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ABSTRACT 
In this paper, we report an extension of the method of Space-
Time Conservation Element and Solution Element, 
originally developed by Chang [1] for solving conservation 
laws. In the present method, a single conservation element at 
each grid point is employed for solving conservation laws in 
one, two, and three spatial dimensions, instead of two in 
one-dimensional, three in two-dimensional, and four in 
three-dimensional problems, as proposed by Chang. As a 
contrast to Chang’s approach, the conservation element here 
is used to calculate flow variables only, whilst the gradients 
are calculated by a central-difference type reconstruction 
method. For equations in one spatial dimension, the present 
approach is a special case of Chang’s a-ε scheme. For 
equations in two and three dimensions, the present method 
can be easily applied to a regular structured mesh. As such, 
the present method can serve as an alternative solver for 
time-accurate solutions in well-established CFD codes. 
Nevertheless, the present scheme inherits all advantageous 
features of the original space-time method, including 
efficient operational count, easiness of implementing non-
reflective boundary condition, and high-fidelity resolution of 
wave motions. In particular, the Godunov type methods 
using Riemann solvers, i.e., the paradigm of the modern 
upwind schemes, are not needed to catch shocks. Therefore, 
the computational logic is considerably simpler. To 
demonstrate the capability of the new method, numerical 
results of several benchmark problems are presented, 
including Sod shock-tube problem, oblique shock reflection, 
supersonic flows over a forward facing step, and shock/ 
boundary layer interaction.  

 

 

1. INTRODUCTION 
Recently, Chang and coworkers [1,2,3] reported a novel 
numerical framework for solving conservation laws, namely, 
the method of Space-Time Conservation Element and 

Solution Element, or the CE/SE method for short. The 
method is based on an equal-footing treatment of space and 
time in calculating flux balance in a space-time domain. The 
method is not an incremental improvement of a previously 
existing method and it differs substantially from other well-
established CFD methods. The design principles of the 
CE/SE method have been extensively illustrated in the cited 
references. Here, only a brief description of the CE/SE 
method is provided as the background of the present work. 
In particular, we shall review the conventional integral 
equation for hyperbolic conservation laws as a contrast to 
Chang’s space-time integral form such that the significance 
of Chang’s space-time formulation can be underlined.  To 
this end, we shall first discuss the Reynolds transport 
theorem, from which the conventional finite-volume 
methods were derived. Because space and time are not 
treated equally, the space-time geometry has been restricted. 
As discovered by Godunov, the classical Riemann problem 
was encountered in balancing the space-time flux. Due to an 
equal footing treatment of space and time, Chang’s formula 
is flexible to allow a better choice of space-time geometry to 
calculate flux conservation such that the Riemann problem 
was avoided in balancing the space-time flux.  

 
1.1 Reynolds Transport Theorem 

The conventional finite-volume methods for simulating the 
conservation laws were formulated according to flux balance 
over a fixed spatial domain.  The conservation laws state that 
the rate of change of the total amount of a substance 
contained in a fixed spatial domain V is equal to the flux of 
that substance across the boundary of V, i.e., S(V).  Let the 
density of the substance be u and its spatial flux be f, the 
convection equation can be written as   

0=⋅∇+ fu t

�

                                         (1.1) 

According to the Reynolds transport theorem, the integral 
form of the above equation can be expressed as:   
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where the first term is based on the Lagrangian frame and 
the right hand side is on the Eulerian frame. The 
conventional finite-volume methods concentrated on 
calculating the surface flux in Eq. (1.2), i.e., the last term of 
Eq. (1.2). The time derivative term of Eq. (1.2) is usually 
discretized by a finite difference method, e.g., the Runge-
Kutta method. Or, integration can be performed for temporal 
evolution:  
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Due to the fixed spatial domain, the shape of the space-time 
Conservation Elements (CEs) in one spatial dimension for 
Eq. (1.3) must be rectangular. Refer to Fig. 1.1(a). These 
elements must stack up exactly on the top of each other in 
the temporal direction, i.e., no staggering of these elements 
in time is allowed. For equations in two space dimensions, 
as depicted in Fig. 1.1(b), a conservation element is a 
uniform-cross-section cylinder in the space-time domain, 
and again no staggering in time is allowed.  

 
 
 
 
 
 

      (a) 
 

 
 
 
 
 
 
 
 
(b) 

 
 
Fig. 1.1   Space-time integration for conventional finite- 
                volume methods 

 
This arrangement results in vertical interfaces extended in 
the direction of time evolution between adjacent space-time 
conservation elements.  Across these interfaces, flow 
information travels in both directions. Therefore, an upwind 
bias method (or a Riemann solver) must be employed to 
calculate the interfacial fluxes. 

