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Direct Calculation of Wave Implosion for Detonation Initiation

Bao Wang,∗ Hao He,† and S.-T. John Yu‡
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Numerical simulations of imploding shock waves for detonation initiation are reported. We solve the one-
dimensional Navier–Stokes equations and two-dimensional Euler equations for chemically reactive flows by the
space–time conservation element and solution element method. One-dimensional results in cylindrical coordinates
show that a converging shock produced by breaking a diaphragm for an initial pressure ratio of 1:0.2 atm is able to
successfully initiate a detonation in an argon-diluted hydrogen/oxygen mixture (0.2H2 + 0.1O2 + 0.7Ar) initially at
300 K. The result also shows a two-shock implosion system caused by the interaction between the reflected primary
shock and the imploding contact discontinuity. Two-dimensional solutions focus on imploding polygonal shock
fronts. In each polygonal section, the imploding shock is analogous to a planar shock wave entering a channel
with converging walls leading to complex wave reflections. Similar to that in the one-dimensional results, pressure
histories in the focal region show multiple implosions.

I. Introduction

D ETONATIONS could be easily initiated in a small initiator.
Subsequent transmission of the detonation from the initiator

to a larger chamber, however, requires suitable flow arrangement. In
this setting, implosion could be useful to facilitate the transmission
process. In the focal region, the collapsing shock front compresses
the gas mixture adiabatically as it flows into a decreasing area, lead-
ing to a small region of extremely high energy density. In a success-
ful arrangement, the compression would raise the postdetonation
pressure to be higher than the Chapman–Jouguet (CJ) pressure, giv-
ing rise to an overdriven detonation wave. Such an effective shock-
focusing mechanism could reduce the required sensitized initiator
gas and the additional energy deposition for successful detonation
transmission processes. Murray et al.1 proposed the transmitting
detonations from an initiator into a larger tube through various ar-
rangements of annular orifices. Detonation waves, passing the an-
nular orifice, generated imploding toroidal waves in the back of
the orifice. Aided by high pressures and temperatures of imploding
shocks, robust detonations could be reinitiated in the main chamber.
Jackson et al.2 and Jackson and Shepherd3 developed an imploding
device by using an array of small channels. By merging multiple
jets and wave fronts from the channels, they generated an implod-
ing shock front in a circular chamber to detonate C3H8/air mixtures.

Analytical solutions of imploding and exploding blast waves
have been available in the self-similar regimes, approached by the
evolving flows after the initial flow structure fades away. Based
on dimensional analyses, classical solution of implosion was pro-
vided by Guderley.4 Self-similar solutions of explosion were devel-
oped by Taylor5,6 and Sedov.7 Later, these classical solution have
been refined by Sharma and Radha,8 Toque,9 and van Dyke and
Guttmann.10 Other theoretical and experimental studies of implod-
ing/exploding blast waves include Boyer,11 Friedman,12 Glass and
Sislian,13 Baker,14 and Schwendeman and Whitham.15

Many numerical simulations of implosions and explosions have
been conducted. Brode16,17 reported simulations of spherical blast
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waves. His numerical results were compared with an analytical so-
lution based on an isothermal profile. In his numerical studies of det-
onation with a spherical charge of trinitrotoluene, he showed a sec-
ond shock in the focal region. Flores and Holt18 employed Glimm’s
method19 to simulate explosions that were generated by a pressur-
ized sphere in water. Charrier and Tessieras20 studied a cylindrical
explosion in air by using a front-tracking technique. Devore and
Oran21 and Oran and DeVore22 used the flux-correction-transport
(FCT) method23,24 and a connection machine to solve imploding det-
onation waves. Payne25 used the Lax method26 to simulate converg-
ing cylindrical shocks. Falcovitz and Birman27 used the Godunov
method28 and studied various discontinuities in an explosion and
implosion flow. Sod29 proposed an operator splitting method to over-
come the singularity problem at the focal center. He30 used a second-
order upwind method to simulate direct initiation of detonations.
Menikoff et al.31 showed that it was important to resolve the curved
detonation front and that a cell size on the order of 0.1 mm or less was
required to resolve the reaction zone of common detonation waves.

