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ABSTRACT 
A non-oscillatory central scheme, originally developed 
by Nessyahu and Tadmor[1], has been modified based on 
a strategy of space-time integration similar to that in the 
Space-Time Conservation Element and Solution Element 
Method, originally developed by Chang[2]. The resulting 
scheme is a two-point, second-order, central difference 
scheme, which retains most of the advantageous features 
of Chang’s space-time method. Similar to both Nessyahu 
and Tadmor’s method and Chang’s CE/SE method, the 
present method does not use the Riemann solver as the 
building block as that in the modern upwind schemes. 
Thus the logic is considerably simpler and the 
computation is much more efficient. In addition, based 
on space-time flux balance, the boundary condition 
treatment in the present method is easier than Nessyahu 
and Tadmor’s method. To demonstrate the capabilities 
of the present scheme, numerical results of some 
standard problems are reported, including the Sod shock 
tube problem, the Shu-Osher problem of a shock 
interacting with a sinusoidal wave, the Woodward-
Colella problem of two interacting blast waves, and the 
oblique shock reflection problem. The results show that 
the present scheme is accurate and efficient for moving 
shocks and wave motions. 

 
 

1 INTRODUCTION 
Based on the first-order Lax-Friedrichs (LxF) scheme, a 
non-oscillatory second-order central scheme for 
hyperbolic conservation laws is developed by Nessyahu 
and Tadmor. We refer to the method as the NT scheme 

hereafter. In the NT scheme, a second-order piecewise-
linear function was employed instead of the first-order 
piecewise constant method used in the LxF scheme to 
eliminate excessive artificial damping of the LxF 
scheme.  As a second-order central difference scheme, 
the main advantage the NT scheme is its simplicity in 
shock capturing. In particular, no Riemann solver is 
employed. Recently, in a series of works, the NT scheme 
has been extended to be third-order scheme[3], and has 
also been used to solve flows in multiple spatial 
dimensions [4]. In [5], the NT method has been extended 
to solve incompressible flows. 
 From a totally different prospective, Chang [2] 
proposed the Space-Time Conservation Element and 
Solution Element method, or the CE/SE method for 
short. The method has many non-traditional features, 
including simplicity, generality, high accuracy and high 
shock resolution for moving shock and wave motions. 
The method also has the most compact stencil among the 
usual numerical methods. Essentially, both flow 
variables and their gradient components were treated as 
unknowns and they were solved simultaneously. 
Triangles and tetrahedrons were used for two and three-
dimensional flows, respectively. This space-time mesh 
arrangement is in full compliance with the flow physics. 
In particular, the a-scheme of the CE/SE family is space-
time invariant and it is a non-dissipative scheme for 
continuous solution. 
 Recently, based on Chang’s CE/SE method, we 
have developed a modified space-time method using 
quadrilateral mesh [6]. The modified CE/SE method 
retains most of the advantageous features of the original 
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CE/SE method. By comparing the NT scheme with the 
modified CE/SE method, we observed significant 
similarities. The objective of the present paper is to 
discuss relationship between the NT scheme and the 
modified CE/SE method. Based on this underpinning 
relationship, we then propose a variation of the NT 
scheme based on the concept of the space-time flux 
balance.  

In the present paper, we first discuss an alternative 
construction of the NT scheme. With that we can clarify 
the relation between the NT scheme and the modified 
CE/SE scheme [6]. In section 3, the original NT scheme 
is modified using the strategy similar to that in the 
CE/SE method. Essentially, the numerical derivatives 
are reconstructed from flow variables of neighboring 
points at the previous time level. This is in full 
compliance with the flow physics of the initial value 
problems. We remark that, in the original NT scheme, 
the construction is based on flow variables at the new 
time level. In addition, the NT scheme in one spatial 
dimension is actually a four-point scheme. Thus it is 
relatively complex for implementation near boundaries. 
Because of this reason, the accuracy of the NT scheme 
deteriorates near the computational boundaries. 

The result of above modification is a two-point 
second-order central scheme, which is easier to be 
implemented at mesh nodes near boundaries, and the 
accuracy of the new scheme does not deteriorate near the 
boundaries. This scheme retains the advantages of the 
original NT scheme and the CE/SE method.  