 

1.2 Space-Time Integral Form  

Consider the following convection equation in the 
differential form 

0=⋅∇+ f
t

u m

∂
∂                                                (1.4) 

Where f = (fx, fy, fz) is the flux vector.  Let x1 = x, x2= y, x3= 
z, and x4 = t be the four coordinates of a four-dimensional 

space-time domain, and the above equation is a divergence 
free condition, i.e.,  

0=⋅∇ h                                                        (1.5) 

where the current density vector h = ( fx, fy, fz, u). According 
to the divergence theorem, we obtain 

0
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Figure 1.2 is a schematic for Eq. (1.6) in one spatial 
dimension.  

 

 

 

 

 

 
 
 

Fig. 1.2 A schematic of Chang’s space-time integral form [1].  
 
 
We remark that space and time are treated in an equal 
footing manner and therefore there is no restriction on the 
space-time geometry of the CEs and SEs.  Although not 
shown, similar space-time arrangement is adopted for 
equations in two and three spatial dimensions.  
 
 
1.3 The a Scheme  
 
Based on the above integral equation for space-time flux 
balance, Chang proposed a new numerical framework for 
conservation laws, i.e., the CE/SE method. The method is a 
family of schemes, i.e., the a scheme, the a-ε scheme, and 
the a-α scheme. The a scheme is the backbone of the CE/SE 
method, and it determines the space-time geometry of the 
numerical mesh employed. The a-ε and the a-α schemes are 
extensions of the a scheme for nonlinear equations and for 
capturing shocks.   

In the CE/SE method, the space-time domain of 
interest is divided into many Solution Elements (SEs). In 
each SE, flow variables are assumed continuous. According 
to Chang, a first-order Taylor series is used to represent the 
discretized flow variables, i.e, a second-order linear 
distribution. Across the boundaries of neighboring SEs, flow 
discontinuities are allowed. Flow variables at neighboring 
mesh points are related only through a local space-time flux 
balance, which is enforced by integrating over the surfaces 
of a Conservation Element (CE). Unlike SEs, various CEs 
could be imposed for local and global space-time flux 
balance.  
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In the original a scheme, the number of the CEs 
employed in marching the flow solution at one space-time 
location is equal to the number of unknowns designated by 
the scheme. In addition to the flow variables, Chang [1] also 
treated the spatial gradients of flow variables as unknowns. 
As a result, two CEs are used to solve a one-dimensional 
flow equations because the flow variable um as well as its 
spatial derivative umx are the unknowns. Note that m =1,2,3 
for the three flow variables of the one-dimensional Euler 
equations. Similarly, three CEs are used for two-dimensional 
equations because u, umx, and umy, are the unknowns. Here m 
=1,2,3,4 for the two-dimensional Euler equations.  And four 
CEs are used for three-dimensional flows. Therefore, a 
triangular mesh must be used for two-dimensional flows and 
tetrahedrons for three-dimensional flows. Contrary to the 
reconstruction step of that in a standard upwind scheme, the 
distribution of flow variables inside a SE are not influenced 
by its neighboring values at the same time level.   

      In marching the flow solution, the flow variables at 
neighboring locations leapfrog each other in time in a 
zigzagging manner. Refer to Fig. 1.3 for equations in one 
spatial dimension. This is possible because of a flexible 
choice of the space-time domain for conservation elements. 
Through each oblique interface between adjacent SEs, flow 
information propagates only in one direction towards the 
future time step. Thus no Riemann problem is encountered 
and the use of a Riemann solver to catch shocks is avoided.  

 

 

 

 

 

 

 

Fig. 1.3  A schematic of the CE/SE method in one spatial 
dimension.   

 

For the same reason, the treatment of the non-reflective 
boundary condition in the CE/SE method is very simple [4]. 
Usually, one simply extrapolates the flow variables to the 
mesh point in the staggered position at the next time step and 
a nearly perfect non-reflective boundary condition can be 
achieved.  

In Chang’s a-scheme, the same strategy of space-time 
flux balance is applied to one-dimensional flows as well as 
to multi-dimensional flows. No directional splitting or 
fractional step method is used. Therefore, numerical 
accuracy does not deteriorate as one moves from one-
dimensional flow calculations to multi-dimensional flows. 
The resultant a scheme is non-dissipative (or neutrally 
stable) for linear waves. One can march the solution from a 
specific space-time point first forward in time and then 

backward to recover the initial condition of the flow 
variables. In other words, the a-scheme is space-time 
inversion [ref.6]. In general, lack of space-time inversion of 
conventional CFD schemes is the cause of the inherent 
artificial damping.   