The objective of present paper is to analyze the complex struc-
tures of converging shocks and the subsequent detonation initiation.
We used the space–time conservation element and solution element
(CESE) method32−41 to solve the one-dimensional Navier–Stokes
equations and two-dimensional Euler equations for chemically re-
active flows in cylindrical and Cartesian coordinates, respectively.
In one-dimensional simulations, we focus on detonation initiation
processes in an H2/O2/Ar mixture. Chemical reactions are modeled
by a finite-rate chemistry model composed of nine species and 24 re-
action steps.42 Numerical results clearly show a multiple-implosion
system caused by the interactions between the exploding shock re-
flected from the center and the imploding contact discontinuity. In
two-dimensional calculations, we consider both reactive flow and
nonreactive flows. For numerical efficiency, a global reaction model
for C3H8/air combustion43 is employed. First, we consider circu-
lar imploding flows with small perturbations on the shock front.
The perturbations are employed to mimic the effect of merging su-
personic jets, similar to that by Jackson et al.,2 and Jackson and
Shepherd.3 We then consider implosion of several polygonal shock
fronts. We use about 4.5 million mesh nodes in the two-dimensional
calculations.

The rest of this paper is organized as follows. Section II pro-
vides the governing equations of the reactive flows. Section III
presents the CESE method with numerical accuracy verification.
Section IV illustrates the results and discussions. We then offer the
conclusions.

II. Governing Equations
The one-dimensional Navier–Stokes equations for chemically

reactive flows with Ns species are presented in the following
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vector form:

∂U
∂t

+ ∂F(U)

∂r
+ ∂Fµ(U)

∂r
= G(U) + S(U) (1)

where r is the distance from the coordinate origin, t is time, U
is the flow variable vector, F(U) the inviscid flux vector, Fµ(U)
the viscous flux vector, G(U) the source term vector for nonplanar
coordinates, and S(U) the source terms for chemical reactions:

U = (ρ, ρu, ρE, ρ1, ρ2, . . . , ρNs − 1)
T

F = [
ρu, ρu2 + p, (ρE + p)u, ρ1u, ρ2u, . . . , ρNs − 1u

]T

Fµ = −(
0, τrr, τrru − qr , ρ1û1, ρ2û2, . . . , ρNs − 1ûNs − 1

)T

G = −(1/r)
[
ρu, ρu2 + τθθ − τrr, (ρE + p)u − τrru

+ qr , ρ1u, ρ2, . . . , ρNs − 1u
]T

S = (
0, 0, 0, ω̇1, ω̇2, . . . , ω̇Ns−1

)T
(2)

where ρ, u, p, E , and ρk are density, velocity, pressure, specific
total energy, and density of species k, respectively. Density of the
flow mixture ρ can be expressed by the summation of the species
density:

ρ =
Ns∑

k = 1

ρk (3)

The specific total energy E is

E = e + u2/2 (4)

where e is the specific internal energy of the gas mixture and it is
calculated based on a mass-weighted average of the specific internal
energy of each species ek , that is,

e =
Ns∑

k = 1

Ykek (5)

In Eq. (5), Yk = ρk/ρ is the mass fraction of species k. The specific
internal energy e and the specific total energy E include the heat of
formation of all species.

According to the law of mass action, a set of Nr reactions involv-
ing Ns species can be expressed by

Ns∑

k = 1

ν ′
jknk

K f j⇔
Kbj

Ns∑

k = 1

ν ′′
jknk, j = 1, 2, . . . , Nr (6)

where nk = ρk/Wk is the mole concentration of species k with Wk

as the molecular weight of species k. In Eq. (6), ν ′
jk and ν ′′

jk are
the stoichiometric coefficients of species k in the j th reaction. The
source term ω̇k in the k species equation is the summation of the
generation rate of the species k from all chemical reactions involved,

ω̇k = Wk

Nr∑

j = 1

(ṅk) j (7)

where (ṅk) j is the generation rate of species k by reaction j :

(ṅk) j = (ν ′′
jk − ν ′

jk)

(
K f j

Ns∏

l = 1

n
ν′

jl
l − Kb j

Ns∏

l = 1

n
ν′′

jl
l

)
(8)

The forward and backward reaction-rate constants K f j and Kb j are
formulated in the Arrhenius form:

K f j = A f j T
B f j exp

(−E f j

/
Ru T

)

Kb j = Ab j T
Bb j exp

(−Eb j

/
Ru T

)
(9)

where A f and Ab are the preexponential constants, E f and Eb are
the activation energies, and Ru is the universal gas constant. If the
rate coefficients of the reverse reactions were unavailable, they can
be calculated by using the equilibrium constant Keq j

:

Kb j = K f j

/
Keq j

(10)

where Keq j
can be determined by minimizing the free energy.