The remainder of this paper is organized as 
follows. In Section 2, an alternative construction of the 
original NT scheme is discussed. Based on this new 
construction, the present scheme is proposed in Section 
3. In section 4, numerical results of some standard flow 
problems are presented to show capabilities of the 
present scheme. 
 
2 An Alternative Construction of the NT 
Scheme 
In this section, we provide an alternative construction of 
the NT scheme based on the space-time integration of 

Chang’s CE/SE method. To proceed, we consider the 
Euler equations of a perfect gas in one spatial dimension 
 

∂ ∂ ∂ ∂u t f xm m+ = 0 ,    m=1,2,3              (2.1) 

 
Let x1=x and x2=t be two coordinates of an Euclidean 
space E2. By Gauss’ divergence theorem in E2, Eq.(2.1) 
has the following integral counterpart: 
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Where S(V) is the boundary of an arbitrary space-time 

region V in E2, and ),( mmm ufh =
�

 is the space-time 

current density vector. 
To proceed, we illustrate the definitions of 

conservation element (CE ) and solution element ( SE ), 
which is of importance in the formulation of CE/SE 
scheme. A CE is a small region in E2 in which Eq.(2.2) 
is enforced. While, a SE is a region in E2 in which flow 
variables are discretized by chosen functions, e.g., the 
piecewise linear function in Chang’s CE/SE method. 
Following the CE/SE method, the representative mesh 
points distribution in E2 is shown in Fig.2.1(a), which is 
staggering in time. Let Ω denotes the set of mesh points 
in E2 (dots in Fig.2.1(a) ). For each point (j, n)∈  Ω, there 
is a SE and a CE associated with it. For example, at 
point A, the CE is defined as the quadrilateral BCEF, 
while SE is the interior of the quadrilateral BDFG (see 
Fig.2.1(b)) 
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Fig.2.1 The representative mesh distribution and the 
definitions of SE and CE 
  
          By the definition of SE, ∀  (x, t)∈ SE(j, n), u m(x, t) 
can be approximated by its discrete counterpart um*(x, t; 
j, n). Here, we use the following first-order Taylor 
expansion: 
    
u x t j n u u x x u t tm m j

n
mx j

n
j mt j

n n* ( , ; , ) ( ) ( ) ( ) ( ) ( )= + − + −    

              (2.3) 
Correspondingly, we have 
 

f x t j n f u x t j nm m
* *( , ; , ) ( ( , , , ))=                     (2.4) 

 

   h x t j n f x t j n u x t j nm m m
* * *( , ; , ) ( ( , , , ), ( , , , ))=      

(2.5) 
Then, Eq.(2.2) can be approximated by the following 
discrete one: 
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On the other hand, by Eq.(2.1), we have 

 
 mxmmt uuAu )(−=                       (2.7) 

Here A f u= ∂ ∂/   is the Jacobian matrix of the flux fm. 

So it can be shown that the only independent discrete 
variables needed to be solved in the current marching 
scheme at each grid point are  um and umx.  

Substituting Eqs.(2.3-5) into Eq.(2.6), one can get: 
 

 2/])()[()( 2/12/1
1 n

jm
n
jm

n
jm uuu +−
+ +=  

                8/])()[( 2/12/1 xuu n
jmx

n
jmx ∆⋅−+ +−  

               dtnjtxuf jm

t

t

n

n
)),2/1;,(( 2/1

*
1

−+ −∫
+

 

           dtnjtxuf jm

t

t

n

n
)),2/1;,(( 2/1

*
1

+− +∫
+

     (2.8) 

If the last two terms on the right of Eq.(2.8) are 
integrated approximately by the midpoint rule, we have 
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Here λ=∆t/∆x, ∆x=xj+1/2-x j-1/2 and ∆t=tn+1-tn. And 
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According to Eq.(2.3), one can get 
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Eqs.(2.9-10) is just the NT scheme (see (2.13) and (2.14) 
in ref.[1]). Here, the NT scheme is derived by using 
another more natural method, which is similar to that of 
the CE/SE method. In fact, if we let 
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 (2.11) 
Then Eq.(2.9) is the same as the main discrete equation 
of the CE/SE method (see refs. [2, 6]). 
 