 

1.4 The a-εεεε and a-αααα Schemes 

When dealing with nonlinear equations, e.g., the Euler 
equations, the above a scheme must be modified by adding 
artificial damping for numerical stability. That is the a-ε 
scheme. By adding the artificial damping, the calculated 
values of the gradient, i.e., umx, umy, and umz, will be altered, 
while the calculation of um is identical to that of the original 
a scheme.  When contact discontinuities appear in the flow 
solution, the calculation of umx, umy, and umz is further 
modified by a re-weighting function to filter out spurious 
oscillation caused by the jump, i.e., the a-α scheme, with α 
as the weighting parameter.  

Up to date, numerical software based on the CE/SE 
method for calculating one, two, and three-dimensional 
flows has been developed. Numerous results were 
demonstrated, including Sod's shock-tube problem, Lax's 
problem, Sjogreen's problem, Shu and Osher's problem, 
merging of two shocks, the shock tube problem with closed 
end, the implosion and explosion problem, shocks over 
forward facing step, acoustic waves, shock/acoustic waves 
interactions -- just to name a few. We have found that 
numerical resolution of two and three-dimensional shock 
waves do not deteriorate as compared to that of the one-
dimensional shocks. In two-dimensional flows, the 
resolution of the reflected shocks and shock interactions is as 
crisp as that of the leading shock. In addition, the method 
can clearly resolve acoustic waves/shocks interactions while 
the difference of the magnitude between acoustic waves and 
shocks could be up to six orders.  According to these results, 
the CE/SE method has proved to be a promising numerical 
framework for solving fluid dynamics problems.   

 

1.5 The objectives of the Present Work  

In the present work, we propose to use different space-time 
geometry for CEs and SEs.  In particular, the number of the 
unknowns and the number of the CEs employed will not be 
matched.  Instead, only one CE is used at each mesh point 
to calculate um.  

Note that Chang’s original a scheme is non-dissipative 
and space-time reversible. However, adding the artificial 
damping is necessary for solving the nonlinear equation as 
well as for shock capturing. As such, the flow property 
gradients calculated by the a-α and a-ε schemes do not 
satisfy the space-time flux conservation. That is the 
property of space-time reversible and non dissipativeness is 
lost.  Thus, the algorithm of calculating the flow property 
gradients could be modified.  

x

t
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In the present method, the gradients (umx, umy, umz) are 
calculated based on a finite-difference type reconstruction 
method, which was inspired by Chang’s a-ε scheme for 
one-dimensional equations. Because of the finite-difference 
reconstruction, the present method can be straightforwardly 
applied to structured mesh for flows in two and three spatial 
dimensions.    

In short, the objective of the present paper is to extend 
the original space-time method for structured mesh such 
that this novel space-time approach can be employed as an 
alternative solver for unsteady flows in well established 
CFD codes. The rest of the paper is organized as follows. In 
Section 2, the modified space-time scheme for solving the 
Euler equations in one, two, and three spatial dimensions 
will be illustrated. In Section 3, numerical examples 
obtained by using the present method will be presented. We 
then offer some concluding remarks.  

   

2. NUMERICAL METHODS 
2.1 The Modified Scheme for the 1D Euler Equations 

The one-dimensional Euler equations for a perfect gas are of 
concern, 

∂ ∂ ∂ ∂u t f xm m+ = 0  ,    m=1,2,3                      (2.1) 

Following Chang’s equal-footing treatment of space and 
time, we let x1= x and x2 = t be the two coordinates of a two-
dimensional Euclidean space E2.  By using the Gauss 
divergence theorem in the E2 space, Eq. (2.1) has the 
following integral counterpart: 

h dsmS V
⋅ =∫ ( )

0  ,      m=1,2,3                                      (2.2) 

Where S(V) is the boundary of an arbitrary space-time region 
V in E2, and hm=(fm, um) is the space-time current density 
vector.  

The definitions of the conservation element (CE) and 
the solution element (SE) are of utmost importance in the 
formulating of the space-time flux conservation. A CE is a 
small region in E2, in which Eq. (2.2) is enforced. A SE is 
such a small region in E2 in which the flow variables can be 
approximated by simple functions. In the original CE/SE 
method, the number of CEs associated with each grid point 
must be identical to the number of the unknown variables. In 
one-dimensional cases, two CEs associated with each grid 
point are used such that two unknowns um and umx at each 
grid point are solved. 