To proceed, the stress components in Eq. (2) are given as follows:

τrr = 2

3
µ

(
2
∂u

∂r
− u

r

)
(11)

τθθ = −2

3
µ

(
∂u

∂r
− 2u

r

)
(12)

where the dynamic viscosity is calculated by using the Sutherland
law,

µ = µ0

√
T

T0

1 + C/T0

1 + C/T
(13)

The coefficients are µ0 = 0.76813 × 10−4, T0 = 1682.05 K, and
C = 486.67. These coefficients were obtained by fitting Eq. (13)
with a series of viscosities of the reacting mixtures calculated by
using the NASA Chemical Equilibrium with Applications (CEA)
program44 over a wide temperature range. The heat conduction and
species diffusion are calculated by

qr = −K
∂T

∂r
(14)

ûi = − Dim

Yi

∂Yi

∂r
(15)

Instead of using complex mixing rules, we assume a constant Prandtl
number Pr = 0.72 for calculating the heat conductivity and constant
Schmidt number Sc = 1.0 for calculating the diffusion velocity ûi

for all specie involved.
For two-dimensional calculations, the Euler equations for chem-

ically reactive flows are employed:

∂um

∂t
+ ∂ fm

∂x
+ ∂gm

∂y
= µm with m = 1, 2, . . . , 5 (16)

The flow variables [um], the spatial fluxes [ fm], [gm] and the source
term [µm] are

[um] =







ρ

ρu

ρv

ρE

ρ f







, [ fm] =







ρu

ρu2 + p

ρuv

(ρE + p)u

ρ f u







[gm] =







ρv

ρuv

ρv2 + p

(ρE + p)v

ρ f v







, [µm] =







0

0

0

0

ω̇ f







(17)

All flow variables are defined in the same way as those in the one-
dimensional case except additional y coordinate and the y com-
ponent velocity v. Because we only consider a one-step finite-rate
reaction for the C3H8/air mixture, the chemical composition of the
gas mixture could be readily calculated if the concentration of the
fuel, that is, propane, is known. Thus we only include one species
equation in the model when there are four chemical species in the
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single-step reaction. The finite-rate reaction model is taken from
Dryer43:

C3H8 + 5O2 → 3CO2 + 4H2O

d

dt
[C3H8] = −A exp

(
− Ea

Ru T

)
[C3H8]a [O2]b (18)

The coefficients in the preceding rate equation are A = 8.6 × 1011,
Ea = 30, a = 0.1, and b = 1.65. Units are cm-sec-mole-Kcal-K.

III. CESE Method
In the present work, the space–time CESE method, originally pro-

posed by Chang38 and Chang et al.,39,40 is employed. Previously, we
have extended the CESE method for chemically reactive flows32−36

with comprehensive finite-rate kinetics and thermodynamics mod-
els. The CESE method is distinguished by the simplicity of its design
principle, that is, a unified treatment of space and time in calculating
flux conservation. In contrast to modern upwind methods, the CESE
method does not use a Riemann solver or a reconstruction proce-
dure as the building blocks of the numerical algorithm. Therefore,
the logic and operation count of the CESE method are much sim-
pler. They are comparable to a straightforward central differencing
scheme. The details of the CESE method have been extensively il-
lustrated in Refs. 38–40. In the present paper, only a brief discussion
of the essential steps of the CESE method is provided.

To introduce the advantageous space–time-integration formula-
tion of the CESE method, we first discuss the conventional finite
volume methods, in which, because space and time are not treated
equally, the choices of the space–time geometry of the finite volume
have been restricted. As a result, the Riemann problem is unavoid-
able in calculating the space–time flux. Thus, the use of an efficient
Riemann solver in modern upwind schemes became a paradigm
in shock-capturing schemes. We will then show that, because of a
unified treatment of space and time, the CESE formulation allows
flexible choices of space–time geometry in calculating fluxes such
that the Riemann problem is totally avoided. Moreover, the spatial
gradients of the flow variables are treated as the unknowns, and they
march in time with the flow variables. Thus the reconstruction step
is eliminated in the CESE method.

A. Finite Volume Methods
Consider the following convection equation:

∂u

∂t
+ ∂ f

∂x
= τ(u) (19)

where u is the density of the substance, f is the spatial flux, and τ(u)
is the source term. According to the Reynolds transport theorem, we
have the integral equation

∂

∂t

∫

V

u dV = −
∫

S(V )

f · dS +
∫

V

τ(u) dV (20)

Equation (20) states that the rate of change of the total amount of
a substance contained in a spatial domain V is equal to the com-
bined effect of 1) the flux of that substance across the boundary of
V , that is, S(V ), and 2) the source term integration over V . The
conventional finite volume methods concentrated on calculating the
flux through S(V ). The time-derivative term is usually treated by a
finite difference method, for example, the Runge–Kutta method. Or
integration can be performed for temporal evolution:

∫

V

u dV

∣∣
∣∣

t2

t1

=
∫ t

t1

[
−

∫

S(V )

f · dS +
∫

V

τ(u) dV

]
dt (21)

In this setting, the space–time domain in one spatial dimension must
be rectangular. Refer to Fig. 1a. The unknowns are usually placed at
the center of the spatial mesh, that is, on the boundary of the finite
volume (FV). The FVs must be stacked up exactly on the top of
each other in the temporal evolution direction. For equations in two

a)

b)

Fig. 1 Space–time integration for conventional finite volume methods
in one and two spatial dimensions.

