fraction of the radical species OH.  
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(a)              (b) 

Figure 4.1 Pressure profiles at various times for Pout/Pin=50. (a) Implosion. (b) Explosion 

 
(a)              (b) 

Figure 4.2 Density profiles at various times for Pout/Pin=50. (a) Implosion. (b) Explosion. 
 

 
(a)              (b) 

Figure 4.3 Velocity profiles at various times for Pout/Pin=50. (a) Implosion. (b) Explosion. 
 

The initial flow development is similar to that of Sod’s shock-tube problem. Owing to the initial pressure 
difference, a shock wave is generated and it moves inwardly towards the axis. A rarefaction wave moves outwardly 
away from the axis. Between the rarefaction wave and the shock, a contact discontinuity appears and it moves 
towards the axis.  
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(a) Pressure contours       (b) Density contours 

 

 
(c) Velocity contours     (b) Temperature contours 

Figure 4.4 Flow variables contours in the computational space-time domain for Pout/Pin= 50. 
Due to ever-decreasing area, both pressure and velocity immediately behind the main shock steadily increases as 

time progresses. After its reflection from the axis and moves outwardly, the main shock clashes with the incoming 
contact discontinuity. Afterwards, the main shock penetrates the contact discontinuity and moves outwardly with a 
constant speed. The interaction causes the contact discontinuity to slightly slow down in its inward motion. 
Simultaneously, a new shock is generated at the point of interaction and it moves quickly towards the axis. 
Implosion of this second shock raises the pressure and temperature at the focal point even higher. This double 
implosion mechanism is the main mechanism for initiating the detonation at the focal region. In the explosion phase 
of the flow, a robust detonation could be clearly discerned for r > 10 cm in Figs. 4.1-4.4.  
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Figure 4.5 OH contour for Pout/Pin=50 in the computational space-time domain. 
Similar to that of the main shock, the reflected second shock interacts with the contact discontinuity and 

generates a third imploding shock, which is weak and cannot be easily discerned in Figs. 4.1-4.4.  After interacting 
with the reflected second shock, the contact discontinuity stops its inward motion and become stationary at r = 2 cm.  
This stationary contact discontinuity could be seen as a vertical line along r = 2 cm in Figs. 4.4-4.5.   

Figures 4.6-4.9 show the comparison of the flow conditions between the case of Pout/Pin = 50 and the Pout/Pin= 5 
case. Figure 4.6 shows the space-time trajectories of the main shocks.  Near the focal point, imploding shocks and 
exploding shocks of both cases deviate from a straight line.  While the trajectory slopes of imploding shocks in two 
cases are markedly different due to the different shock strengths, the exploding shocks have nearly identical slopes 
because in both cases detonations have been successfully initiated. Away from the focal region, r > 10 cm, robust 
detonations propagate at the CJ velocity can clearly seen in Figs. 4.4.  

 
Figure 4.6 Space-time trajectories of the main shocks of the Pout/Pin=5 and Pout/Pin=50 cases. 

 Figure 4.7-9 shows the time histories of pressure, density, and temperature at the focal point of implosion.  For 
the case of Pout/Pin= 50, one could clearly see the presence of the above- mentioned third shock wave. For the 
Pout/Pin= 5 case, the third shock is too weak to be detected. The maxima of flow variables were achieved by the 
implosion of the second  shock. 

 
Figure 4.7 Time histories of pressures at the focal point for Pout/Pin=5 and Pout/Pin=50. 
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Figure 4.8 Time histories of densities at the focal point for Pout/Pin=5 and Pout/Pin=50. 

 
Figure 4.9 Time histories of temperatures at the focal point for Pout/Pin=5 and Pout/Pin=50. 

Fig .4.10 shows trajectory of converging cylindrical shock wave for Ms=2.1 (Pout/Pin = 50). It can be clearly seen 
from the picture that the following relation is valid except near the center 

α









−=

cc t
t

R
R 1     

                   (4.1) 
Where cR  is the radius of the starting converging shock and ct  is the time when the converging shock arrives 

the center. The gradient of the trajectory is obviously the similarity exponent α  of Eq. (4.1) in its valid range. In 
our calculation, for Ms=2.1, 835.0=α .  
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Figure 4.10 Shock trajectory for Ms=2.1. 
 

 Previous results are listed in Table A for comparison. 
Table A. Previous results of Self-similar exponent 

                                Self-Similar Exponent α  
--------------------------------------------------- 
Guderley (1942)         0.834 
Butler (1954)              0.835217 
Stanyukovich (1960)  0.834 
De Neef and Nechman (1978) 0.835± 0.003 
Takayama (1984)    0.831± 0.002 Ms=1.1-2.1 
Kleine (1985)         0.832

043.0
028.0

−
+  Ms=1.3-2.1 

V. Two-Dimensional Implosion 
All calculations use the same unstructured mesh of about 4.5 million quadrilaterals. Figure 5.1 is a schematic of 

the mesh. Due to symmetry, the actual computational domain is a quarter of the shown circle. The dimensionless 
radius of the computational domain is 1.0.  Four implosion cases are presented here. Three of them are non-reacting 
implosion with a square front, an octagonal front, and a circular front with sinusoidal perturbations on the shock 
front. Pressure is perturbed and the amplitude of the perturbation is 2% of the initial pressure difference between the 
driver section and driven section. There are 32 cycles of sinusoidal perturbations around the whole circular front.   