In the present approach, only one CE associated with 
each grid point is used mainly for solving the unknown 
variables um.  The calculation of umx is based on the 
assumption of continuity of um* at the common points of 
neighboring SEs. Thus the discrete  equation for solving umx 
can be obtained. This is the main difference between the 
present scheme and Chang’s CE/SE method. 

Let Ω denotes the set of mesh points (j, n) in E2, i.e., 
the open circles in Fig. 2.1(a), where n = 0, ±1/2, ±2/2,..., 
and j = n±1/2, n±3/2, .... For each mesh point (j, n), the CE 
is defined as the square BCEF, and the SE is the interior of 
the rhombus BDFG. Refer to Fig. 2.1(b).  
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    Fig. 2.1  The mesh and the definitions of SEs and CEs 

By the definition of SE, for any (x, t)∈  SE(j, n), um(x, t) and  
f m(x, t) can be respectively approximated by their discrete 
counterparts, i.e., um*(x, t; j, n) and f m*(x, t; j, n). Using the 
first-order Taylor expansion, we have 

u x t j n u u x x u t tm m j
n

mx j
n

j mt j
n n* ( , ; , ) ( ) ( ) ( ) ( ) ( )= + − + − ,        (2.3) 

f x t j n f f x x f t tm m j
n

mx j
n

j mt j
n n* ( , ; , ) ( ) ( ) ( ) ( ) ( )= + − + − .       (2.4) 

Accordingly, 

h x t j n f x t j n u x t j nm m m
* * *( , ; , ) ( ( , , , ), ( , , , ))= .               (2.5) 

Equation (2.2) can then be approximated by the discrete 
form:  

h dsmS CE j n
*

( ( , ))
⋅ =∫ 0 ,       ∀ (j, n)∈Ω                            (2.6) 

Substitute um = um*(x, y, t; i, j, n) and fm =  fm*(x, y, t; i, j, n) 
into Eq. (2.1) and we get 

( ) ( ), ,u fmt i j
n

mx i j
n= −                                                       (2.7) 

As a result, the only independent discrete variables needed 
to be solved are um and umx. Substituting Eqs. (2.3-5) into Eq. 
(2.6), one concludes that: 

( ) ( ) ( ) ( ) ( ) //
/

/
/

/
/

/
/u u u s sm j

n
m j

n
m j

n
m j

n
m j

n= + + −−
−

+
−

−
−

+
−

1 2
1 2

1 2
1 2

1 2
1 2

1 2
1 2 2,        (2.8) 

where  

    ( ) ( / )( ) ( / )( ) ( / )( )s x u t x f t x fm j
n

mx j
n

m j
n

mt j
n= + +∆ ∆ ∆ ∆ ∆4 42 . 

Equation (2.8) is the algorithm for solving um. Note  that Eq. 
(2.8) is identical to Chang’s formulation. Interested readers 
are referred to [1] for details. 
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To solve for umx, the numerical continuity of um* at the 
grid points B and F of the two neighboring SEs is assumed. 
Refer to Fig. 2.1(b).  As such, the variable gradient at the   
(n, j) point can be calculated by the central difference 
method, i.e.,  

( ) [( ) ( ) ] /u u umx j
n

mx j
n

mx j
n= ++ − 2                                     (2.9) 

where 

         ( ) [( ) ( ) ] / ( / )'
/u u u xmx j

n
m j

n
m j

n±
±= ± −1 2 2∆ , 

         ( ) ( ) ( / )( )'
/ /

/
/
/u u t um j

n
m j

n
mt j

n
± ±

−
±
−= +1 2 1 2

1 2
1 2
1 22∆ . 

Equations (2.8) and (2.9) are the modified space-time 
conservation scheme for the one-dimensional Euler 
equations. We remark that this scheme is a special case of 
Chang’s a-ε scheme for ε=0.5. Therefore, according to 
Chang’s analysis, the present scheme is second-order, and 
the stability condition is CFL ≤ 1. For flows with 
discontinuities, Eq. (2.9) is further modified by the following 
re-weighting procedure 

( ) (( ) ,( ) , )u W u umx j
n

mx j
n

mx j
n= − + α ,                                     (2.9)’ 

The re-weighting function W is defined by  

           [ ]
[ ]αα

αα

α
−+

+−−+
+−

+

+
=

xx

xxxx
xxW ),,( , 

where α is an adjustable constant, and usually α = 1 or 2.  
The above re-weighting function is a simple limiter for umx to 
suppress spurious oscillations near shocks. 