Fig. 2 Schematic of the space–time integral.

spatial dimensions, as depicted in Fig. 1b, a FV is a uniform-cross-
section cylinder in the space–time domain. Again, no staggering
in time is allowed. This arrangement results in vertical interfaces
extended in the direction of time evolution between adjacent FVs.
Across the interfaces, flow information travels in both directions.
Therefore, an upwind-biased method (or a Riemann solver) must be
employed to calculate the flux.

B. Space–Time Integration
To treat the same convection equation (19) according to the CESE

method, we let x1 = x and x2 = t be the coordinates of a two-
dimensional Euclidean space E2. Equation (19) becomes

∇ · h = τ(u) (22)

where the current density vector

h = (au, u) (23)

By using Gauss’s divergence theorem in E2, Eq. (22) becomes
∮

S(R)

h · ds =
∫

R

τ(u) dR (24)

where S(R) is the boundary of an arbitrary space–time region R in
E2, ds = dσn with dσ and n, respectively, being the area and the
outward unit normal of a surface element on S(R), and dR is the
volume of a space–time region inside S(R). In Eq. (24), h · ds is
the space–time flux of h leaving the region R through the surface
element ds. Figure 2 is a schematic of Eq. (24). There is no restric-
tion on the space–time geometry of the conservation elements, over
which Eq. (24) is enforced. In what follows, we briefly illustrate the
numerical integration of Eq. (24).

To proceed, let � denote the set of all staggered space–time mesh
nodes ( j, n) in E2 (dots in Fig. 3a) with n being a half or whole
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a) Staggered space–time mesh

b) SE(j, n)

c) CE(j, n)

d) Union of SE(j, n),
SE(j −− 1

2 , n −− 1
2 ), and

SE(j + 1
2 , n −− 1

2 )

Fig. 3 Space–time mesh of the CESE method:

integer, and ( j − n) being a half-integer. For each ( j, n) ∈ �, let the
solution element SE( j, n) be the interior of the space–time region
bounded by a dashed curve depicted in Fig. 3b. It includes a horizon-
tal line segment, a vertical line segment, and their immediate neigh-
borhood. The exact size of this neighborhood does not matter. For
any (x, t) ∈ SE( j, n), let u(x, t) and h(x, t), respectively, be approx-
imated by u∗(x, t; j, n) and h∗(x, t; j, n). We define u∗(x, t; j, n)
by

u∗(x, t; j, n) = un
j + (ux )

n
j (x − x j ) + (ut )

n
j (t − tn) (25)

where1) un
j , (ux )

n
j , and (ut )

n
j are constants in SE( j, n) and 2) (x j , tn)

are the coordinates of the mesh point ( j, n). To simplify the discus-
sion of the numerical algorithm, we let f = au with a as a constant.
Furthermore, we let

(ut )
n
j = −a(ux )

n
j (26)

in Eq. (25). To justify Eq. (26), we assume that the value of u on
a macroscale [that is, the value of u obtained from an averaging
process involving a few neighboring conservation elements (CEs)]
does not vary significantly as a result of redistribution of the source
term τ over each CE, over which Eq. (24) must be satisfied. As such,
we take the liberty to redistribute the source term such that all source-
term effects associated with each mesh node will be calculated in
a rectangle attached to the bottom of the corresponding SE. Thus,
there is no source-term effect along the vertical line segment of each
SE. Please refer to Ref. 32 for detailed discussions of treating source
terms in the CESE method. Aided by Eq. (26), Eq. (25) becomes

u∗(x, t; j, n) = un
j + (ux )

n
j

[
(x − x j ) + a(t − tn)

]

(x, t) ∈ SE( j, n) (27)

There are two marching variables un
j and (ux )

n
j associated with each

( j, n) ∈ �. Furthermore, because h = (au, u), we have

h∗(x, t; j, n) = [au∗(x, t; j, n), u∗(x, t; j, n)] (28)

Let E2 be divided into nonoverlapping rectangular regions referred
to as conservation elements. Shown in Fig. 3c, the CE with the
midpoint of its top face being any mesh point ( j, n) ∈ � is denoted
by CE( j, n). The discrete approximation of Eq. (24) is

∮

S[CE( j,n)]

h · ds = τ
(
un

j

) × 	x	t

2
(29)

Here τ(un
j ) is the average value of τ(u) in CE( j, n). Because

(	x	t)/2 is the volume of CE( j, n), Eq. (29) simply states that

the total space–time flux of h∗ leaving the boundary of any CE is
equal to the source-term integration over the CE. Because the sur-
face integration over any interface separating two neighboring CEs
is evaluated using the information from the same SE, the local flux
conservation relation Eq. (29) leads to global flux conservation.