3 MODIFIED NT SCHEME 
 
As mentioned in ref.[1], the resolution of NT scheme 
hinges upon the choice of local numerical derivatives umx 
and fmx. The following formulations are used in [1]: 
 

xuuMMu jmjmjmx ∆∆∆= +− /})(,)({)( 2/12/1                 (3.1) 

or 
xuuuuMMu jmjmjmjmjmx ∆∆−∆= +−+− /})(2,2/])()[(,)(2{)( 2/1112/1

                   

(3.2) 
and 

( ) (( ) )( )f A u umx j m j mx j=                                        (3.3) 
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Here ∆( ) ( ) ( )/u u um j m j m j+ += −1 2 1 , and MM{..} stands 

for the usual limiter, i.e. 

   MM x y x y sgn x sgn y x y{ , } minmod{ , } [ ( ) ( )] / min( , )= = + ⋅2  
 

        Equations.(2.9-10) with (3.1) is referred to as the 
STG method, while Eqs.(2.9-10) with (3.2) is referred to 
as STG2 method (see ref.[1]). If the CFL condition is 
enforced, it can be shown that STG and STG2 are 
second-order TVD schemes. We remark that, from 
Eqs.(3.1) and (3.2), it can be seen that STG or STG2 is 
actually four-point scheme, so it is not much convenient 
to implement for the mesh nodes near boundaries. In 
addition, the accuracy of these schemes will decrease in 
these mesh nodes. 

Instead of using Eq.(3.1) or (3.2), we use the 
following central difference reconstruction procedure to 
calculate the local spatial numerical derivative of the 
flow variables, i.e., umx,   
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It should be noted that Eq.(3.4) is the special case of the 
CE/SE method for ε=0.5, see Eq.(4.28) in ref.[2]). 
Eqs.(2.9-10) with (3.4) is the modified NT scheme for 
solving the 1-D Euler equations. It is a real two-point 
second-order explicit scheme, so it is easier to 
implement near boundaries, and it is also in full 
compliance with the flow physics of the initial value 
problems. For flows with discontinuities, Eq.(3.4) can be 
further modified by the following re-weighting 
procedure: 
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n
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Where W is the re-weighting function defined by 
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And α is an adjustable constant, usually α=1 or 2. 
 The above scheme can be extended to multi-
dimensional cases in a straightforward manner. The 
details about this extension will be reported in another 
paper. Nevertheless, a numerical example of a two-
dimensional flow problem is provided in Section 4. 
 

4 Numerical Examples 
 
In order to compare the solution accuracy and shock 
resolution of the original NT scheme and the modified 
one, four prototype flow problems are calculated using 
these schemes. 
 
Example 1 Sod’s shock tube problem [7] 
The computational domain and the flow condition are 
the same as that in Ref. [1]. Figure 4.1 shows the 
numerical results at t = 0.2, calculated by STG, STG2 
and modified NT schemes, here ∆t = 0.1×10-2, CFL ≅  
0.6.  
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Fig.4.1 The numerical solution of Sod’s problem  
             (a—STG; b — STG2; c — Modified NT) 
 
It can be seen that the solution accuracy and shock 
resolution of STG is not so good as that of modified NT 
scheme, while the over-shoots of the STG2’s solution 
near the contact discontinue point is more serious than 
that of the modified NT scheme’s. 
 
Example 2 Shu-Osher problem [8] 
It is the interaction of a moving shock of Mach number 
=3 with a sinusoidal density wave. This problem does 
not have the exact solution. The numerical solutions are 
compared with a fine-mesh solution. In Fig. 4.2, the 
solid line is the computed results by the CE/SE method 
using 1000 grid points. 
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Fig.4.2 The calculated densities of Shu-Osher problem 
            ((a)—STG; (b) — STG2; (c) — Modified NT) 
 
Figure 4.2 is the numerical results of STG, STG2 and 
modified NT schemes with 500 grid points (at t=1.8). 
The results of the modified NT scheme are better than 



 6

the STG schemes. With the increase of the grid points, 
both of the results of STG2 and modified NT will be 
much better, but the STG’s results have no obvious 
improvement. 
 