  

2.2 The Modified Scheme for the 2D Euler Equations 

The two-dimensional Euler equations of a perfect gas are of 
concern,  

0=++
y

g
x
f

t
u mmm

∂
∂

∂
∂

∂
∂ ,    m=1,2,3,4                    (2.10) 

Let x1 = x, x2 = y, and x3 = t be the coordinates of a three-
dimensional Euclidean space E3. Using Gauss’ divergence 
theorem, we obtain the following integral equations 

h dsmS V
⋅ =∫ ( )

0 ,     m=1,2,3,4                            (2.11) 

Where S(V) is the boundary of a space-time region V, and 
hm= (fm, gm, um) is the space-time current density vector. In 
the original CE/SE method, three CEs are used at each mesh 
point to provide three conditions for three unknowns, u, umx, 
and umy. As a result, triangular mesh must be employed.   

In the present approach, the mesh arrangement in the 
x-y plane is depicted in Fig. 2.2(a). There are two groups of 
grid points, marked by open circles and crosses, 
representing mesh points at two consecutive semi-time. Let 
Ω denote the set of mesh points (i, j, n) in E3, with n, 
j=0,±1/2, ±2/2,..., and, i=n+j±0, n+j±1,.... There is one CE 
and one SE associated with each mesh point (i, j, n). Here 

the CE is the quadrilateral cylinder EFGHE’F’G’H’, and the 
SE is the union of the quadrilateral cylinder 
P”Q”R’S”P’Q’R’S’ in conjunction with the horizontal 
plane EFGH. Refer to Fig. 2.2(b). 
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Fig.2.2 The representative grid points in x-y plane and the            
definitions of SE and CE 

For any (x, y, t) inside the SE(i, j, n), the first order Taylor 
series expansion is used  to approximate the u m(x, y, t),        
f m(x, y, t), and g m(x, y, t), i.e,  

)()()()()(),,;,,( ,,,
*

j
n

jimyi
n

jimx
n

jimm yyuxxuunjityxu −+−+=  

                      )()( ,
nn

jimt ttu −+                      (2.12) 

)()()()()(),,;,,( ,,,
*

j
n

jimyi
n

jimx
n

jimm yyfxxffnjityxf −+−+=  

                      )()( ,
nn

jimt ttf −+                      (2.13) 

)()()()()(),,;,,( ,,,
*

j
n

jimyi
n

jimx
n

jimm yygxxggnjityxg −+−+=   

 )()( ,
nn

jimt ttg −+                      (2.14) 

Because hm=(fm, gm, um), we have 

   ),,,;,,(),,,;,,((),,;,,( *** njityxgnjityxfnjityxh mmm =  

                               )),,;,,(, * njityxum      (2.15) 
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The discrete form of Eq. (2.11) can then be represented as  

h dsmS CE i j n
*

( ( , , ))
⋅ =∫ 0  ,      ∀ (i, j, n)∈Ω                     (2.16) 

Substitute um= um*(x, y, t; i, j, n),  fm= fm*(x, y, t; i, j, n), and 
gm= gm*(x, y, t; i, j, n) into Eq. (2.10), and we have  

( ) ( ) ( ), , ,u f gmt i j
n

mx i j
n

my i j
n= − −                                  (2.17) 

Thus, the unknowns at each grid point need to be solved are 
um, umx and umy. Substituting Eqs. (2.12-15) into Eq. (2.16), 
we obtain 

{ } { }( ) ( / ) ( / ),
( )

/ ,

/ ( )
/ ,

/
u Q x Q xm i j

n
m i j

n
m i j

n
= − +

−

−

+

−1
1 2

1 2 1
1 2

1 2
2 2∆ ∆  

    { } { }+ + −
+

−

−

−
Q y Q ym i j

n

m i j

n( )

, /

/ ( )

, /

/
( / ) ( / )2

1 2

1 2 2

1 2

1 2
2 2∆ ∆         (2.18) 

where 
8/]}/)4([2/)2{()()1( xftfxfgtuxuxQ mtmzmmymxmm ∆⋅∆+⋅∆−+⋅∆−⋅∆−=∆  

8/]}/)4([2/)2{()()2( ygtgygftuyuyQ mtmymmxmymm ∆⋅∆+⋅∆−+⋅∆−⋅∆−=∆  

To proceed, we assume the value of um* from different SEs 
at the common grid points E, F, G and H are the same. 
Refer to Fig. 2.2(b). As a result, one has: 

2/])()[()( ,,,
n

jimx
n

jimx
n

jimx uuu −+ +=                          (2.19a) 

( ) [( ) ( ) ] /, , ,u u umy i j
n

my i j
n

my i j
n= ++ − 2                           (2.19b)  

where 

       ( ) [( ) ( ) ] / ( / ),
'