Without going into details, the boundary of CE( j, n) is a subset
of the union of SE( j, n), SE( j − 1

2 , n − 1
2 ) (refer to Fig. 3d), and

Eqs. (27–29) imply that

un
j − (	t/2)τ

(
un

j

) = 1
2

[
(1 − v)u

n − 1
2

j + 1
2

− (1 − v2)
(
u+

x

)n − 1
2

j + 1
2

+ (1 + v)u
n − 1

2

j − 1
2

+ (1 + v2)
(
u+

x

)n− 1
2

j − 1
2

]
(30)

Here, 1) v ≡ (a	t)/	x is the Courant number and
2) (u+

x )n
j ≡ (	x/4)(ux )

n
j , ( j, n) ∈ � is the normalized form of (ux )

n
j .

Given the values of the marching variables at the (n − 1
2 )th time

level, un
j is determined by solving Eq. (30) with the aid of Newton’s

iteration method. The initial condition for Newton’s iterations is cal-
culated by assuming that the source term is zero. After un

j is known,
(u+

x )n
j is evaulated using an oscillation-suppressing procedure,39,40

which is briefly illustrated in the following. Aided by Eq. (26), we
perform Taylor expansion in time and have

u′n
j ± 1

2
≡ u

n − 1
2

j ± 1
2

+ (	t/2)(ut )
n − 1

2

j ± 1
2

≡ u
n − 1

2

j ± 1
2

− 2v
(
u+

x

)n− 1
2

j± 1
2

(31)

According to Eq. (31), um
j ± 1/2 is a first-order Taylor’s approximation

of u at ( j ± 1/2, n). Let

(
u+

x±
)n

j
≡ ±

(
u′n

j ± 1
2

− un
j

)
= ±	x

4

u′n
j ± 1

2
− un

j

	x/2
(32)

where (u′+
x+)n

j and (u′+
x−)n

j , aside from a normalized factor 	x/4,
are two numerical analogs of ∂u/∂x at ( j, n) with one being eval-
uated from the right and the other evaluated from the left. Let the
reweighting function W be defined by 1) W (0, 0, α) = 0 and 2)

W (x−, x+, α) = |x+|αx− + |x−|αx+
|x+|α + |x−|α (33)

Then (u+
x )n

j is calculated using

(
u+

x

)n

j
= W

[(
u+

x+
)n

j
,
(
u+

x−
)n

j
, α

]
(34)

In all calcualtions, we let α = 1.

C. Numerical Accuracy Verification
Two one-dimensional cases are presented to assess the numeri-

cal accuracy of the computer codes. First, we report the numerical
result of an expanding cylindrical shock. The one-dimensional Eu-
ler equations in a cylindrical coordinate, a subset of Eq. (2.1), for
nonreacting flows are solved. The initial conditions of the cylindrical
shock are taken from Toro45:

Pin = 1.0

ρin = 1.0

uin = 0.0

,

Pout = 0.1

ρout = 0.125

uout = 0.0 (35)

Subscripts in and out denote values inside and outside the circular
discontinuity. The initial radius for the shock is 0.4. As shown in
Fig. 4, by using only 100 cells the snapshots of flow properties at
time t = 0.25 agree well with the results obtained by using Glimm’s
method19 with 1000 cells.45

Next, we consider Sedov’s analytical solution7 of an expand-
ing blast wave in an ideal gas with the specific hear ratio γ = 1.4
and the molecular weight 28.98. For the undisturbed gas, density
D1 = 1.25 kg/m3, temperature T1 = 293 K, and the initially de-
posited total energy is 1300 J. The self-similar solution by Sedov at
time t = 2.8 × 10−6 s is used as the initial condition. Figure 5 shows
the calculated snapshots of the flow profile compared with Sedov’s
analytical solution after a short period of time 	t = 1.92 × 10−8 s.
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a)

b)

c)

d)

Fig. 4 CESE results compare with the solutions45 by the RCM method for a cylindrical expanding shock: a) pressure, b) density, c) velocity, and
d) specific internal energy.

a)

b)

c)

d)

Fig. 5 CESE results compared with Sedov’s analytical solutions for an explosion problem: a) pressure, b) density, c) velocity, and d) temperature.
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IV. Results and Discussion
A. One-Dimensional Results