 
Figure 5.1 A schematic of the mesh. 
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The fourth implosion case is a reacting circular shock front with similar perturbations. The initial condition is 
composed of two distinct regions with different pressures. In all calculations here, Pout/Pin= 20 and temperature is 
uniform at 300 K. Thus, in all cases, ρout/ρin = 20.  

The calculations were performed by using a parallelized CESE Euler solver, running on 27 nodes of a 32-node 
PC cluster. The simulation ends when the main shock exits the outer boundary of the computational domain. Typical 
run time of one calculation is about 4 hours on a wall clock. The full capacity of our cluster could handle a mesh 
about 8 times bigger than the present mesh.  

Figures 5.2-5.5 show snapshots of pressure contours at various time steps for the abovementioned four cases. In 
each case of polygonal shock, flow evolution is symmetric with respect to the bisector of each vertex of the polygon. 
Imploding shocks interacts with the bisector and form Mach reflection. A planar side shock of the polygon 
corresponds to an incident shock in a shock-on-wedge problem, and the bisector itself corresponds to a wedge 
surface. Mach reflections can be observed on the bisector from each vertex of the initial polygon. Evolution of each 
side of a polygonal shock front may be interpreted as a planar shock entering into a convergent shock tube, i.e., a 
region surrounded by the bisector and the abovementioned lines of symmetry, forming a wedge-shaped cavity.  

Figure 5.2 Snapshots of pressure contours of a square implosion front at time = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 
0.5, 0.65, and 0.8. 

In the imploding process, the Mach stem of the Mach reflection propagates with a wave speed faster than that of 
the initial side shock of the polygonal front. As a result, the Mach stem increases in size, while the length of the side 
shock decreases to zero. During this evolution, the number of the vertices of the imploding polygon doubles that of 
the initial polygon. Finally, a new polygon is formed with a similar shape but the orientation is rotated. Seemingly, 
the original polygon, with a shrunk area, was recovered with a rotated orientation. The sides of this smaller polygon 
are composed of Mach stems. However, it is known that Mach stems are curved, particularly for weak incident 
shocks. Thus, the regenerated polygonal shocks have curved sides. One may have multiple regenerations of the 
initial polygon during the imploding process. This implosion mechanism is markedly different from a cylindrically 
imploding shock with a smoothly curved surface.  

Figure 5.5 shows time histories of temperature and pressure at the focal region for three non-reacting cases.  The 
case of square front has lower pressure and temperature because strong Mach reflections of large incident angles.  
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For the octagonal and circular fronts, the maximum pressure and temperature are comparable. Perhaps, one could 
use an octagonal front for effective implosion instead of striving for a circular converging front.  Figure 5.5 also 
shows the second implosion similar to that in the one-dimensional results. Here, no chemical reaction occurs and the 
second shock is much weaker. 

 

   

   

   
 

Figure5.3 Snapshots of pressure contours of an octagonal front at time = 0, 0.09, 0.18, 0.27, 0.315, 0.36, 
0.495, 0.63, and 0.72. 
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Figure 5.4 Snapshots of pressure contours at time = 0, 0.09, 0.18, 0.27, 0.36, 0.45, 0.585, 0.72, 0.90, 
respectively. 

 

  
Figure 5.5 Time histories of temperature and pressure at the focal point for the three non-reacting cases. 
 
Figure 5.6 shows the histories of pressure and temperature at the focal point of a successful detonation initiation 

processes by imploding circular shock front with perturbations on the initial front surface.  Similar to the one-
dimensional results, consecutive shock implosions with a very strong second shock is evident.  

 
Figure 5.6 Time histories temperature and pressure and at the focal point for the imploding reacting flow. 

VI. Concluding remarks 
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Direct numerical calculations of one- and two-dimensional implosion/explosion for efficient detonation initiation 
have been conducted. By using the space-time CESE method, we have obtained excellent interpretation of events 
that happen during the implosion/explosion processes. In one-dimensional calculations, we clearly showed a 
consecutive two-implosion system due to the interaction between the reflected main shock and the contact 
discontinuity. This double implosion shock system pushes the pressure and the temperature at the focal point to be 
more than 5000 times higher than its initial conditions. Thus it greatly facilitates the detonation initiation processes. 
In two-dimensional calculations, we focus on polygonal converging shocks. In the implosion phase, numerical 
images clearly showed the regenerations of rotated and smaller polygonal forms. Both the implosion and explosion 
flow patterns are complex and spectacular. Time histories of flow variables at the focal point confirm the double 
implosion mechanism found in the one-dimensional results. These results clearly demonstrate that the space-time 
CESE method is capable to catch all salient features of complex implosion/explosion flows.  
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