/ , ,u u u xmx i j
n

m i j
n

m i j
n±

±= ± −1 2 2∆  

       ( ) [( ) ( ) ] / ( / ),
'

, / ,u u u ymy i j
n

m i j
n

m i j
n±

±= ± −1 2 2∆  

      
{ }( ) /'

/ , / ,

/u u t um i j
n

m mt i j

n
± ±

−= + ⋅1 2 1 2

1 22∆  

      
{ }( ) /'

, / , /

/u u t um i j
n

m mt i j

n
± ±

−= + ⋅1 2 1 2

1 22∆  

To catch shocks, the gradients of the flow variables are 
further modified by the re-weighting procedure  

       ( ) (( ) ,( ) , ), , ,u W u umx i j
n

mx i j
n

mx i j
n= − + α  

       ( ) (( ) ,( ) , ), , ,u W u umy i j
n

my i j
n

my i j
n= − + α  

This concludes the discussion of the modified space-time 
conservation scheme for the 2-D Euler equations. We 
remark that other definitions of the CEs and SEs are 
possible. The one in the above discussion is a natural 
extension from the scheme for one spatial dimension. 

 
2.3 The Modified Scheme for the 3D Euler Equations 

The three-dimensional unsteady Euler equations of a perfect 
gas are of concern,  

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂u t f x g y h zm m m m+ + + =0,                 (2.20) 

m = 1,2,3,4,5. Let x1 = x, x2 = y, x3 = z, and x4 = t be the 
coordinates of a four-dimensional Euclidean space E4. The 
corresponding integral equations of Eq. (2.20) are: 

H dsmS V
⋅ =∫ ( )

0  ,            m=1,2,3,4,5                      (2.21) 

Where S(V) is the boundary of an arbitrary space-time 
region V in E4, and  Hm=(fm, gm, hm, um). 

Using the similar method of the above sections, we 
can get the following space-time conservation scheme for 
the three-dimensional Euler equations:   
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,,2/1

)1(2/1
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)1(
,, )]2/([)]2/([)]2/({[)( −
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−
−

−
+ ∆+∆−+∆= n

kjim
n

kjim
n

kjim
n

kjim yQxQxQu

 
     6/})]2/([)]2/([)]2/([ 2/1

2/1,,
)3(2/1

2/1,,
)3(2/1

,2/1,
)2( −

−
−

+
−
− ∆−+∆+∆−+ n

kjim
n

kjm
n

kjm zQzQyQ  

                                           (2.22) 

and 

( ) [( ) ( ) ] /, , , , , ,u u uml i j k
n

ml i j k
n

ml i j k
n= ++ − 2 ,     l=x, y, z           (2.23) 

or 

( ) (( ) , ( ) , ), , , , , ,u W u uml i j k
n

ml i j k
n

ml i j k
n= − + α ,     l=x, y, z        (2.23)’  

where 
   )(4/)2/()()1(

mzmymxmm hgtuuQ +⋅∆−⋅−= ββ                             

                                )4/3/()2/(3 mtmxm ftfft ⋅∆+⋅−⋅∆− ββ  

    )(4/)2/()()2(
mxmzmymm fhtuuQ +⋅∆−⋅−= ββ  

                                  )4/3/()2/(3 mtmym gtggt ⋅∆+⋅−⋅∆− ββ  

   )(4/)2/()()3(
mymxmzmm gftuuQ +⋅∆−⋅−= ββ  

                                )4/3/()2/(3 mtmzm hthht ⋅∆+⋅−⋅∆− ββ  

   ( ) [( ) ( ) ] / ( / ), ,
'

/ , , , ,u u u xmx i j k
n

m i j k
n

m i j k
n±

±= ± −1 2 2∆ ; 

    ( ) [( ) ( ) ] / ( / ), ,
'

, / , , ,u u u ymy i j k
n

m i j k
n

m i j k
n±

±= ± −1 2 2∆  

    ( ) [( ) ( ) ] / ( / ), ,
'

, , / , ,u u u zmz i j k
n

m i j k
n

m i j k
n±

±= ± −1 2 2∆ ,  

    { }( ) /'
/ , , / , ,

/u u t um i j k
n

m mt i j k

n
± ±

−= + ⋅1 2 1 2

1 22∆  

    { }( ) /'
, / , , / ,

/u u t um i j k
n

m mt i j k

n
± ±

−= + ⋅1 2 1 2

1 22∆ ;  

    
{ }( ) /'

, , / , , /

/u u t um i j k
n

m mt i j k

n
± ±

−= + ⋅1 2 1 2

1 22∆
 

This concludes the discussion of the three-dimensional 
space-time conservation scheme for the Euler equations. 