To set up the imploding shock, the initial conditions are composed
of two regions separated at r = r0. We let r0 = 0.1 m, and the com-
putational domain is 0 < r < 0.38 m. We use 28,800 equally spaced
mesh nodes for the entire computational domain. To maintain nu-
merical stability, the time-step size is dynamically adjusted to main-
tain the maximum Courant–Friedrichs–Lewy (CFL) number ≈ 0.5.
Moreover, the CFL insensitive scheme41 has been employed to min-
imize the artificial damping caused by the wide range of CFL num-
bers in the computational domain.

a)

b)

c)

Fig. 6 Pressure profiles at various times for the case of Pout/Pin = 50:
a) implosion, b) explosion, and c) implosion/explosion with 14,400 cells.

a)

b)

Fig. 7 Temperature profiles at various times for Pout/Pin = 50: a) im-
plosion and b) explosion.

Two cases are considered. For both cases, the initial mole con-
centration ratio of the H2/O2/Ar gas mixture is 2:1:7, and the initial
temperature of the whole domain is 300 K. In the first case, the
pressure ratio is 50:1. The initial pressure of the driving region,
where r > r0, is Pout = 10 atm, and the initial pressure of the driven
region Pin = 0.2 atm. In the second case, the pressure ratio is 5:1
with Pout = 1 atm and Pin = 0.2 atm.

For the first case with the initial pressure ratio of 50:1,
Figs. 6–9 show the calculated pressure, temperature, density, and
velocity profiles at different times. Note that the values of the pre-
ceding flow variables in the implosion phase are significantly dif-
ferent from those in the exploding phase. Therefore, two plots are
provided for each flow variable: one for the imploding phase and the
other for the exploding phase. Figure 6c is an additional pressure
plot in the exploding phase calculated by using a coarser mesh of
14,400 mesh nodes. Figure 6c is almost identical to Fig. 6b. This
result shows that the present flow solutions are mesh-independent.

When the diaphragm separating the driving and driven sections
is lift, the primary shock wave, followed by a contact discontinuity,
implodes to the center. In the opposite direction, a rarefaction wave
moves away from the center. In the imploding phase, pressure and
velocity behind the imploding shock steadily increase as a result of
the decreasing area. After reflection from the center, the main shock
moves outward and clashes with the imploding contact disconti-
nuity. The strength of the main shock is greatly enhanced by the
interaction. It penetrates through the contact discontinuity, catches
up with the expansion wave, and quickly develops to be a robust
detonation wave at about r = 20 cm.§

§Please refer to http://cfd.eng.ohio-state.edu/imp-exp.htm for animation
of the evolving solutions.
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a) b)

Fig. 8 Density profiles at various times for Pout/Pin = 50: a) implosion and b) explosion.

a) b)

Fig. 9 Velocity profiles at various times for Pout/Pin = 50: a) implosion and b) explosion.

Figure 10 shows the space–time records of pressure, density,
temperature, velocity, and the OH mass fraction. The interaction
between the exploding shock and the imploding contact discon-
tinuity creates a new shock wave at the collision point, and this
secondary shock implodes to the center. The same interaction only
slightly slows down the discontinuity wave in its imploding motion.
The implosion of the second shock raises the pressure and tem-
perature in the focal point even higher. Similar to the main shock,
the reflected second shock collides with the contact discontinuity
wave again and generates the third imploding shock, which is much
weaker but discernible in Figs. 10b and 10d. After the collision, the
reflected secondary shock penetrates the contact discontinuity wave
and continues moving outwardly. After interacting with the reflected
secondary shock, the contact discontinuity stops the inward motion
and becomes stationary at about r = 2 cm. This stationary contact
discontinuity wave could be seen as a vertical line along r = 2 cm
in Figs. 10b and 10d. Similar to the main shock and the secondary
shock, the third shock implodes inwardly, reflects from the focal
point, and collides with the contact discontinuity wave. However,
details are too weak to be observed in Fig. 10.

Figure 11 shows the distribution of the H2 mass fraction pro-
file in the reaction zone of the detonation wave. The half-reaction
zone, defined as the distance from the leading shock to the posi-
tion where a half of the fuel has been consumed, is approximately
1.6 × 10−4m, and it is resolved by 13 mesh points. In our previous
work,36 we solved the classical Zeldovich, von Neuman, and Doer-
ing (ZND) model equations with an one-step global reaction by the
CESE method. We showed that four to five points per half-reaction
zone are enough to achieve accurate resolution of the classical ZND

detonation wave. The size of the reaction zone and the associated
mesh resolution used in the present paper are typical. For example,
Lu et al.46 showed that the induction zone of their detonation in a
stoichiometric hydrogen/air mixture initially at 1 atm and 298 K is
about 2 × 10−4 m. By using the ENO method,47 Hwang et al.48 used
20 mesh points to resolve a half-reaction zone of a detonation wave.