Example 3 The interaction of two blast waves in a tube 
with closed ends 
 
This problem is proposed by Woodward and Colella[9]. 
Reflective boundary conditions are imposed at both 
ends. In Fig. 4.3, we present the results of the STG 
method, the STG2 method and the modified NT scheme 
with 600 grid points at t = 0.038. The solid line is the 
computed results of CE/SE method using 800 grid 
points. We can see that the modified NT scheme has 
higher accuracy and its result is better than the other 
two’s. 
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Fig.4.3 The computed densities of Woodward and 
            Colella problem 
            ((a)—STG; (b) — STG2; (c) — Modified NT) 
 
Example 4 Flat plate shock reflection problem[10] 
This is a two-dimensional flow problem, and it has an 
analytical solution. The computational domain is 
[0,4]×[0,1]. The lower boundary is a solid wall and a 
reflective condition is employed. The left lateral and the 
top horizontal boundaries are fixed according to the 
analytical solution. While a non-reflective condition is 
used on the right lateral boundary. Figure 4.4 is the 
computed pressure contours calculated by the present 
scheme (121×81 uniform mesh is used). The angle of the 
reflected shock is very accurate compared with the 
analytical solution.  Although not shown, the numerical 
result of the pressure jumps agrees well with the exact 
solution. 
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Fig.4.4 Pressure contours of the oblique shock reflective 
problem 
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4 CONCLUDING REMARKS 
 
In this paper, the original NT scheme for one 
dimensional conservation laws is modified using a 
method similar to the CE/SE method. The present 
scheme retains most of the advantages of the original NT 
scheme and the original CE/SE method such as 
simplicity, efficiency and robustness. Moreover, the 
present scheme is more accurate and easier to implement 
near boundaries. Numerical results of several standard 
problems show that the present scheme has high 
accuracy and high resolution for shock wave problems. 
This scheme can be extended to be higher order and for 
flows in multi-dimensions in a straightforward manner.  
 

Acknowledgement 

This work is performed under the support of NASA 
Glenn Research Center NCC3-580, monitored by Dr. 
Philip Jorgenson.  This work is also a part of an ongoing 
program at Wayne State University in applying the 
Space-Time CE/SE Method to practical engineering 
problems.  

References 
 

1. Nessyahu, H. and Tadmor, E., “Non-oscillatory 
Central Differencing for Hyperbolic Conservation 
Laws,” J. of Compt. Phys., Vol. 87, 1990, pp. 408-
463 

2. Chang, S. C., “The method of Space-Time 
Conservation Element and Solution Element--A 
New Approach for Solving the Navier-Stokes and 
Euler Equations,” J. of Comp. Phys., Vol. 119, 
1995, pp. 295-324 

3. Liu, X. D. and Tadmor, E., “Third Order Non-
oscillatory Central Scheme for Hyperbolic 
Conservation Laws,” Numer. Math., Vol.79, 1998,  
pp.397-425 

4. Jiang, G. S. and Tadmor, E., “Non-oscillatory 
Central Scheme for Multidimensional Hyperbolic 
Conservation Laws,” SISC # 31041 

5. Kapferman, R. and Tadmor. E., “A Fast, High 
resolution, Second-order Central Scheme for 

Incompressible Flows,” Proc. Natl. Acad. Sci. USA, 
Vol. 94, 1997, pp.4848-4852 

6. Zhang, Z. C. and Shen, M. Y., “Improved Scheme 
of Space-Time Conservation Element and Solution 
Element,” J. of Tsinghua University (Sci. & Tech.), 
Vol. 37, 1997, pp.65-68 

7. Sod, G. A., “A Survey of Several Finite Difference 
Method for Systems of Nonlinear Hyperbolic 
Conservation Laws,” J. Comput. Phys., Vol. 27, 
No.1, 1978, pp. 1-31 

8. Shu, C. W. and Osher, S., “Efficient Implementation 
of Essentially Non-oscillatory Shock-Capturing 
Scheme,” J. of Comp. Phys., Vol. 83, 1989, pp. 32-
79. 

9. Woodward, P. and Colella, P., “The Numerical 
Simulation of Two-dimensional Fluid Flow with 
Strong Shock,”  J. of Comp. Phys., Vol. 54, 1984, 
pp.115-173 

10. Yee, H.C., Warming, R.F. and Harten, A., Implicit 
Total Variation Diminishing (TVD) Schemes for 
Steady-State Calculations, AIAA paper 83-1902. 


	Detroit, MI 48202
	A
	ABSTRACT
	INTRODUCTION
	2 An Alternative Construction of the NT Scheme
	3 MODIFIED NT SCHEME

	4 Numerical Examples
	4 CONCLUDING REMARKS

	References