  

3.  NUMERICAL RESULTS 
To demonstrate the capability of this new scheme, several 
benchmark flow problems are reported here. In the following 
examples, boundary conditions are specified at inlet surface. 
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At the outlet surface, the space-time non-reflective condition 
[14] are used. Along solid boundary, the reflective condition 
is used.   

Example 1 Sod’s Shock Tube Problem [7]  

The computational domain and the flow condition are the 
same as that in Ref. [1]. Here,  ∆t=0.2×10-2, ∆x=0.6×10-2, 
and CFL≅ 0.72. Figure 3.1 is the velocity distribution at 
t=0.2.  The solid line is the exact solution and the dots are 
the numerical solution. It is clear that the shock jump 
condition is well resolved by only one data point in the 
shock. 

        
Fig.3.1  The Euler solution of a 1D unsteady shock tube 
problem 

 

Example 2 Steady-State Shock Reflection [8] 

The computational domain and the flow condition are the 
same as that in Ref. [8]. The lower boundary is a solid wall. 
The size of computational mesh is 121×81.  The grid points 
of the mesh are uniformly distributed.  This problem has an 
exact analytical solution. The computed pressure contours is 
shown in Fig. 3.2.  

 
Fig.3.2  Pressure contours of steady-state shock reflection 
problem  

Across the shock, there are about one to two mesh nodes 
inside the shock. The angle of the reflected shock is very 
accurate.  Although not shown, the numerical result of the 
pressure jumps agrees well with the exact solution. 

 

Example 3 Shock over a Forward facing Step  

The geometry of the forward facing step and the flow  
condition are the same as that in Ref. [9]. The mesh density 
is 181×121, and the grid points are uniformly distributed. 
The time increment  of the present calculation is ∆t=0.0025. 

In Fig. 3.3, the computed density contours are plotted for 
t=4. In the present numerical solution, the Mach stem, triple 
point, slip surface, expansion fan at the corner, and the 
interaction between the reflected shock with rarefaction 
waves are all accurately simulated. We remark that there is 
no special treatment at the corner of the step, which is 
usually required for conventional CFD methods to ensure 
numerical stability.  

 
Fig.3.3  Density contours of a two-dimensional supersonic 
flow passing a forward facing step (t=4) 

 

Example 4 Shock/Boundary Layer Interaction [13] 

In this paper, the presentation of this new numerical scheme 
has been focused on the solution of the Euler equations. 
Nevertheless, the present scheme can be straightforwardly 
extended to that for solving the Navier-Stokes equations. 
The details of this extension will be reported in another 
paper. Here, a numerical example is provided to demonstrate 
the applicability of the present scheme to the Navier-Stokes 
equations.  

The flow condition are the same as that reported in Ref. 
[13]. That is, M∞ = 2.0, Re = 2.96×105, T∞ = 117 K, and the 
incident shock angle is β =32.6o.  A 180×180 non-uniform 
mesh is employed. The mesh is cluster to the wall to resolve 
the high gradient of velocity inside the boundary layer. The 
smallest ∆y is about 10-3. The characteristic length for 
nondimensionalization is the distance between the leading 
edge of the flat plate and the shock incident point.  Figure 
3.5 is the pressure contours.  Due to the Strong incident 
shock, a separation occurs near the impingement point of the 
incident shock. The overall flow pattern shown in Fig. 3.4 
agrees well with the experiment results [13].   
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Fig.3.4 The pressure contours of the oblique shock / flat 
plate boundary layer interaction. 
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We remark that although not shown, the detailed comparison 
of pressure and skin friction coefficient Cf profiles along the 
solid wall boundary between the numerical results and the 
experimental data agree very well. These results will be 
reported in another paper. 

 

4. CONCLUDING REMARKS 

In this paper, a modified space-time conservation scheme for 
solving one, two and three-dimensional Euler equations is 
reported. In the present approach, only one CE at each mesh 
point is used to calculate the flow variables. The gradients of 
the flow variables are calculated by using a central-
difference type reconstruction procedure. The present 
scheme maintains all the favorable features of the original 
CE/SE method.  The calculation of the present scheme is 
simple, accurate, and can be easily applied to a regular 
structured mesh.  To demonstrate the capability of the 
present approach, several benchmark problems were 
calculated. The performance of the present method is 
satisfactory.   