Figure 12 shows the space–time trajectories of the main shocks
in the two cases. Near the focal point, the trajectories of the implod-
ing/exploding shocks of both cases deviate from the straight lines,
which are denoted by the dashed lines representing the CJ detona-
tions. During the implosion phase of the flows, the slopes of two
imploding shock trajectories are markedly different because of dif-
ferent shock strengths. In the exploding phase, however, two shock
trajectories have nearly identical slopes. In both cases, detonations
have been successfully initiated when t > 300µs, and they propa-
gate at their CJ velocities, at about 1652 m/s, to the far field. We
remark that more heat is released in the Pout/Pin = 50 case because
of higher pressure at the driven section. Nevertheless, the detonation
speeds of the two cases are about the same because the pressure ra-
tios across the detonation waves are similar. This has been verified
by comparison with the thermodynamics calculations by using the
CEA program.44

For additional mesh refinement tests, Fig. 13 shows two tra-
jectories of the primary shock of the Pout/Pin = 50 case, calcu-
lated by using 14,400, and 28,800 mesh nodes, corresponding to
	x = 0.028 and 0.014 mm, respectively. The shock speed in the
implosion phase for the Pout/Pin = 50 case is further verified by com-
parison with the classical solution in Table 1 (Refs. 4 and 49–53).
In Fig. 14, we replot the trajectory of converging shock of the
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a)

b)

c)

d)

e)

Fig. 10 Space–time records of flow variables for the case of Pout/Pin = 50: a) pressure, b) density, c) velocity, d) temperature, and e) mass fraction of
OH.

Fig. 11 Numerical resolution of the reaction zone for the case of
Pout/Pin = 50.

Fig. 12 Space–time trajectories of the main shocks of the Pout/Pin = 5
and Pout/Pin = 50 cases.
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Table 1 Exponent in the self-similar solution of an imploding wave

References Self-similar exponent α Mach number

CESE (2004) 0.835 2.1
Guderley (1942)4 0.834 ——
Butler (1954)49 0.835217 ——
Stanyukovich (1960)50 0.834 ——
De Neef and Nechtman (1978)51 0.835 ± 0.003 ——
Takayama et al. (1984)52 0.831 ± 0.002 Ms = 1.1–2.1
Kleine (1985)53 0.832 ± 0.028 Ms = 1.3–2.1

Fig. 13 Shock front locations from grid study.

Fig. 14 Shock trajectory of imploding shocks with an initial Mach
number of 2.1.

Pout/Pin = 50 case based on Sedov’s asymptotic relation7:

R/Rc = (1 − t/tc)
α (36)

where Rc is the radius of the starting converging shock and tc the time
when the converging shock arrives the center. In Fig. 14, the x axis
is log(1 − t/tc), and the y axis is log(R/Rc). Based on Eq. (36),
the trajectory is a straight line with the slope equal to α. In our
calculation, we found that the shock trajectory of the Pout/Pin = 50
case is indeed a straight line with α = 0.835 except in the region
near the center. We note that for this case, the initial Mach number
of the imploding shock is 2.1.

Figure 15 shows the histories of temperature, pressure, and den-
sity at the focal point of the implosion/explosion process. For
Pout/Pin = 50, the presence of the third implosion wave can be
clearly seen. For Pout/Pin = 5, the third implosion is too weak to
be detected. In both cases, maximum flow variables are achieved by

a)

b)

c)

Fig. 15 Time histories at the focal point for Pout/Pin = 5 and
Pout/Pin = 50: a) pressure, b) temperature, and c) density.

the implosion of the second shock. The pressure values are normal-
ized by the initial pressure Pin of the driven gases.

B. Two-Dimensional Results
For two-dimensional calculations of implosions and explosions,

we consider a circular computational domain. Figure 16 is a
schematic of the computational domain and the associated mesh. Be-
cause of flow symmetry, the actual computational domain is a quarter
of the shown circular domain. All calculations to be presented use
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the same mesh, which is composed of about 4.5 million quadrilat-
erals. In all calculations, the initial condition includes two separate
regions with Pout/Pin = 20 and Pin = 0.2 atm. Temperature is uni-
form at 300 K for the whole domain and ρout/ρin = 20.

Four implosion cases are presented. Three of them are nonreact-
ing flows of 1) a square front, 2) an octagonal front, and 3) a circular
front with sinusoidal perturbations in pressure. In the third case, the
amplitude of the perturbation is 2% of the initial pressure difference
between the driver and driven sections. We impose 32 cycles of sinu-
soidal perturbations around the circular front. The fourth implosion
case is a reacting circular shock front with similar perturbations. In
all cases, the radius of the computational domain R = 0.38 m. In
the first case of the square diaphragm, the length of each side of the
initial shock front is 0.38 m. For the octagonal diaphragm, the length

Fig. 16 Schematic of the mesh for two-dimensional implosion. A quar-
ter of the circular domain is calculated, and mesh size is composed of
about 4.5 million quads.

Fig. 17 Snapshots of pressure contours of a square implosion front at time = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.65, and 0.80.

of each edge is 0.204 m, and the distance from the center to each
vertex is 0.266 m. For the circular diaphragm with perturbations,
the radius of the circle is 0.253 m or 2

3 R.
Figures 17–19 show snapshots of pressure contours at various

time steps for the just-mentioned three nonreactive cases. Each time
unit is about 1.3 ms. In each case, flow evolution is symmetric with
respect to the bisector of each vertex of the polygon. In other words,
the bisectors behave like inviscid walls. Evolution of each side of a
polygonal shock front can be interpreted as a planar shock entering
into a channel of convergent walls or a wedge-shaped cavity. Im-
ploding shocks interact with the bisector and form Mach reflection.
In general, the evolution of each planar section of the polygonal
shock front resembles the scenario of a shock-on-wedge problem,
in which an incident shock interacts with a wedge with the bisector
corresponding to a wedge surface. In this process, the Mach stem of
the Mach reflection propagates with a wave speed faster than that of
the initial shock. As a result, the Mach stem increases in size, while
the length of the shock front decreases to zero. During this evolu-
tion, the number of the vertices of the imploding polygon doubles
that of the initial polygon. Finally, a new polygon is formed with a
similar shape, but the orientation is rotated. Seemingly, the original
polygon, with a shrunk area, was recovered with a rotated orienta-
tion. The sides of this smaller polygon are composed of Mach stems.
However, it is known that Mach stems are curved. Thus, the regen-
erated polygonal shocks have curved sides. One can have multiple
regenerations of the polygonal front during the imploding process.

Figure 20 shows the time histories of temperature and pressure
at the focal region for three nonreacting cases. The dimensionless
temperature in Fig. 20 is defined as T/Tin, that is, each unit is 300 K.
For the pressure curve, the dimensionless P/Pin, that is, each unit
is 0.2 atm. The x axis is dimensionless time. Each unit is about
1.3 ms.

The case of square front has lower maximum pressure and tem-
perature because of stronger Mach reflections and large incident
angles as compared with the other cases. The maximum pressures
and temperatures of the two cases of the octagonal front and the
circular front are comparable. However, the circular front generates
a longer high-pressure plateau. The flowfields of both circular front
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Fig. 18 Snapshots of pressure contours of an octagonal front at time = 0, 0.09, 0.18, 0.27, 0.315, 0.36, 0.495, 0.63, and 0.72.

Fig. 19 Snapshots of pressure contours at time = 0, 0.09, 0.18, 0.27, 0.36, 0.45, 0.585, 0.72, and 0.90.
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a) b)

Fig. 20 Time histories at the focal point for the three nonreacting cases: a) temperature and b) pressure.

a) b)

Fig. 21 Time histories at the focal point for the imploding reacting flow: a) temperature and b) pressure.

and the octagonal front show the secondary implosion similar to
that in the one-dimensional results. The secondary implosion in the
octagonal front case occurs later than that in the circular front case.
The circular front case also shows a much weaker third implosion.
On the other hand, the case of the square front does not show a clear
secondary implosion. Figure 21 shows the histories of pressure and
temperature at the focal point of a successful detonation initiation
processes by imploding circular shock front with perturbations on
the initial front surface. Similar to the one-dimensional results, con-
secutive shock implosions with a very strong secondary shock is
evident. The overall pattern is much more complex as compared to
the one-dimensional cases.

V. Conclusions
Direct numerical calculations of one- and two-dimensional im-

plosions and explosions by using the space–time CESE method
have been reported. In one-dimensional calculations, we found a
two-implosion system with the secondary implosion caused by the
interaction between the reflected primary shock and the imploding
contact discontinuity. This double implosion shock system pushes
the pressure and the temperature to be much higher than that cre-
ated by the reflection of the primary shock wave only. Moreover,
the reflected primary shock is greatly enhanced by the interaction.
As a result, it quickly develops to be a robust detonation. In two-
dimensional calculations, we focused on the calculations of polyg-

onal converging shock fronts. In the implosion phase, numerical
images showed the regenerations of rotated and smaller polygonal
forms. Time histories of flow variables at the focal point confirm the
double implosion mechanism found in the one-dimensional results.
These results also clearly demonstrate that the space-time CESE
method is capable of catching salient features of complex implo-
sion/explosion flows.
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