 

ACKNOWLEDGEMENT 

This work is performed under the support of NASA Lewis 
Research Center NCC3-580, monitored by Dr. Philip 
Jorgenson.  This work is also a part of an ongoing program 
at Wayne State University in applying the Space-Time 
CE/SE Method to practical engineering problems.  

 

REFERENCES    
1. Chang, S.C., “The Method of Space-Time Conservation 

Element and Solution Element – A New Approach for 
Solving the Navier Stokes and Euler Equations,” J. 
Comp. Phys., Vol. 119 , 1995, pp. 295-324 

2. Wang, X.Y., Chow, C.Y. and Chang, S.C., “An Euler 
Solver based on the Method of  Space-Time Time 
Conservation Element and Solution Element,” 
Proceeding of the 15th Int. Conf. Num. Methods Fluid 
Dynamics, Monterey, CA, 1996 

3. Yu, S.T. and  Chang, S.C., “Treatments of Stiff Source 
Terms in Conservation Laws by the Method of Space-
Time Conservation Element and Solution Element,” 
AIAA Paper 97-0435, 1997. 

4. Yu, S.T. and Chang, S.C., “Applications of the Space-
Time Conservation Element and Solution Element 
Method to Unsteady Chemically Reactive Flows,” 
AIAA Paper 97-2007, 1997. 

5. Loh, C.Y. and Chang, S.C., Scott, J.R. and Yu, S.T., 
“Application of the Space-Time Conservation Element 
and Solution Element to Aeroacoustics Problems,” 
AIAA Paper 96-0276, 1996. 

6. Chang, S.C., “New Developments in the Method of the 
Space-Time Conservation Element and Solution 
Element – Applications to the Euler and Navier-Stokes 
Equations,” NASA TM 106226, 1993. 

7. Sod, G. A., “A Survey of Several Finite Difference 
Method for Systems of Nonlinear Hyperbolic 
Conservation Laws,” J. Comput. Phys., Vol. 27, No.1, 
1978, pp. 1-31 

8. Chang, S.C., Wang, X.Y. and Chow, C.Y., “The 
Method of Space-Time Conservation Element and 
Solution Element – Applications to One and Two-
Dimensional Time-Marching Flow Problems,” AIAA 
Paper 95-1754, 1995. 

9. Wang, X.Y., “Computational Fluid Dynamics based on 
the Method of Space-Time Conservation Element and 
Solution Element,” Ph.D. Dissertation, Univ. of 
Colorado at Boulder, 1995.  

10. Nessyahu, H. and Tadmor, E., “Non-Oscillatory Central 
Differencing of Hyperbolic Conservation laws,” J. 
Comput. Phys., Vol. 87, 1990, pp. 408-463. 

11. Sander, R. and Weiser, A., “High Resolution Staggered 
Mesh Approach for Nonlinear Hyperbolic Systems of 
Conservation Laws,” J. Comput. Phys., Vol. 101, 1992, 
pp. 314-329.  

12. Jiang, G.S., and Tadmor, E., “Non-Oscillatory Central 
Schemes for Multidimensional Hyperbolic Conservation 
Laws,” UCLA CAM Report 96-36, October 1996.  

13. Hakkinen, R.J., Greber, I., Trilling, L. and Abarbanel, 
S.S., “The Interaction of an Oblique Shock Wave with a 
Laminar Boundary Layer,” NASA Memo 2-18-59W, 
1959. 

14. Chang, S.C., Himansu, A., Loh, C.Y., Wang, X.Y., Yu 
S.T.,  Jorgenson, P.,  “Robust and Simple Nonreflecting 
Boundary Conditions for the Space-Time Conservation 
Element and Solution Element Method,”  AIAA Paper 
97-2077, the 13th AIAA CFD Conference,  June 1997, 
Snow Mass, CO.   

 


	ABSTRACT
	1. INTRODUCTION
	Recently, Chang and coworkers [1,2,3] reported a novel numerical framework for solving conservation laws, namely, the method of Space-Time Conservation Element and Solution Element, or the CE/SE method for short. The method is based on an equal-footing t
	
	
	
	Fig. 1.2 A schematic of Changs space-time integral form [1].




	1.4 The a-( and a-( Schemes
	When dealing with nonlinear equations, e.g., the Euler equations, the above a scheme must be modified by adding artificial damping for numerical stability. That is the a-( scheme. By adding the artificial damping, the calculated values of the gradient, i
	
	
	2. NUMERICAL METHODS



	2.1 The Modified Scheme for the 1D Euler Equations
	
	
	
	
	3.  NUMERICAL RESULTS



	4. CONCLUDING REMARKS

	REFERENCES



